
Agreeing to Agree:

Conflict Resolution for Optimistically Replicated Data

Michael B. Greenwald

Bell Labs, Lucent Technologies

Sanjeev Khanna

University of Pennsylvania

Keshav Kunal

University of Pennsylvania

Benjamin C. Pierce

University of Pennsylvania

Alan Schmitt

INRIA

Technical Report MS-CIS-06-10

Department of Computer and Information Science

University of Pennsylvania

November 1, 2006

Abstract

Current techniques for reconciling disconnected changes to optimistically replicated data often
use version vectors or related mechanisms to track causal histories. This allows the system to tell
whether the value at one replica dominates another or whether the two replicas are in conflict.
However, current algorithms do not provide entirely satisfactory ways of repairing conflicts.
The usual approach is to introduce fresh events into the causal history, even in situations where
the causally independent values at the two replicas are actually equal. In some scenarios these
events may later conflict with each other or with further updates, slowing or even preventing
convergence of the whole system.

To address this issue, we enrich the set of possible actions at a replica to include a notion
of explicit conflict resolution between existing events, where the user at a replica declares that
one set of events dominates another, or that a set of events are equivalent. We precisely specify
the behavior of this refined replication framework from a user’s point of view and show that,
if communication is assumed to be “reciprocal” (with pairs of replicas exchanging information
about their current states), then this specification can be implemented by an algorithm with the
property that the information stored at any replica and the sizes of the messages sent between
replicas are bounded by a polynomial function of the number of replicas in the system.

1 Introduction

Some distributed systems maintain consistency by layering on top of a consistent memory ab-
straction or ordered communication substrate. Others—particularly systems with autonomous
nodes that can operate while disconnected—must relax consistency requirements in order to make
progress, depending instead on a notion of causal history of events. If a replica in such a system
learns of different updates to the same object, then the most causally recent update is considered
“best” and is preferred over the others. However, if it happens that the replicas held at two sites are
modified simultaneously, then neither update will appear in the other’s causal history, and neither
these sites nor any others that hear from them will be able to prefer one update over the other
until the conflict has been reconciled.

In standard approaches based on causal histories (e.g. [23, 21]), this reconciliation is itself
an event— a new update that causally supersedes all of the conflicting ones. Unfortunately, this
reconciliation event can create new conflicts. Until it propagates through the whole system, any
update created on another replica before it hears of the resolution will be causally unrelated to the
reconciliation event and will thus conflict with it. Indeed, as has been noted before [23, 16], in some
systems, the very same conflict might be resolved, independently, by inserting new reconciliation
events at different sites, thus raising new conflicts even though the reconciled values may be identi-
cal. Most existing systems have found this potential behavior acceptable in practice—conflicts are
infrequent or communication frequent enough to ensure that reconciliation events usually propagate
throughout the system quickly. However, in some settings (described in detail below), conflicts due
to reconciliation events can delay convergence or force users to manually reconcile the same conflict
multiple times or at multiple sites.

To improve the convergence behavior of such systems, we propose adding a new kind of agree-
ment event that labels a set of updates as equivalent, together with a mechanism for declaring that
one existing event dominates another. Our goals are to reduce the number of user interventions
needed to bring conflicting updates into agreement and to speed global convergence after conflict
resolution.

Beyond Causal Histories

Standard causal histories are an attractive way of prioritizing events in a distributed system, partly
because they capture a natural relationship between updates and partly because their causal re-
lationships can be represented very efficiently. In particular, it is well known that causal histories
can be efficiently summarized using vector clocks [23]. Each replica Rα maintains a monotonically
increasing counter nα that is incremented at least once per update event on Rα. Each Rα also
maintains a vector (the vector clock), indexed by replica identifiers β, that indicates the latest
update of Rβ that Rα has heard about (all previous updates of Rβ are also in the causal history
of Rα). If each update is associated with the local vector clock at the time of its creation, then
we can determine the causal relationship between two events: if every entry in one vector clock
c1 is less than or equal to the corresponding entry in another vector clock c2, then the update v1,
corresponding to c1, is in the causal history of the update v2, corresponding to c2, and v2 may
safely overwrite v1.

