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Random data generators can be thought of as parsers of streams of randomness. This perspective on generators
for random data structures is established folklore in the programming languages community, but it has never
been formalized, nor have its consequences been deeply explored.

We build on the idea of freer monads to develop free generators, which unify parsing and generation using
a common structure that makes the relationship between the two concepts precise. Free generators lead
naturally to a proof that a monadic generator can be factored into a parser plus a distribution over choice
sequences. Free generators also support a notion of derivative, analogous to the familiar Brzozowski derivatives
of formal languages, allowing analysis tools to “preview” the effect of a particular generator choice. This gives
rise to a novel algorithm for generating data structures satisfying user-specified preconditions.
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1 INTRODUCTION
“A generator is a parser of randomness. . . ” It’s one of those observations that’s totally puzzling
right up to the moment it becomes totally obvious: a random generator—such as might be found in
a property-based testing tool likeQuickCheck [Claessen and Hughes 2000]—is a transformer from
a series of random choices into a data structure, just as a parser is a transformer from a series of
characters into a data structure.
While this connection may be obvious once it is pointed out, few actually think of generators

this way. Indeed, to our knowledge the framing of random generators as parsers has never been
explored formally. The relationship between these fundamental concepts deserves a deeper look!
We focus on generators written in the monadic style popularized by theQuickCheck library,

which that build random data structures by making a sequence of random choices; those choices
are the key. Traditionally, a generator makes decisions using a stored source of randomness (e.g., a
seed) that it consults and updates whenever it must make a choice. Equivalently, if we like, we can
pre-compute a list of choices and pass it in to the generator, which gradually walks down the list
whenever it needs to make random decisions. In this mode of operation, the generator is effectively
parsing the sequence of choices into a data structure!
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Free Generators

Parser + =Randomness Generator

1. "A generator is a parser
of randomness."

2. Free Generator Derivatives

3. Choice Gradient Sampling

Fig. 1. Our contributions.

To connect generators and parsers, we intro-
duce free generators, syntactic data structures that
can be interpreted as either generators or parsers.
Free generators have a rich theory; in particular,
we can use them to prove that a large class of
random generators can be factored into a parser
and a distribution over sequences of choices.

Besides clarifying folklore, free generators ad-
mit transformations that do not exist for standard
generators and parsers. A particularly exciting
one is a notion of derivative which modifies a
generator by asking the question: “what does this
generator look like after it makes choice 𝑐?” The
derivative previews a particular choice to deter-
mine how likely it is to lead to useful values.

We use derivatives of free generators to tackle
a well-known problem—we call it the valid gen-
eration problem. The challenge is to generate a
large number of random values that satisfy some
validity condition. This problem comes up often
in property-based testing, where the validity con-
dition is the precondition of some functional spec-
ification. Since generator derivatives give a way
of previewing the effects of a particular choice,
we can use gradients (derivatives with respect to a
vector of choices) to preview all possible choices
and pick a promising one. This leads us to an ele-
gant algorithm that takes a free generator and replaces its distribution with one that produces only
valid values. Replacing the distribution in this way trades the benefits of the programmer’s tuning
effort for a higher chance of finding valid inputs to test with.

In §2 below, we introduce the ideas behind free generators and the operations that can be defined
on them. We then present our main contributions:

• We formalize the folklore analogy between parsers and generators using free generators, a
novel class of structures that make choices explicit and support syntactic transformations (§3).
We use free generators to prove that any finitely supported monadic generator can factored
into a parser and a distribution over strings.
• We exploit free generators to transport an idea from formal languages—the Brzozowski
derivative—to the context of generators (§4).
• To illustrate the potential applications of these formal results, we present an algorithm that
uses derivatives to turn a naïve generator into one with a different distribution, assigning
nonzero probability only to values satisfying a Boolean precondition (§5). Our algorithm
performs well on a set of simple benchmarks, in most cases producing more than twice as
many valid values as a naïve “rejection sampling” generator in the same amount of time (§6).

We conclude with related and future work (§8 and §9).
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2 HIGH-LEVEL STORY
To set the stage, let’s clarify the specific formulations of generators and parsers that we plan to
discuss. Consider the following programs:

genTree ℎ =
if ℎ = 0 then

return Leaf
else

𝑐 ← frequency [(1, False), (3, True)]
if 𝑐 == False then return Leaf
if 𝑐 == True then

𝑥 ← genInt ()
𝑙 ← genTree (ℎ − 1)
𝑟 ← genTree (ℎ − 1)
return Node 𝑙 𝑥 𝑟

parseTree ℎ =
if ℎ = 0 then

return Leaf
else

𝑐 ← consume ()
if 𝑐 == l then return Leaf
if 𝑐 == n then

𝑥 ← parseInt ()
𝑙 ← parseTree (ℎ − 1)
𝑟 ← parseTree (ℎ − 1)
return Node 𝑙 𝑥 𝑟

else fail

The program on the left, genTree, generates random binary trees of integers like

Node Leaf 5 Leaf and Node Leaf 5 (Node Leaf 8 Leaf) ,

up to a given heightℎ, guided by a series of weighted randomBoolean choices made using frequency.
Each time the program runs, it produces a random tree—i.e., the program denotes a distribution
over trees. Generators like these can describe arbitrary finitely supported distributions of values.

The program on the right, parseTree, parses a string into a tree, turning

n5ll into Node Leaf 5 Leaf and n5ln8ll into Node Leaf 5 (Node Leaf 8 Leaf) .

It consumes the input string character by character with consume and uses the characters to decide
what to do next. This program is deterministic, but its execution (and thus the final tree it produces)
is guided by a string of characters it is passed as input. Parsers like these can parse arbitrary
computable languages.
These two programs are nearly identical in structure, and both produce the same set of values.

The main difference lies in how they make choices: in genTree branches are taken at random,
whereas in parseTree they are controlled by the input string.

This is the key observation that links generators and parsers. To make it more concrete, let us
imagine how to recover the distribution of genTree ℎ from parseTree ℎ. We can do this by choosing
a string at random and then parsing it—if we choose strings with the correct distribution, then the
result of parsing those strings into values will be the same as if we had run genTree in the first
place.
Here, we want the distribution over strings given to parseTree to satisfy the weighting of the

Boolean choices in genTree. That is, n should appear three times more often than l, since True is
chosen three times more often than False .

Free Generators. With these intuitions in hand, let’s connect parsing and generation formally.
First, we unify random generation with parsing by abstracting both into a single data structure;
then we show that a structure of this form can be viewed equivalently as a generator or as a parser
and a source of randomness.
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Our unifying data structure is called a free generator.1 Free generators are syntactic structures
that can be interpreted as programs that either generate or parse. For example:

fgenTree ℎ =
if ℎ = 0 then

return Leaf
else

𝑐 ← pick [(1, l, return False), (3, n, return True)]
if 𝑐 == False then return Leaf
if 𝑐 == True then

𝑥 ← fgenInt ()
𝑙 ← fgenTree (ℎ − 1)
𝑟 ← fgenTree (ℎ − 1)
return Node 𝑙 𝑥 𝑟

The structure of this program is again very similar to that of genTree and parseTree. The call to
pick on line 5 combines ideas from both the generator (capturing the relative weights of False and
True) and the parser (capturing the labels l and n corresponding to different paths in the parser
code). However, the meaning of fgenTree is very different from that of either genTree or parseTree.
The operators in fgenTree are entirely syntactic, and the result of running fgenTree ℎ is simply an
abstract syntax tree (AST).

The syntactic nature of free generators means that they can simultaneously represent generators,
parsers, and more. In §3 we give several ways to interpret free generators. We write G⟦·⟧ for the
random generator interpretation of a free generator and P⟦·⟧ for the parser interpretation. In other
words,

G⟦fgenTree ℎ⟧ ≈ genTree ℎ and P⟦fgenTree ℎ⟧ ≈ parseTree ℎ.
The interpretation functions walk the AST produced by fgenTree to recover the behavior of the
generator and parser programs.
These two interpretations can be related, formally, with the help of one final interpretation

function, R⟦·⟧, the randomness interpretation of the free generator. The randomness interpretation
produces the distribution of sequences of choices that the random generator interpretation makes.
Now, for any free generator 𝑔, we have

P⟦𝑔⟧ ⟨$⟩ R⟦𝑔⟧ ≈ G⟦𝑔⟧

where ⟨$⟩ is a “mapping” operation that applies a function to samples from a distribution (see
Theorem 3.1 below). Since a large class of generators (monadic generators with a finitely supported
distribution) can also be written as free generators, another way to read this theorem is that such
generators can be factored into two pieces: a distribution over choice sequences (given by R⟦·⟧),
and a parser of those sequences (given by P⟦·⟧).
This precisely formalizes the intuition that “A generator is a parser of randomness.” But wait,

there’s more to come!