To record the resolution of a conflict using vector clocks, the local vector clock must be changed
to reflect the fact that all the conflicting updates are now in the causal past. This can be achieved
by first setting the local vector clock to the pointwise maximum of all the vector clocks associated

2

with the conflicting updates and then incrementing the local counter [23].
Unfortunately, this technique can give rise to situations where the system cannot stabilize

without further manual intervention—or indeed, in pathological cases, where it can never stabilize.
In particular, if, at any point in time, two distinct sites resolve a conflict, even in an identical way,
the system will consider the two identical resolutions to be in conflict. Consider the example in
Figure 1. From an initial state where all replicas are holding the same value (ε), replicas Ra, Rb, and

Replica Ra Replica Rb Replica Rc

Local Local Local
Event time value (vc) time value (vc) time value (vc)

0 ε (0,0,0) 0 ε (0,0,0) 0 ε (0,0,0)
Local updates 1 x (1,0,0) 1 x (0,1,0) 1 x (0,0,1)
Ra → Rc and Rb → Rc 1 x (1,0,0) 1 x (0,1,0) 2 x (1,1,2)
Ra → Rb 1 x (1,0,0) 2 x (1,2,0) 2 x (1,1,2)

Figure 1: A case in which vector clocks never converge, although all replicas hold the correct value.

Rc all independently set their value to x at (local) time 1. Although all replicas “agree” in the sense
that they are holding the same value, the system will only stabilize if every replica communicates
its state (perhaps indirectly) to a single site, that site creates a new update event (with a vector
clock that is greater than the pointwise maximum of all 3), and this new event gets communicated
back to all the other sites before anything else happens. In Figure 1, the replicas do successfully
transfer their state to Rc, which creates an event that could stabilize the system. Unfortunately,
Ra also sends its state to Rb. In response to this badly timed message, Rb creates an event that
resolves the conflict between Ra and Rb but conflicts with the agreement event generated at Rc.
Neither Rc nor Rb’s state now dominates the other’s, and the system cannot converge until the
new conflict between Rc and Rb is repaired.

A natural idea for improving matters is to allow a reconciling site to introduce an agreement
event that somehow “merges” two causally unrelated updates instead of dominating them. Then if
Rc declares that the update events (all with value x) at replicas Ra, Rb, and Rc are all equivalent,
and later Rb declares that the events at replicas Ra and Rb are equivalent, the two reconciliations
will not conflict.

Agreement events raise issues, however, that cannot be modeled naturally by causal histories.
It may appear that agreements that may be helpful in the example above might be implemented by
simply having the reconciling site not increment its local timestamp after taking the pointwise max
of its vector clock with that of the other conflicting replicas; then two reconciliations at different
hosts would not conflict. (In the example above, Rc would set its clock to (1, 1, 1) and Rb would
later set its to (1, 1, 0)—i.e., the reconciled state from Rc would dominate the “partially reconciled”
state from Rb.)

However, this scheme is still not satisfactory: if any new updates happen before the reconcil-
iation event(s) propagate completely through the system, spurious conflicts will still be created.
Figure 2 shows what can happen. The three replicas, Ra, Rb, and Rc, again begin by all taking on
the value x. Later, Ra sends a message to Rb, which reconciles the conflict between their (identical)
values by merging Ra’s vector clock with its own, yielding (1,1,0). Later, Rb sends a message to
Rc, which similarly recognizes that their conflicting values are equal and updates its local clock to
(1,1,1). If, at this point, Rc were to send its state to Ra and Rb before anything else happened,

3

Replica Ra Replica Rb Replica Rc

Event Local time value (vc) Localtime value (vc) Localtime value (vc)

Initial state 0 ε (0,0,0) 0 ε (0,0,0) 0 ε (0,0,0)
Local updates 1 x (1,0,0) 1 x (0,1,0) 1 x (0,0,1)
Ra → Rb 1 x (1,0,0) 1 x (1,1,0) 1 x (0,0,1)
Rb → Rc 1 x (1,0,0) 1 x (1,1,0) 1 x (1,1,1)
Ra updated 2 y (2,0,0) 1 x (1,1,0) 1 x (1,1,1)

Figure 2: A case in which vector clocks “forget” a resolution event.

all would be well. However, suppose instead that Ra locally updates its value to y. This update
clearly supersedes the first update of x on Ra; also, since the value of x on Rb has been reconciled
with the old x on Ra, the new update of y at Ra should also supersede the x on Rb, and similarly
on Rc. However, at this point the system is totally stalled, although it is clear (to an omniscient
observer) that all replicas should converge to y. No sequence of messages will ever reconcile Ra

with either Rb or Rc. (Note that the value on Rc is not in the causal history of y, even if both the
sender and receiver update their local clocks after communication. The clock on Ra will be (2,1,0),
while the clock on Rc will be (1,1,1).)