Derivatives of Free Generators. Since a free generator defines a parser, it also defines a formal
language: we write L⟦·⟧ for this language interpretation of a free generator. The language of a
free generator is the set of choice sequences that it can parse.

1This document uses the knowledge package in LATEX to make definitions interactive. Readers viewing the PDF electronically
can click on technical terms and symbols to see where they are defined in the document.
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Viewing free generators this way suggests some interesting ways that free generators might
be manipulated. In particular, formal languages come with a notion of derivative, due to Brzo-
zowski [Brzozowski 1964]. Given a language 𝐿, the Brzozowski derivative of 𝐿 with respect to a
character 𝑐 is

𝛿L𝑐 𝐿 = {𝑠 | 𝑐 · 𝑠 ∈ 𝐿},

that is, the set of all strings in 𝐿 that start with 𝑐 , with the first 𝑐 removed.
We can apply the same intuition to parsers by considering the derivative of a parser with respect

to 𝑐 to be whatever parser remains after 𝑐 has been parsed. Each consecutive derivative fixes certain
choices within the parser, simplifying the program:

parseTree 10 =
𝑐 ← consume()
if 𝑐 == l then

return Leaf
if 𝑐 == n then

𝑥 ← parseInt()
𝑙 ← parseTree 9
𝑟 ← parseTree 9
return Node 𝑙 𝑥 𝑟

else fail

𝛿Ln (parseTree 10) ≈

𝑥 ← parseInt()
𝑙 ← parseTree 9
𝑟 ← parseTree 9
return Node 𝑙 𝑥 𝑟

𝛿L5 𝛿
L
n (parseTree 10) ≈

𝑙 ← parseTree 9
𝑟 ← parseTree 9
return Node 𝑙 5 𝑟

The first derivative fixes the character n, ensuring that the parser will produce a Node. The next
fixes the character 5, which determines the value 5 in the final Node.

Free generators have a closely related notion of derivative, illustrated by an almost identical set
of transformations:

fgenTree 10 =
𝑐 ← pick [. . . ]
if 𝑐 == False then

return Leaf
if 𝑐 == True then

𝑥 ← fgenInt()
𝑙 ← fgenTree 9
𝑟 ← fgenTree 9
return Node 𝑙 𝑥 𝑟

else fail

𝛿Ln (fgenTree 10) ≈

𝑥 ← fgenInt()
𝑙 ← fgenTree 9
𝑟 ← fgenTree 9
return Node 𝑙 𝑥 𝑟

𝛿L5 𝛿
L
n (fgenTree 10) ≈

𝑙 ← fgenTree 9
𝑟 ← fgenTree 9
return Node 𝑙 5 𝑟

But there is a critical difference between this series of derivatives and the ones for parseTree.
Whereas the parser derivatives we saw could be thought of intuitively as a program transformation
on parsers, the analogous transformation on free generators is readily computable! Just as we can
compute the derivative of a regular expression or a context-free grammar, we can compute the
derivative of a free generator via a simple and efficient syntactic transformation.
In §4 we define a procedure, 𝛿L𝑐 , for computing the derivative of a free generator and prove it

correct, in the sense that, for all free generators 𝑔,

𝛿L𝑐 L⟦𝑔⟧ = L⟦𝛿𝑐𝑔⟧.

In other words, the derivative of the language of 𝑔 is equal to the language of the derivative of 𝑔.
(See Theorem 4.2.)
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Putting Free Generators toWork. The derivative of a free generator is the generator that remains
after a particular choice. This gives us a way of “previewing” the effect of making a choice by
looking at the generator after fixing that choice.

In §5 and §6 we present and evaluate an algorithm called Choice Gradient Sampling that uses free
generators to address the valid generation problem. Given a validity predicate on a data structure,
the goal is to generate as many unique, valid structures as possible in a given amount of time.
Starting from a simple free generator, our algorithm uses derivatives to evaluate choices and search
for ones that produce valid values.
We evaluate the choice gradient sampling algorithm on four small benchmarks, all standard in

the property-based testing literature. For each, we compare our algorithm to rejection sampling—
sampling from a naïve generator and discarding invalid results—as a simple but useful baseline for
understanding how well or algorithm performs. Our algorithm does remarkably well on three out
of four benchmarks, generating more than double the valid values per minute of rejection sampling.

3 FREE GENERATORS
We now turn to developing the theory of free generators, beginning with some background on
monadic abstractions for parsing and random generation.

Background: Monadic Parsers and Generators. In §2 we represented generators and parsers
as pseudo-code. Here we flesh out the details, presenting all definitions as Haskell programs, both
for the sake of concreteness and also because Haskell’s abstraction features (e.g., type-classes)
allow us to focus on the key concepts. Haskell is a lazy functional language, but, as we focus our
attention on finite programs, our results should apply directly to eager functional languages. It
may also be possible, with appropriate domain knowledge, to translate these ideas to idiomatic
constructs in popular imperative languages [Petříček 2009].
We represent both generators and parsers using monads [Moggi 1991]. A monad is a type

constructor (e.g., List , Maybe, etc.) M equipped with two operations,

return :: a → M a
(»=) :: M a→ (a → M b) → M b

(with »= pronounced “bind”). Conceptually, return is the simplest way to put some value into the
monad, while bind gives a way to sequence operations that produce monadic values.
We can use these operations to define genTree like we would in QuickCheck [Claessen and

Hughes 2000] and parseTree like we would using libraries like Parsec [Leijen and Meijer 2001]:

genTree :: Int → Gen Tree
genTree 0 = return Leaf
genTree ℎ = do
c ← frequency [(1, False ), (3, True)]
case c of
False → return Leaf
True → do
x ← genInt
l ← genTree (ℎ − 1)
r ← genTree (ℎ − 1)
return (Node l x r )

parseTree :: Int → Parser Tree
parseTree 0 = return Leaf
parseTree ℎ = do
c ← consume
case c of
l→ return Leaf
n→ do
x ← parseInt
l ← parseTree (ℎ − 1)
r ← parseTree (ℎ − 1)
return (Node l x r )

_ → fail
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In the first program, genTree, we use the monadic operations (along with frequency) to generate a
random tree of integers. The expression return Leaf is a degenerate generator that always produces
the value Leaf—this is what we mean by the “simplest way to put a value into the Gen monad.”
Rather than use (»=) explicitly, we use do-notation, where

do
a ← x
f a

is syntactic sugar for x »= f . In the context of the Gen type, this operation samples from a gen-
erator x to get a value a and then passes it to f for further processing—this is what we mean by
“sequencing operations.” Formally, genTree denotes a distribution over binary trees (e.g., an arrow
in an appropriate category [Giry 1982]), and running the program samples from that distribution.

We can see these same combinators (used with a different monad) in parseTree. There, return a
means “parse nothing and produce a”, and x »= f means “run the parser x to get a value a and then
run the parser f a.” Under the hood, we have:

type Parser a = String → Maybe (a, String )

A Parser can be applied to a string to obtain either Nothing or Just (a , s ) , where a is the parse
result and s contains any extra characters. The consume function pulls the first character off of the
string for inspection.

Expressiveness Relative to Other Abstractions. Monadic parsers and generators are maximally
expressive in their respective domains. Monadic parsers can parse arbitrary computable languages,
subsuming more restricted parser descriptions like context-free grammars and regular expressions.
Likewise, monadic generators can generate values satisfying arbitrary computable constraints (e.g.,
it is possible to write a monadic generator for well-typed System F terms), subsuming less powerful
representations like probabilistic context-free grammars.

For example, the following monadic generator generates (only) valid binary search trees:

genBST :: ( Int , Int ) → Gen Tree
genBST (lo , hi ) | lo > hi = return Leaf
genBST (lo , hi ) = do
c ← frequency [(1, False ), (3, True)]
case c of
False → return Leaf
True → do
x ← genRange (lo , hi )
l ← genBST (lo , x − 1)
r ← genBST (x + 1, hi )
return (Node l x r )

The generator maintains the BST invariant by keeping track of the minimum and maximum values
available for a given sub-tree and ensuring that all values to the left of a value are less and that
all values to the right of a value are greater. This kind of generator is impossible to express as
a stochastic CFG, since there is dependence between the choice of value x and the choices of
sub-trees. Our examples are mostly focused on simple (non-dependent) generators to streamline
the exposition, but our theory applies to the full class of monadic generators with finitely supported
distributions.
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Representing Free Generators. With the monad interface in mind, we can now give the formal
definition of a free generator.2

Type Definition. The actual type of free generators is based on a structure called a freer monad [Kise-
lyov and Ishii 2015]:

data Freer f a where
Return :: a → Freer f a
Bind :: f a → (a → Freer f b) → Freer f b

This type looks complicated, but it is essentially just a representation of a monadic syntax tree. The
constructors of Freer align almost exactly with the monadic operations return and (»=) , providing
syntactic forms that can represent the building blocks of monadic programs.

An eagle-eyed reader might notice that the type of Bind here is not quite an instance of the type
of (»=) above—one would have expected to see

Bind :: Freer f a → (a → Freer f b) → Freer f b

with Freer f a as the first argument. The version we use is equally powerful, but more convenient.
We will see in a moment that syntax trees in a freer monad are normalized by construction.

But what is going on with this f that appears throughout Freer? The type constructor f is a type
of specialized operations that are specific to a particular monadic program. For example, programs in
the Gen monad do not just use return and (»=) , they also use a Gen-specific operation, frequency.
Similarly, representing a Parser as a syntax tree requires a way to represent a call to consume. In
general, f a should be a syntactic representation of an operation returning a. Thus, we might have
a type representing a parser operation that returns a character:

data Consume a where
Consume :: Consume Char

Since Freer is polymorphic over f , it can capture any specialized operation necessary to represent
the syntax tree of a monad.

For free generators specifically, the specialized operation we need is called pick—we saw it in
§2. Intuitively, pick subsumes both frequency and consume. We define the Pick operation with a
data type (since free generators are syntactic objects) simultaneously with our definition of FGen,
the type of free generators:

data Pick a where
Pick :: [(Weight, Choice, Freer Pick a)] → Pick a

type FGen a = Freer Pick a

By defining FGen as Freer Pick, we are really saying that “FGen is a monad with operation Pick.”
The Pick operation takes a list of triples. The first element of type Weight represents the weight

given to a particular choice; weights are represented by signed integers for efficiency, but for
theoretical purposes we treat them as strictly positive. The type Choice can theoretically be any
type that admits equality, but for the purposes of this paper we take choices to be single characters.
This makes the analogy with parsing clearer. Finally, Freer Pick a is actually just the type FGen a!
Thus we should view the third element in the triple as a nested free generator that is run iff a
specific choice is made.
2For algebraists: Free generators are “free” in the sense that they admit unique structure-preserving maps to other “generator-
like” structures. In particular, the G⟦·⟧ and P⟦·⟧ maps are canonical. For the sake of space, we do not explore these ideas
further here.
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Together the elements of these triples represent both kinds of choices that we have seen so
far, subsuming both the weighted random choices of generators and the input-directed choices of
parsers. Depending on our needs, we can interpret Pick as either kind of choice. In the rest of the
paper, we sometimes speak of free generators “making” or “parsing” a choice, but remember that
this is really just an analogy—a free generator is simply syntax, and the interpretation comes later.

Our First Free Generator. The FGen structure achieves our goal of unifying monadic generation
and parsing, so let’s try writing a free generator. Following the basic structure of genTree and
parseTree, we can start to define fgenTree:

fgenTree :: Int → FGen Tree
fgenTree 0 = Return Leaf
fgenTree ℎ = Bind
(Pick [(1, l, Return False ), (3, n, Return True )])
(_c → case c of

False → Return Leaf
True → ... )

The first few lines are relatively easy to translate. The height checks are all the same as before, but
now in the ℎ = 0 case we produce the syntactic object Return Leaf rather than return Leaf, whose
behavior depends on a particular implementation of return. When ℎ > 0, we use Bind and Pick to
specify that the generator has two choices: False (with weight 1, marked by character l) and True
(with weight 3, marked by n).

But things get a bit more complicated when we get into the anonymous function passed as the
second argument to Bind. In the False case we Return Leaf again, but in the True case the next step
should be a call to fgenInt . We could look at the definitions of genInt and parseInt to determine
the next choice, and then we could create a Bind node to make that choice, but that would be fairly
tedious to do for every choice that the generator might eventually make. In general, while FGen
is the right type to capture free generators, its constructors are a bit cumbersome to write down
directly.

Recovering Monadic Syntax. Luckily, we can use the same monadic machinery used by genTree
and parseTree to make free generators much easier to write. We can define return and (»=) for
FGen as follows, allowing us to use do-notation to write free generators:

return :: a → FGen a
return = Return

(»=) :: FGen a→ (a → FGen b) → FGen b
Return a »= f = f a
Bind p g »= f = Bind p (_a → g a »= f )

The return operator maps directly to a Return syntax node, but there is a bit more going on in
the definition of (»=) . Specifically, (»=) normalizes the structure of the computation, ensuring that
there is always an operation at the “front.” The advantage of this is that it is always𝑂 (1) to check if
a free generator has a choice to make. There is no need to dig through the syntax tree to determine
the next step.

Another convenient way to manipulate free generators is via an operation called called “fmap,”
written f ⟨$⟩ x. Like return and (»=) , ( ⟨$⟩ ) is a syntactic transformation, but intuitively f ⟨$⟩ x
means “apply the function f to the result of generating/parsing with x”. We define it as:
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( ⟨$⟩ ) :: (a → b) → FGen a→ FGen b
f ⟨$⟩ Return a = Return ( f a)
g ⟨$⟩ (Bind p f ) = Bind p (( g ⟨$⟩ ) . f )

(Note that all monads have an analogous operation; this will come in handy later.)

Representing Failure. For reasons that will become clear in §4, it is useful to be able to represent a
free generator that can “fail.” We call the always-failing free generator void, and define it like this:

void :: FGen a
void = Bind (Pick []) Return

Any reasonable interpretation of this free generator must fail (by either diverging or returning a
signal value); with no choices in the Pick list, there is no way to get a value of type a to pass to
the second argument of Bind. Additionally, the use of Return as the second argument to Bind is
irrelevant, since any free generator with no choices available will fail. This suggests that we can
check if a free generator is certainly void by matching on an empty list of choices! In Haskell this
is easy to do with a pattern synonym:

pattern Void :: FGen a
pattern Void ← Bind (Pick []) _

This declaration means that pattern-matching on Void is equivalent to matching a Bind with no
choices to make and ignoring the second argument. It is simple to define a function that uses this
new pattern to check if a particular free generator is void:

isVoid :: FGen a→ Bool
isVoid Void = True
isVoid _ = False

While void is useful as an error case for algorithms that build free generators, it would be
incorrect for a user to use void in a hand-written free generator. To enforce this constraint, we
define a wrapper around Pick (called pick) that does a few coherence checks to make sure that the
generator is constructed properly:

pick :: [(Weight, Choice, FGen a)] → FGen a
pick xs =
case filter (_ (_ , _ , x) → not ( isVoid x )) xs of
ys | hasDuplicates (map snd ys) → undefined
[] → undefined
ys → Bind (Pick ys) Return

This function is partial: it yields undefined if the list passed to pick is invalid. (This is analogous
to raising an exception in a conventional imperative language.) The first line filters out any choices
that are equivalent to void, since making those choices would lead to failure. The second line checks
that the user has not duplicated any of the choice labels; this would introduce a nondeterministic
choice that would complicate the interpretation considerably (see §7). Finally, the third line ensures
that the generator we construct is not itself void. In practice, these checks ensure that the various
interpretations of free generators presented in the remainder of this section work as intended.

Examples. Now that we have seen the building blocks of free generators, let’s look at a couple of
concrete examples. First, we can finally write down an ergonomic version of fgenTree:
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fgenTree :: Int → FGen Tree
fgenTree 0 = return Leaf
fgenTree ℎ = do
c ← pick [(1, l, return False ), (3, n, return True)]
case c of
False → return Leaf
True → do
x ← fgenInt
l ← fgenTree (ℎ − 1)
r ← fgenTree (ℎ − 1)
return (Node l x r )

Remember, the do-notation here is no longer sequencing generators or parsers. Instead, each line
of a do-block builds a new Bind node in a syntax tree. Similarly, return has no semantics, it only
wraps a value in the inert Return constructor. In this way fgenTree looks like both genTree and
parseTree, but it does not behave like either (yet).

Trees are nice as a running example, but they are by no means the most complicated thing that
free generators can represent. Here is a free generator that produces random (possibly ill-typed)
terms of a simply-typed lambda-calculus:
fgenExpr :: Int → FGen Expr
fgenExpr 0 = pick [ (1, i, Lit ⟨$⟩ fgenInt ), (1, v, Var ⟨$⟩ fgenVar) ]
fgenExpr ℎ =
pick [ (1, i, Lit ⟨$⟩ fgenInt ),

(1, p, do { e1← fgenExpr (ℎ − 1); e2← fgenExpr (ℎ − 1); return (Plus e1 e2) }),
(1, l, do { t ← fgenType; e ← fgenExpr (ℎ − 1); return (Lam t e) }),
(1, a, do { e1← fgenExpr (ℎ − 1); e2← fgenExpr (ℎ − 1); return (App e1 e2) }),
(1, v, Var ⟨$⟩ fgenVar) ]

Structurally fgenExpr is similar to fgenTree; it just has more cases and more choices. One stylistic
difference between fgenExpr and fgenTree is that fgenExpr does not pick a coin and use it to decide
what should be generated next; instead, it picks among a list of free generators directly. These
styles of writing free generators are equivalent.
This version of the lambda calculus uses de Bruijn indices for variables and has integers and

functions as values. This is a useful example because, while syntactically valid terms in this language
are easy to generate (as we just did), it is more difficult to generate only well-typed terms. We will
return to this problem in §6.