In a similar vein, vector clocks and standard causal histories provide no way of reconciling
a conflict by simply declaring that one of the conflicting events is better than the others. For
example, suppose replicas Ra and Rb are independently updated with conflicting values and each
communicates its value to some large set of other nodes before anybody notices the conflict. If the
user performing the reconciliation decides that Ra’s value is actually preferable to Rb’s, they would
like to be able to declare this to the system so that, with no further intervention, every host that
hears about both updates will choose Ra’s value. Moreover, if, in the meantime, some host that
heard about Ra’s update has made yet a further update, this new value should also automatically
be preferred over Rb’s.

These shortcomings are not an artifact of the particular representation of causal history in
terms of vector clocks, but a fundamental limitation of the conventional notion of causal history
itself: the system stalls because causal histories do not recognize equivalences between events. If
Rc declares that the values at Ra, Rb and Rc are equivalent and Ra simultaneously decides that
the value y is preferable to its current value x, then what we want is for the system to prefer one
causally unrelated value to another.

Such scenarios become more likely as the frequency of updates (and hence conflicts and recon-
ciliations) increases, relative to the speed with which information propagates between nodes. Thus,
in systems where conflicts are rare, or where nodes are tightly coupled and communicate frequently,
vector clock solutions are likely to be satisfactory; on the other hand, in systems where conflicts
are more frequent and/or communication more intermittent, more sophisticated solutions, such as
the one we propose here, may perform significantly better. (We explain in the next section how our
proposal, which combines agreement and dominance declarations, smoothly handles the examples
in Figures 1 and 2.)

4

Harmony: A Motivating Application

Our interest in conflict resolution algorithms originates in our work on Harmony [11, 25], a generic
“data synchronizer,” capable of reconciling data from heterogeneous, off-the-shelf applications that
were developed without synchronization in mind. For example, Harmony can be used to synchronize
collections of bookmarks from several different browsers (Explorer, Safari, Mozilla, or OmniWeb),
or to keep appointments in MacOS X iCal or Gnome Evolution up-to-date with our appointments
in Palm Datebook or Unix ical formats. The current Harmony prototype is able to synchronize only
pairs of replicas, with pairwise reconciliation triggered by explicit user synchronization attempts
such as putting a PDA into a cradle (perhaps attached to a disconnected laptop). This scheme
extends fairly smoothly from pairs to small collections of replicas by iterated pairwise synchroniza-
tion, but becomes awkward as the set of replicas grows. The work in this paper was inspired by
the goal of extending Harmony to handle large numbers of replicas.

Several features of Harmony conspire to make conflicts likely to appear relatively frequently.
First, because of its loose coupling with the applications whose data it reconciles, Harmony is a
state-based reconciliation system [12]. Unlike operation-based systems, where the system keeps a
log of all operations and may be able to resolve conflicts by merging the operation logs on two
replicas, state-based systems cannot, in general, merge updates that modified the same atomic
values. Second, Harmony reconciles updates between systems such as PDAs that may operate
disconnected for long periods of time. Third, we have observed that, even with small numbers of
replicas, it often happens that identical updates are entered at different nodes—particularly when
the same user owns multiple devices.

Our Results

Since causal histories are not able to satisfactorily handle reconciliation in systems such as Harmony,
we develop in this work a new reconciliation framework offering notions of both dominance and
agreement, allowing users to resolve conflicts by explicitly specifying the prior events they want
to take into account. In Section 2 we specify this framework precisely by defining legal sequences
of local updates, dominance and agreement events, and communications between replicas and
showing how to calculate, at each replica, which events will be reported as “maximal” and which
as “conflicting.”

Our main contribution, in Section 3, is an algorithm implementing our specification under the
assumption that communication is “reciprocal”—after one replica has sent its current state to
another, it will wait for a message from the other (containing its current state) before sending its
own state to that replica again. This algorithm has the property that the information stored at
any replica and the sizes of the messages sent between replicas are bounded, in the worst case, by
a polynomial function (O(n4), to be precise) of the number of replicas in the system. Section 4
shows that the restriction to reciprocal communication is necessary: with completely unrestricted
asymmetric communication, no sparse representation that operates in bounded space can implement
the specification described in Section 2 correctly. Section 5 discusses related work.

2 An Agreeable Reconciliation Framework

A reconciliation framework has three choices of action when comparing the same object on two
different replicas. It can decide that the two objects have equivalent values, and do nothing. It can

5

decide that one value is better than the other, and modify one replica. Or, it can decide that the
two objects are in conflict and require external reconciliation. Our goal is to design a consistency
maintenance mechanism that can reduce the number of objects that the system decides are in
conflict, with less user intervention than conventional causal histories.