Interpreting Free Generators. A free generator does not do anything on its own—it is just a
data structure. To actually use these structures, we next define the interpretation functions that we
mentioned in §2 and prove a theorem linking those interpretations together.

Free Generators as Generators of Values. The first and most natural way to interpret a free generator
is as aQuickCheck generator—that is, as a distribution over data structures. PlainQuickCheck
generators ignore failure cases like void (they throw an error if there are no valid choices to make),
but to make things a bit more explicit for our theory we use a modified generator monad: Gen⊥.

We define the random generator interpretation of a free generator to be:
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G⟦·⟧ :: FGen a→ Gen⊥ a
G⟦Void⟧ = ⊥
G⟦Return v⟧ = return v
G⟦Bind (Pick xs) f⟧ = do
x ← frequency (map (_ (w, _ , x) → (w, return x )) xs)
a ← G⟦x⟧
G⟦f a⟧

Note that the operations on the right-hand side of this definition do not build a free generator; they
are Gen⊥ operations. This translation turns the syntactic form Return v into the semantic action
“always generate the value v” and the syntactic form Bind into an operation that chooses a random
sub-generator (with appropriate weight), samples from it, and then continues with f .

Note that G⟦fgenTree ℎ⟧ has the same distribution as genTree ℎ.

Free Generators as Parsers of Random Sequences. The parser interpretation of a free generator views
it as a parser of sequences of choices. The translation looks like this:

P⟦·⟧ :: FGen a→ Parser a
P⟦Void⟧ = _s → Nothing
P⟦Return a⟧ = return a
P⟦Bind (Pick xs) f⟧ = do
c ← consume
x ← case find ((== c) . snd) xs of

Just (_ , _ , x) → return x
Nothing→ fail

a ← P⟦x⟧
P⟦f a⟧

This time the do-notation on the right hand side is interpreted using the Parser monad (as before,
defined as String → Maybe (a, String )). In the case for Bind, the parser consumes a character
and attempts to make the corresponding choice from the list provided by Pick. If it succeeds, it
runs the corresponding sub-parser and continues with f . If it fails, the whole parser fails.

Note that P⟦fgenTree ℎ⟧ has the same parsing behavior as parseTree ℎ.

Free Generators as Generators of Random Sequences. Our final interpretation of free generators
represents the distribution with which the generator makes choices, ignoring how those choices
are used to produce values. In other words, it captures exactly the parts of the structure that the
parser interpretation discards. We define the randomness interpretation of a free generator to be:

R⟦·⟧ :: FGen a→ Gen⊥ String
R⟦Void⟧ = ⊥
R⟦Return a⟧ = return Y

R⟦Bind (Pick xs) f⟧ = do
(c , x) ← frequency (map (_ (w, c , x) → (w, return (c , x ))) xs)
s ← R⟦x »= f⟧
return (c : s )

Again, we use Gen⊥ and frequency to capture randomness and potential failure.
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Factoring Generators. These different interpretations of free generators are closely related to one
another; in particular, we can reconstruct G⟦·⟧ from P⟦·⟧ and R⟦·⟧. That is, a free generator’s
random generator interpretation can be factored into a distribution over choice sequences plus a
parser of those sequences.

To make this more precise, we need a notion of equality for generators like the ones produced
via G⟦·⟧. We say twoQuickCheck generators are equivalent, written 𝑔1 ≡ 𝑔2, iff the generators
represent the same distribution over values. This is coarser notion than program equality, since
two generators might produce the same distribution of values in different ways.

With this in mind, we can state and prove the relationship between different interpretations of
free generators:

Theorem 3.1 (Factoring). Every free generator can be factored into a parser and a distribution
over choice sequences that are, together, equivalent to its interpretation as a generator. In other words,
for all free generators 𝑔,

P⟦𝑔⟧ ⟨$⟩ R⟦𝑔⟧ ≡ (_𝑥 → (𝑥, Y)) ⟨$⟩ G⟦𝑔⟧.

Proof sketch. By induction on the structure of 𝑔; see Appendix A for the full proof. □

Corollary 3.2. Any monadic generator, 𝛾 , written using return , (»=) , and frequency , can be
factored into a parser plus a distribution over choice sequences.

Proof. Translate 𝛾 into a free generator, 𝑔, by replacing return and (»=) with the equivalent free
generator constructs, and frequency with pick. (This will require choosing labels for each choice,
but the specific choice of labels is irrelevant.)

By construction, 𝛾 = G⟦𝑔⟧.
Additionally, 𝑔 can be factored into a parser and a source of randomness via Theorem 3.1. Thus,

(_𝑥 → (𝑥, Y)) ⟨$⟩ 𝛾 = (_𝑥 → (𝑥, Y)) ⟨$⟩ G⟦𝑔⟧ ≡ P⟦𝑔⟧ ⟨$⟩ R⟦𝑔⟧,

and 𝛾 can be factored as desired. □

This corollary is what we wanted to show all along. Monadic generators are parsers of random-
ness.

Free Generators as Formal Language Syntax. One final interpretation will prove useful. The language
of a free generator is the set of choice sequences that it can make or parse. It is defined recursively,
by cases:

L⟦·⟧ :: FGen a→ Set String
L⟦Void⟧ = ∅
L⟦Return a⟧ = Y

L⟦Bind (Pick xs) f⟧ = [ c : s | (w, c , x) ← xs , s ← L⟦x »= f⟧ ]

This definition uses Haskell’s list comprehension syntax to iterate through the large space of
choices sequences in the language of a free generator. To determine the language of a Bind node,
we look at each possible choice and then at each possible string in the language L⟦x »= f⟧ obtained
by continuing with that choice. (This recursion is well-founded as long as the language of the free
generator is finite; by monad identities Bind (Pick xs) f = Bind (Pick xs) Return »= f , and x is
strictly smaller than Bind (Pick xs) Return.) For each of these strings, we attach the appropriate
choice label to the front. The end result is a list of all of the sequences of choices that, if made in
order, would result in a valid output.
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We can think of the result of this interpretation as the support of the distribution given by R⟦𝑔⟧.
The language of a free generator is exactly those choice sequences that the random generator
interpretation can make and the parser interpretation can parse.

4 DERIVATIVES OF FREE GENERATORS
Next, we review the notion of Brzozowski derivative from formal language theory and show that a
similar operation exists for free generators. The way these derivatives fall out from the structure of
free generators justifies taking the correspondence between generators and parsers seriously.

Background: Derivatives of Languages. The Brzozowski derivative [Brzozowski 1964] of a
formal language 𝐿 with respect to some choice 𝑐 is defined as

𝛿L𝑐 𝐿 = {𝑠 | 𝑐 · 𝑠 ∈ 𝐿}.3

In other words, it is the set of strings in 𝐿 that begin with 𝑐 , with the initial 𝑐 removed. For example,

𝛿La {abc, aaa, bba} = {bc, aa}.
Many formalisms for defining languages support syntactic transformations that correspond to

Brzozowski derivatives. For example, we can take the derivative of a regular expression like this:

𝛿L𝑐 ∅ = ∅
𝛿L𝑐 Y = ∅
𝛿L𝑐 c = Y (𝑐 = c)
𝛿L𝑐 d = ∅ (𝑐 ≠ d)

𝛿L𝑐 (𝑟1 + 𝑟2) = 𝛿L𝑐 𝑟1 + 𝛿L𝑐 𝑟2

𝛿L𝑐 (𝑟1 · 𝑟2) = 𝛿L𝑐 𝑟1 · 𝑟2 + aL𝑟1 · 𝛿L𝑐 𝑟2

𝛿L𝑐 (𝑟 ∗) = 𝛿L𝑐 𝑟 · 𝑟 ∗

aL∅ = ∅
aLY = Y

aLc = ∅
aL (𝑟1 + 𝑟2) = aL𝑟1 + aL𝑟2
aL (𝑟1 · 𝑟2) = aL𝑟1 · aL𝑟2

aL (𝑟 ∗) = Y

The aL operator, used in the “·” rule and defined on the right, determines the nullability of an
expression—whether or not it accepts Y. If 𝑟 accepts Y then aL𝑟 = Y, otherwise aL𝑟 = ∅.

As one would hope, if 𝑟 has language 𝐿, it is always the case that 𝛿L𝑐 𝑟 has language 𝛿L𝑐 𝐿.

The Free Generator Derivative. To define derivatives of free generators, we first need a definition
of nullability for free generators:

a :: FGen a→ Set a
a(Return v) = {v}
ag = ∅ (g ≠ Return v)

Note that this behaves a bit differently than the aL operation on regular expressions. For a regular
expression 𝑟 , the expression aL𝑟 is either ∅ or Y. Here, the null check returns either ∅ or the
singleton set containing the value in the Return node. That is, a for free generators extracts a value
that can be obtained by making no further choices. Another difference is that, for free generators,
“can accept the empty string” and “accepts only the empty string” are equivalent statements; this
greatly simplifies the definition of a .
3The superscript L highlights that is the language derivative, distinguishing it from the generator derivative to be defined
momentarily.
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To see what the derivative operation might look like, we can write down some equations that it
should satisfy, based on the equations satisfied by regular expressions:

𝛿𝑐 void ≡ void (1)
𝛿𝑐 (return 𝑣) ≡ void (2)
𝛿𝑐 (pick 𝑥𝑠) ≡ 𝑥 if (𝑐, 𝑥) ∈ 𝑥𝑠 (3)
𝛿𝑐 (pick 𝑥𝑠) ≡ void if (𝑐, 𝑥) ∉ 𝑥𝑠

𝛿𝑐 (𝑥 »= 𝑓 ) ≡ 𝛿𝑐 (𝑓 𝑎) if a𝑥 = {𝑎} (4)
𝛿𝑐 (𝑥 »= 𝑓 ) ≡ 𝛿𝑐𝑥 »= 𝑓 if a𝑥 = ∅

The derivative of an empty generator, or of one that immediately returns a value without looking
at any input, should be void. The derivative of pick depends on whether or not 𝑐 is present in the
list of possible choices—if it is, we simply make the choice; if not, the result is void. Finally, the
equations for (»=) are based on the equation for concatenation of regular expressions, using a to
check to see if the left hand side of the expression is out of choices to make.

Of course, these equations are not definitions. In fact, the actual definition of the derivative for a
free generator 𝑔 is much simpler:

𝛿 :: Char→ FGen a→ FGen a
𝛿𝑐 (Return v) = void
𝛿𝑐 (Bind (Pick xs) f ) =
case find ((== c) . snd) xs of

Just (_ , _ , x) → x »= f
Nothing→ void

Since freer monads are pre-normalized, there is no need to check nullability explicitly in this
definition. It is always apparent from the top-level constructor (Return or Bind) whether or not
there is a choice available to be made. The definition is not even recursive!

We can use the earlier equations to give us confidence that this definition is correct.

Lemma 4.1. 𝛿𝑐 satisfies equations (1), (2), (3), and (4). In other words, the free generator derivative
behaves similarly to the regular expression derivative.

Proof sketch. See Appendix B for the proofs. Most are immediate. □

Another way to ensure that the derivative operation acts as expected is to see how it behaves in
relation to the free generator’s language interpretation. The following theorem makes this concrete:

Theorem 4.2. The derivative of a free generator’s language is the same as the language of its
derivative. That is, for all free generators 𝑔 and choices 𝑐 ,

𝛿L𝑐 L⟦𝑔⟧ = L⟦𝛿𝑐𝑔⟧.

Proof sketch. Straightforward induction (see Appendix C). □

Since derivatives behave as expected, we can use them to simulate the behavior of a free generator.
Just as we can check if a regular expression matches a string by taking derivatives with respect
to each character in the string, we can simulate a free generator’s parser interpretation by taking
repeated derivatives. Each derivative fixes a particular choice, so a sequence of derivatives fixes a
choice sequence.
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5 GENERATING VALID RESULTS WITH GRADIENTS
We now put the theory of free generators and their derivatives into practice. We introduce Choice
Gradient Sampling (CGS), a novel algorithm for generating data that satisfies some given validity
condition, given a simple free generator for data of the appropriate type.

The Choice Gradient Sampling algorithm starts with a free generator for data of some type
and uses derivatives to step the generator through choices one at a time. This process guides the
generator towards values that are valid with respect to a given validity condition. At each step, the
algorithm looks at all available choices and takes the free generator’s derivative with respect to
each one. Since this is, in a sense, a vector of all possible derivatives, we call this the gradient of the
free generator, by analogy with calculus. We write

∇𝑔 = ⟨𝛿a𝑔, 𝛿b𝑔, 𝛿c𝑔⟩
for the gradient of 𝑔 with respect to the available choices {a, b, c}.

Since each derivative in the gradient is itself a free generator, the derivatives can be interpreted
as value generators and sampled. If the derivative with respect to c produces lots of valid samples,
then c is a good choice. If it produces mostly invalid samples, maybe other choices would be better.
As we discuss below, this process is not faithful to the distribution of the original generator, but
it provides a metric that guides the algorithm toward a series of “good” choices, leading to more
valid inputs in many cases.

1: 𝑔← 𝐺

2: V ← ∅
3: while true do
4: if a𝑔 ≠ ∅ then return a𝑔 ∪V
5: if isVoid g then 𝑔← 𝐺

6: 𝐶 ← choices 𝑔
7: ∇𝑔← ⟨𝛿𝑐𝑔 | 𝑐 ∈ 𝐶⟩ ⊲ ∇𝑔 is the gradient of 𝑔
8: for 𝛿𝑐𝑔 ∈ ∇𝑔 do
9: if isVoid 𝛿𝑐𝑔 then
10: 𝑣 ← ∅
11: else
12: 𝑥1, . . . , 𝑥𝑁 f G⟦𝛿𝑐𝑔⟧ ⊲ Sample G⟦𝛿𝑐𝑔⟧
13: 𝑣 ← {𝑥 𝑗 | 𝜑 (𝑥 𝑗 )}
14: 𝑓𝑐 ← |𝑣 | ⊲ 𝑓𝑐 is the fitness of c
15: V ← V ∪ 𝑣
16: if max𝑐∈𝐶 𝑓𝑐 = 0 then
17: for 𝑐 ∈ 𝐶 do 𝑓𝑐 ← weightOf 𝑐 𝐺
18: 𝑔 f frequency [(𝑓𝑐 , 𝛿𝑐𝑔) | 𝑐 ∈ 𝐶]

Fig. 3. Choice Gradient Sampling: Given a free generator𝐺 , a sample rate constant 𝑁 , and a validity predicate
𝜑 , this algorithm produces a set of outputs that all satisfy 𝜑 (𝑥).

We present the CGS algorithm in detail in Figure 3. Lines 7–14 are the core of the algorithm; their
execution is shown pictorially in Figure 4. We take the gradient of 𝑔 by taking the derivative with
respect to each possible choice, in this case a, b, and c. Then we evaluate each of the derivatives by
interpreting the free generator with G⟦·⟧, sampling values from the resulting value generator, and
counting how many of those results are valid with respect to 𝜑 . The precise number of samples is
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controlled by 𝑁 , the sample rate constant; this is up to the user, but in general higher values for 𝑁
will give better information about each derivative at the expense of time spent sampling. At the
end of sampling, we have values 𝑓a, 𝑓b, and 𝑓c, which we can think of as the “fitness” of each choice.
We then pick a choice randomly, weighted based on fitness, and continue until our choices produce
a valid output.

Fig. 4. The main loop of Choice Gradient Sampling.

Critically, we avoid wasting effort by saving
the samples (V) that we use to evaluate the
gradients. Many of those samples will be valid
results that we can use, so there is no reason
to throw them away. Still, note that the perfor-
mance of this sampling does depend on |𝐶 |, the
number of choices available at this point. If the
generator has many valid choices at a given
point, it will need to do a lot of sampling to
decide which choice to make.
This sampling procedure would not be pos-

sible with a traditional monadic generator: free
generators are key. Trying to take a deriva-
tive of a traditional monadic generator would
be like taking the derivative of a black-box
function—there would be no generic way to
incrementalize evaluation. Free generators ex-
pose more structure, making derivatives (and
thus CGS) possible.

Impact on Distribution. As noted above, this algorithm is not faithful to the original distribution
of 𝐺 . In particular, the observable behavior of the algorithm is not to sample from the original
generator’s distribution, conditioned on validity. While this property would arguably be ideal, it
seems quite difficult to obtain. Moreover, its absence need not significantly detract from the value
that CGS provides, for two reasons.
First, while the distribution produced by CGS is not faithful to the original distribution, it is

certainly informed by it. At any given point in the algorithm, the weight given to a choice is
based on how often making future choices, weighted by the original distribution, results in valid
values. This means that valid values that are unlikely results from 𝐺 will be unlikely results from
CGS, and likely results from 𝐺 will also be likely from CGS. Doing better than this would be
quite difficult, since the preconditions we care about are black-box functions. This means that
the only information they can provide is whether or not a particular value is valid, forcing us
into rejection-based approaches. Standard rejection sampling does, in fact, sample from the ideal
conditional distribution but it does so very slowly. Rather than sample from that distribution, CGS
allows the predicate to guide its generation, reaching valid inputs more quickly.
Second, and more importantly, the primary use case for CGS is to improve the performance of

free generators that are either automatically derived or else hand written but not carefully tuned.
That is, the algorithm is most effective as a low-effort way to get from a useless generator to a
usable one. If a tester has strict requirements for the distribution they are after, CGS will likely not
be sufficient; but as a quick way of getting up and running it can be quite helpful.
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We have implemented our Choice Gradient Sampling algorithm in Haskell, along with all of
the definitions presented throughout the paper4 [Goldstein 2022].

6 EXPLORATORY EVALUATION
The Choice Gradient Sampling algorithm is not a tightly optimized production algorithm: it is a
proof of concept. Primarily, CGS exists to illustrate the theory of free generators and their derivatives.
Still, there is much to learn by exploring how well CGS is able to guide realistic generators to valid
outputs.

We set out to answer two basic research questions:
RQ1 Does CGS produce more useful test inputs than standard sampling procedures, in the same

period of time?
RQ2 Are the test inputs obtained from CGS well distributed in shape and size?
Our experimental results suggest that, with a few (interesting) caveats, these questions can both
be answered in the affirmative. We find that CGS generally produces at least twice as many valid
values as rejection sampling (explained in the next section) in the same period of time, and we also
find that CGS’s values are at least as diverse as the ones from rejection sampling. This indicates
that guiding generation with derivatives is a promising approach to the valid generation problem.

Experimental Setup. Our experiments explore how well CGS improves on a canonical generation
strategy. We compare our algorithm to the standard rejection sampling approach used by default
in frameworks like QuickCheck, which takes a naïve generator, samples from it, and discards
any results that are not valid. Rejection sampling is a useful point of comparison because, like our
approach, it requires no extra effort from the user.

We use four simple free generators to test four different benchmarks: BST, SORTED, AVL, and
STLC. Details about each of these benchmarks are given in Table 1.

Table 1. Overview of benchmarks.

Free Generator Validity Condition 𝑁 Depth

BST Binary trees with values 0–9 Is a valid BST 50 5
SORTED Lists with values 0–9 Is sorted 50 20
AVL AVL trees with values 0–9 Is a balanced AVL tree 500 5
STLC Arbitrary ASTs for _-terms Is well-typed 400 5

Each of our benchmarks requires a simple free generator to act as a baseline and as a starting
point for CGS. For consistency, and to avoid potential biases, our generators follow their respective
inductive data types as closely as possible. For example, fgenTree, shown in §3 and used in the
BST benchmark, follows the structure of the definition of the Tree type exactly. All generators use
uniform choice weights, to avoid potential biases introduced by manual tuning.

The parameter 𝑁 , used by CGS to decide how many samples to use for each iteration, was chosen
via trial and error in order to balance fitness accuracy with sampling time. It is possible that some
of our best-case results might improve with a more careful choice of 𝑁 .

Results. We ran CGS and Rejection on each benchmark for one minute (on a MacBook Pro with an
M1 processor and 16GB RAM) and recorded the unique valid values produced. We counted unique
values because duplicate tests are generally less useful than fresh ones (if the system under test is
pure, duplicate tests add no value). The totals, averaged over 10 trials, are presented in Table 2.
4https://github.com/hgoldstein95/free-generators
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Table 2. Unique valid values generated in 60 seconds (𝑛 = 10 trials). Standard deviation in parentheses.

BST SORTED AVL STLC

Rejection 7,354 (109) 5,768 (88) 129 (6) 70,127 (711)
CGS 22,107 (338) 59,677 (1,634) 219 (2) 280,091 (7,265)

These measurements show that CGS is always able to generate more unique values than Rejection
in the same amount of time, often significantly more. The exception is the AVL benchmark; we
discuss this below.

Besides unique values, we measured some other metrics; the charts in Figure 5 show the results
for the STLC benchmark. The first plot (“Unique Terms over Time”) shows how CGS behaves over
time. Not only does CGS find more unique terms than Rejection overall, but its lead continues to
grow over time. Additionally, the “Normalized Size Distribution” chart shows the size distributions
terms generated by both algorithms. The CGS distribution is skewed farther to the right, showing
that it generates larger terms on average; this is good from the perspective of property-based
testing, where test size is often positively correlated with bug-finding power, since larger test inputs
tend to exercise more of the implementation code. Analogous charts for the remaining benchmarks
can be found in Appendix D.

Measuring Diversity. Nothing in the CGS algorithm guarantees that the values we generate are
diverse. Test input diversity is critical for for effective testing, since a more diverse test suite will
find more bugs more quickly, so we present experimental evidence that the values produced by
CGS are indeed no less diverse than the valid values produced by rejection sampling.
Our diversity metric relies on the fact that each value is roughly isomorphic to the choice

sequence that generated it. For example, in the case of BST, the sequence n5l6ll can be parsed
to produce Node 5 Leaf (Node 6 Leaf Leaf) and a simple in-order traversal can recover n5l6ll
again. Thus, choice sequence diversity is a reasonable proxy for value diversity.
We estimated the average Levenshtein distance [Levenshtein et al. 1966] (the number of edits

needed to turn one string into another) between pairs of choice sequences in the values generated
by each of our algorithms. We chose this metric for sequence distance because it is fairly standard
and implementations were readily available. Computing an exact mean distance between all pairs
in such a large set would be very expensive, so we settled for the mean of a random sample of 3000
pairs from each set of valid values. Figure 6 shows the results of these distance calculations, broken
down by value size.
Each pair of lines in the chart represents an experiment. For all but AVL (the small pair of

dash-dotted lines in the lower left), the lines exhibit a clear trend: the per-size diversity of CGS is at
least as good as that of rejection sampling. (In fact, the diversity actually gets significantly better at
large sizes, but much of this effect can be explained by the fact that CGS simply produces more
large values.)

One might hope for even better results than this—why shouldn’t CGS produce much more diverse
values at all sizes? A potential explanation lies in the way CGS retains intermediate samples. While
the first few samples will be mostly uncorrelated, the samples drawn later on in the generation
process (once a number of choices have been fixed) will tend to be similar to one another. This
likely results in clusters of inputs that are all valid but that only explore one shape of input.

The Problem with AVL: Very Sparse Validity Conditions. The AVL benchmark is an outlier in
most of our measurements: CGS only manages to find a modest number of extra valid AVL trees, and
their pairwise diversity is actually slightly worse than that of rejection sampling. Understanding
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Fig. 5. Unique values and term sizes for the STLC benchmark, averaged over values in a single trial.

this phenomenon provides insight into a critical assumption underlying the CGS algorithm—namely
that it is not too difficult to find valid values randomly.
It is clear that AVL trees are quite difficult to find randomly: balanced binary search trees are

hard to generate on their own, and AVL trees are even more difficult because the generator must
guess the correct height to cache at each node. This is why rejection sampling only finds 156 AVL
trees in the time it takes to find 9,762 binary search trees.
In domains like this, CGS is unlikely to find any valid trees while sampling. In particular, the

check in line 15 of Figure 4 will often be true, meaning that choices will be made at random rather
than guided by the fitness of the appropriate derivatives. We could reduce this effect by significantly
increasing the sample rate constant 𝑁 , but then sampling time would likely dominate generation
time, resulting in worse performance overall.
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Fig. 6. Levenshtein diversity of generated values, plotted against the size of those values.

The lesson here seems to be that the CGS algorithm does not work well with especially hard-to-
satisfy validity conditions. In §9, we present an idea that would do some of the hard work ahead of
time and help with this issue.

7 LIMITATIONS
Our free generator abstraction is extremely general and demonstrably useful, but a few technical
weaknesses are worth discussing.

The biggest limitation has to do with the kinds of distributions our free generators can represent.
Our exposition uses weighted choices (frequency) as the randomness primitive, butQuickCheck
is technically built using a primitive like:

choose :: Random r⇒ (r , r ) → Gen r

Intuitively, choose (x , y) uniformly picks a value in the range from x to y, and this range can
technically be infinite (e.g., if r = Rational). This cannot be replicated with frequency or pick.
Thus, our results only apply to generators whose distributions are finitely supported.

Another small issue is that we have intentionally neglected one common element of monadic
generators in the style ofQuickCheck: size. Generators in standardQuickCheck track size bounds
dynamically, allowing the testing framework to externally control the size distribution of the inputs
that it generates. This does not impact our theoretical results (sizes can always be passed around
manually, as we do in the examples in this paper), and sizes would be relatively easy to add to the
free generator language in practice.
Finally, a note on the class of languages that free generators can parse (when interpreted with
P⟦·⟧). Free generators are limited in their nondeterminism (by the definition of pick, and by
assumptions made in the definition of P⟦·⟧); choices in a free generator are always unambiguous.
This means that the parser interpretation of a free generator cannot parse arbitrary languages of
choices, even though monadic parsers in general can parse arbitrary languages. Ultimately this
is not a practical concern, as free generators parse sequences of choices, not realistic languages,
but it is aesthetically disappointing. We believe it would be straightforward to add an operator for
explicit nondeterminism and extend the interpretations accordingly.
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8 RELATEDWORK
We discuss a variety of publications that relate to the present work via connections either to free
generators or to our Choice Gradient Sampling algorithm.

Parsing and Generation. The connection between parsers and generators has been employed
implicitly in some generator implementations. Two popular property-based testing libraries, Hy-
pothesis [MacIver et al. 2019] and Crowbar [Dolan and Preston 2017], implement generators by
parsing a stream of random choices. In fact, Hypothesis even takes advantage of parsing concepts
when shrinking test inputs to make failing test-cases more readable for uses. However, neither of
these frameworks has formalized the relationship between parsing and generation.

Free Generators. Garnock-Jones et al. present a formalism based on parsing expression grammars
(PEGs) with some of the same goals as ours. They give a derivative-based algorithm that somewhat
resembles CGS, which constructs sentences that match a particular PEG. Their work does not
attempt to solve the valid generation problem for complex validity conditions like the ones we
tackle, but it does provide further evidence that connecting parsing and generation is advantageous.
Claessen et al. [2015] present a generator representation that is related to our free generator

structure, but used in a very different way. They primarily use the syntactic structure of their
generators (they call them “spaces”) to control the size distribution of generated outputs; in par-
ticular, spaces do not make choice information explicit in the way free generators do. Claessen
et al.’s generation approach uses Haskell’s laziness, rather than derivatives and sampling, to prune
unhelpful paths in the generation process. This pruning procedure performs well when validity
conditions take advantage of laziness, but it is highly dependent on evaluation order and limited in
its analysis of what makes a choice invalid. In contrast, CGS does not require that predicates be
written in a specific way and has a much more nuanced notion of “unhelpful” choices.

The Valid Generation Problem. The valid generation problem is well studied. The most obvious
solution existing solution is to write a bespoke generator. For example, the CSmith project famously
developed a generator for valid C programs that was very successful at finding bugs in C compil-
ers [Yang et al. 2011]. More generally, the domain-specific language for generators provided by the
QuickCheck library [Hughes 2007] provides a whole framework for writing manual generators
that produce valid inputs by construction. The primary issue with these manual approaches is
effort: writing a bespoke generator is labor intensive and difficult. The CGS algorithm aims to
avoid manual techniques like this in the hopes of making property-based testing more accessible
to programmers that do not have the time or expertise to write their own custom generators.
The constraint logic programming (CLP) generators proposed by Dewey [2017] represent a

different approach to valid generation, more automated thanQuickCheck. Users of CLP generators
have a constraint solver to help them, making it easier to express certain kinds of validity conditions
in the generator. Even so, the CLP approach is not truly automatic: testers still need to express
validity condition as annotated logic programs. Depending on the testers’ background, this may
be ideal or it may be a deal-breaker. In contrast, CGS only requires that the validity condition be
encoded as a Boolean predicate in the host programming language, which the tester may very well
already have written for other reasons.

The Luck language [Lampropoulos et al. 2017a] provides a similar semi-automatic solution; users
are still required to put in some effort, but they are able to define generators and validity predicates
at the same time. Again, this solution might be satisfying if users are starting from scratch and
willing to learn a domain-specific language, but if validity predicates have already been written or
users do not want to learn a new language, a more automated solution may be preferable.
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When validity predicates are expressed as inductive relations, approaches like the one in Gener-
ating Good Generators for Inductive Relations [Lampropoulos et al. 2017b] are extremely powerful.
In the QuickChick framework, users can extract generators from the inductive relations that they
likely already have for their proofs. This is incredibly convenient for testing lemmas that will
eventually be proved, to establish confidence before attempting the proof. Unfortunately, the kinds
of inductive relations that QuickChick depends on generally require dependent types to express,
so this approach does not work in most mainstream programming languages.
Target [Löscher and Sagonas 2017] uses search strategies like hill climbing and simulated

annealing to supplement random generation and significantly streamline property-based testing.
Löscher and Sagonas’s approach works well when inputs have a sensible notion of “utility,” but in
the case of valid generation the utility is often degenerate—0 if the input is invalid, and 1 if it is
valid—with no good way to say if an input is “better” or “worse.” In these cases, derivative-based
searches may make more sense.

Some approaches usemachine learning to automatically generate valid inputs. Learn&Fuzz [Gode-
froid et al. 2017] generates valid data using a recurrent neural network. This solution seems to work
best when a large corpus of inputs is already available and the validity condition is more structural
than semantic. In the same vein, RLCheck [Reddy et al. 2020] uses reinforcement learning to guide
a generator to valid inputs. This approach served as early inspiration for our work, and we think
that the theoretical advance of generator derivatives may lead improved learning algorithms in the
future (see §9).

9 CONCLUSION
Free generators and their derivatives are powerful structures that give a flexible perspective on
random generation. This formalism yields a useful algorithm for addressing the valid generation
problem, and it clarifies the folklore that a generator is a parser of randomness. Moving forward,
there are a number of paths to explore, some continuing our theoretical exploration and others
looking towards algorithmic improvements.

Bidirectional Free Generators. We have only scratched the surface of what seems possible
with free generators. One concrete next step is to merge the theory of free generators with the
emerging theory of ungenerators [Goldstein 2021]. This work describes generators that can be run
both forward (to generate values as usual) and backward. In the backward direction, the program
takes a value that the generator might have generated and “un-generates” it to give a sequence of
choices that the generator might have made when generating that value.
Free generators are quite compatible with these ideas, and turning a free generator into a

bidirectional generator that can both generate and ungenerate should be fairly straightforward.
From there, we can build on the ideas in the ungenerators work and use the backward direction of
the generator to learn a distribution of choices that approximates some user-provided samples of
“desirable” values.

Algorithmic Optimizations. In §6, we saw some problems with the Choice Gradient Sampling
algorithm: because CGS evaluates derivatives via sampling, it does poorly when validity conditions
are very difficult to satisfy. This begs the question: might it be possible to evaluate the fitness of a
derivative without naïvely sampling?
One potential approach involves staging the sampling process. Given a free generator with a

depth parameter, we can first evaluate choices on generators for size 1, then evaluate choices for
size 2, etc. These intermediate stages would make gradient sampling more successful at larger sizes,
and might significantly improve the results on benchmarks like AVL. Unfortunately, this approach
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might perform poorly on benchmarks like STLC where the validity condition is not uniform: size-1
generators would avoid generating variables, leading larger generators to avoid variables as well.
Nevertheless, this design space seems well worth exploring.

Making Choices with Neural Networks. Another algorithmic optimization is a bit farther afield:
using recurrent neural networks (RNNs) to improve our generation procedure.

As Choice Gradient Sampling makes choices, it generates useful data about the frequencies with
which choices should be made. Specifically, every iteration of the algorithm produces a pair of a
history and a distribution over next choices that looks something like this:

abcca ↦→ {a : 0.3, b : 0.7, c : 0.0}

In the course of CGS, this information is used once (to make the next choice) and then forgotten—but
what if there was a way to learn from it? Pairs like this could be used to train an RNN to make
choices that are similar to the ones made by CGS.
There are details to work out, including network architecture, hyper-parameters, etc., but in

theory we could run CGS for a while, train an RNN, and after that point only use the RNN to
generate valid data. Setting things up this way would recover some of the time that is currently
spent sampling of derivative generators.
One could imagine a user writing a definition of a type and a predicate for that type, and then

setting the model to train while they work on their algorithm. By the time the algorithm is finished
and ready to test, the RNN model would be trained and ready to produce valid test inputs. A
workflow like this might help increase adoption of property-based testing in industry.
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Appendix
A PROOF OF THEOREM 3.1

Lemma A.1.

P⟦𝑥 »= 𝑓 ⟧ ⟨$⟩ R⟦𝑥 »= 𝑓 ⟧ ≡ (P⟦𝑥⟧ ⟨$⟩ R⟦𝑥⟧) »= _(𝑎, []) → (P⟦𝑓 𝑎⟧ ⟨$⟩ R⟦𝑓 𝑎⟧)

Proof. By induction on the structure of 𝑥 .
• Case x = Return a

P⟦Return a »= f⟧ ⟨$⟩ R⟦Return a »= f⟧
−− By definition (»= ).
≡ P⟦f a⟧ ⟨$⟩ R⟦f a⟧
−− By [−expansion and definitions of P⟦·⟧ and R⟦·⟧.
≡ P⟦Return a⟧ ⟨$⟩ R⟦Return a⟧ »= _ (a, []) → P⟦f a⟧ ⟨$⟩ R⟦f a⟧

• Case x = Bind (Pick xs) k

P⟦Bind (Pick xs) k »= f⟧ ⟨$⟩ R⟦Bind (Pick xs) k »= f⟧
−− By definition (»= ).
≡ P⟦Bind (Pick xs) (_a→ k a »= f )⟧ ⟨$⟩ R⟦Bind (Pick xs) (_a → k »= f ))⟧
−− By definition (P⟦·⟧ and R⟦·⟧).
≡ (do

c ← consume
x ← case find ((== c) . snd) xs of

Just (_ , _ , x) → return x
Nothing→ fail
P⟦x »= _a → k a »= f⟧) ⟨$⟩ (do
(c , x) ← frequency (map (_ (w, c , y) → (w, return (c , y ))) xs)
s ← R⟦x »= (_a → k a »= f )⟧
pure (c : s ))

−− By simplification .
≡ do

(_ , x) ← frequency (map (_ (w, c , y) → (w, return (c , y ))) xs)
P⟦x »= _a → k a »= f⟧ ⟨$⟩ R⟦x »= _a → k a »= f⟧

−− By monad laws.
≡ do

(_ , x) ← frequency (map (_ (w, c , y) → (w, return (c , y ))) xs)
P⟦(x »= k) »= f⟧ ⟨$⟩ R⟦(x »= k) »= f⟧

−− By IH.
≡ do

(_ , x) ← frequency (map (_ (w, c , y) → (w, return (c , y ))) xs)
(P⟦x »= k⟧ ⟨$⟩ R⟦x »= k⟧) »= (_a → P⟦f a⟧ ⟨$⟩ R⟦f a⟧)

−− By expansion and definitions (P⟦·⟧ and R⟦·⟧).
≡ (P⟦Bind (Pick xs) k⟧ ⟨$⟩ R⟦Bind (Pick xs) k⟧) »= (_a → P⟦f a⟧ ⟨$⟩ R⟦f a⟧)

□
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Theorem 3.1 (Factoring). Every free generator can be factored into a parser and a distribution
over choice sequences that are, together, equivalent to its interpretation as a generator. In other words,
for all free generators 𝑔,

P⟦𝑔⟧ ⟨$⟩ R⟦𝑔⟧ ≡ (_𝑥 → (𝑥, Y)) ⟨$⟩ G⟦𝑔⟧.

Proof. By induction on the structure of 𝑥 .
• Case x = Return a

P⟦Return a⟧ ⟨$⟩ R⟦Return a⟧ ≡ return (a, []) ≡ (_a→ (a, [])) ⟨$⟩ G⟦Return a⟧
(By definition.)
• Case x = Bind (Pick xs) k

P⟦Bind (Pick xs) k⟧ ⟨$⟩ R⟦Bind (Pick xs) k⟧
−− By definition (P⟦·⟧ and R⟦·⟧).
≡ (do c← consume

x ← case find ((== c) . snd) xs of
Just (_ , _ , x) → return x
Nothing→ fail
P⟦x »= k⟧) ⟨$⟩ (do
(c , x) ← frequency (map (_ (w, c , x) → (w, return (c , x ))) xs)
s ← R⟦x »= k⟧
pure (c : s ))

−− By simplification .
≡ do x← frequency (map (_ (w, _, x) → (w, return x )) xs)

s ← R⟦x »= k⟧
return P⟦x »= k⟧ s

−− By monad laws.
≡ do x← frequency (map (_ (w, _, x) → (w, return x )) xs)
P⟦x »= k⟧ ⟨$⟩ R⟦x »= k⟧

−− By Lemma A.1.
≡ do x← frequency (map (_ (w, _, x) → (w, return x )) xs)

(P⟦x⟧ ⟨$⟩ R⟦x⟧) »= _ (a , []) → P⟦k a⟧ ⟨$⟩ R⟦k a⟧
−− By IH.
≡ do x← frequency (map (_ (w, _, x) → (w, return x )) xs)

((_a → (a , [])) ⟨$⟩ G⟦x⟧) »= _ (a , []) → (_a → (a , [])) ⟨$⟩ G⟦k a⟧
−− By simplification .
≡ (_a→ (a, [])) ⟨$⟩ do x ← frequency (map (_ (w, _ , x) → (w, return x )) xs)

a ← G⟦x⟧
G⟦k a⟧

−− By definition (G⟦·⟧)
≡ (_a→ (a, [])) ⟨$⟩ G⟦Bind (Pick xs) k⟧

Thus the decomposition of a free generator into a parser and a source of randomness is equivalent
to interpreting it as a generator. □
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B PROOF OF LEMMA 4.1
Lemma 4.1. 𝛿𝑐 satisfies equations (1), (2), (3), and (4). In other words, the free generator derivative

behaves similarly to the regular expression derivative.

Proof. We prove each equation individually.
• Equation 1: 𝛿𝑐 void ≡ void
By evaluation.
• Equation 2: 𝛿𝑐 (return 𝑣) ≡ void
By definition.
• Equation 3:

𝛿𝑐 (pick 𝑥𝑠) ≡ 𝑥 if (𝑐, 𝑥) ∈ 𝑥𝑠
𝛿𝑐 (pick 𝑥𝑠) ≡ void if (𝑐, 𝑥) ∉ 𝑥𝑠

Unfold the definition of pick, by evaluation.
• Equation 4:

𝛿𝑐 (𝑥 »= 𝑓 ) ≡ 𝛿𝑐 (𝑓 𝑎) if a𝑥 = {𝑎}
𝛿𝑐 (𝑥 »= 𝑓 ) ≡ 𝛿𝑐𝑥 »= 𝑓 if a𝑥 = ∅

– Case 𝑥 = Return 𝑎. By definition, a𝑥 = {𝑎}.
𝛿𝑐 (x »= f) ≡ 𝛿𝑐 (Return a »= f) −− By assumption.

≡ 𝛿𝑐 (f a) −− By definition (»= ).

– Case 𝑥 = Bind (Pick 𝑥𝑠) 𝑔. By definition, a𝑥 = ∅.
𝛿𝑐 (x »= f) ≡ 𝛿𝑐 (Bind (Pick xs) g »= f) −− By assumption.

≡ 𝛿𝑐 (Bind (Pick xs) (_a→ g a »= f )) −− By definition (»= ).
≡ case find ((== c) . snd) xs of −− By definition (𝛿).

Just (_ , _ , x) → x »= (_a → g a »= f )
Nothing→ void

≡ case find ((== c) . snd) xs of −− By monad laws.
Just (_ , _ , x) → (x »= g) »= f
Nothing→ void

≡ 𝛿𝑐x »= f −− By definition (𝛿).

Thus all four equations hold. □
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C PROOF OF THEOREM 4.2
Theorem 4.2. The derivative of a free generator’s language is the same as the language of its

derivative. That is, for all free generators 𝑔 and choices 𝑐 ,

𝛿L𝑐 L⟦𝑔⟧ = L⟦𝛿𝑐𝑔⟧.

Proof. L⟦𝛿𝑐x⟧ = L⟦case x of −− By definition (𝛿).
Return _ → void
Bind (Pick xs) k → case find ((== c) . snd) xs of

Just (_ , _ , y) → L⟦y »= k⟧
Nothing→ [] ⟧

= case x of −− By definition (L).
Return _ → []
Bind (Pick xs) k → o
(_, d, y) ← xs
cs ← L⟦y »= k⟧
guard (c == d)
pure cs

= do −− By Haskell identities .
(d : cs ) ← case x of
Return _ → [ [] ]
Bind (Pick xs) k → do
(_ , d, y) ← xs
s ← L⟦y »= k⟧
pure (d : s )

guard (c == d)
pure cs

= do −− By definition (L).
(d : cs ) ← L⟦x⟧
guard (c == d)
pure cs

= 𝛿L𝑐 (L⟦x⟧) −− By definition (𝛿L)

□

There is another proof of this theorem, suggested by Alexandra Silva, which uses the fact that
2Σ∗ is the final coalgebra, along with the observation that FGen has a 2× (−)Σ coalgebraic structure.
This approach is certainly more elegant, but it abstracts away some helpful operational intuition.
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D FULL EXPERIMENTAL RESULTS

BST Charts

SORTED Charts

AVL Charts
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