The key to achieving this is recognizing “agreement events” as first class citizens. A reconcilia-
tion system based on causal history, implements the better-than relation through causal order: u is
better-than v if v is in the causal history of u, they are equivalent only if they are identical, and in
conflict if u and v are causally unrelated. In our framework it is no longer the case that the simple
fact of a node knowing about an event implies that a new update event at that node is better than
that prior event — instead we offer a richer ‘better-than” relation (defined formally at the end of
this section). The user may declare that two or more updates agree, or that an update dominates
another update, or leave two updates unrelated. The system remembers these declarations, so
that, if an update u is better-than another update v then u is also better-than all updates equiv-
alent to v, even if they are not in the (conventional) causal history of u or v. Rather than basing
our notion of better-than simply on a “knows about” relation (i.e., causal order), we now require
users to specify whether the new update u “took v into account” (defined formally below) and,
if so, whether through agreement or domination. Agreement events introduce the possibility that
two distinct events can be considered equivalent, or that an event may be better-than a causally
unrelated event.

This seemingly small shift raises a rather subtle new issue. By introducing “equivalence” we
allow the possibility of cycles in the graph of the took-into-account relation. Consider a scenario
where two conflicting values x and y were both known about by two different replicas. One decided
that y was better than x; the other decided that x was better than y. When the replicas commu-
nicate with each other, they discover a cyclical took-into-account relation. Such cycles represent
a new sort of conflict—a situation in which users at two or more replicas have given the system
conflicting guidance about how to repair a previous conflict! How should we treat such cycles of
taking-into-account? In general, there may be multiple distinct values in the cycle, so we cannot
pick a single value from the cycle that the system should converge to. The question, then, is not
how the values in the cycle relate to each other, but how other values relate to the cycle—i.e., how
we can resolve this conflict and allow the replicas to converge by finding or creating values that are
not taken into account by others. We address this issue with the notion of dominance defined later
in this section.

Preliminaries

We assume a fixed set of n replicas, called Ra, Rb, etc. (The development extends straightforwardly
to a dynamically changing set of replicas. The main challenge is discovering when information
about replicas that have left the system can be garbage collected; standard techniques used in
vector clock systems (e.g. [3]) should apply.) The variables α, β, etc. range over indices of replicas.
For simplicity, we focus on the case where each replica holds just a single, atomic value.

External actions (by the user or a program acting on the user’s behalf) that change the value at
some replica are represented as events, written vα

i , where α is the replica where the event occurred
and i is a local sequence number that distinguishes events on replica α.

An event is a predecessor of all local events that occur after it—that is, vα
i is a predecessor of

all vα
j with j > i; similarly, vα

i is a successor of all events vα
j with j < i. We use vα

i+ and vα
i− as

variables ranging over successor and predecessor events of vα
i . When the location or precise local

6

sequence number of an event are not important, we lighten notation by dropping super- and/or
subscripts, writing events as just v, vα, etc. (and vα

+, vα
−
, etc., for earlier and later events at the

same replica).
Our specification uses a structure called a history graph (or just graph) to represent the state

of knowledge at a particular replica at a particular moment in the whole system’s evolution. A
history graph is a directed graph whose vertices are events and whose edges represent “took into
account” relations between events. There are two kinds of edges: an edge v −→ w, pronounced
“v takes w into account through dominance,” represents the fact that event v was created taking
w into account and dominating it, while an edge v =⇒ w, pronounced “v takes w into account
through agreement,” represents the fact that v and w were declared in agreement by the creator
of v. (Note that we are not necessarily requiring that v and w have the same value in order to
be declared in agreement; typically they will, but it may sometimes be useful to resolve a conflict
between different values by declaring that either one is acceptable and there is no need for every
replica to converge to the same one.) We use Gα to denote the history graph for replica Rα. The
set of events in Gα at any given moment is the set of events in the standard causal history of Rα

(in contrast, the set of edges in Gα may be only a subset of the set of edges representing causal
order).

The set of events and edges reachable in a graph G from an event v, including v itself, is called
the cone of v, written cone(v). This set represents the events v transitively took into account when
it was created. We will maintain the invariant that edges originating at an event can be created
only at its time of creation, so that the set of events reachable from v will not change over time;
moreover, because entire history graphs are exchanged when replicas communicate (at the level of
the specification, though of course not in the implementation we describe later), any graph G that
contains v will also include cone(v); for this reason, we do not bother annotating cone(v) with G.

Another important invariant property is equivalence. We first define Gα
≡
, the graph obtained

from Gα by symmetrizing its =⇒ edges, adding an edge v =⇒ u for each existing edge u =⇒ v. Two
events u and v are now said to be equivalent in Gα if there is a path from u to v in Gα

≡
consisting

only of =⇒ edges. Because replicas exchange whole history graphs, if two events become equivalent
at some point in time in the history graph at some replica Rα, they will remain equivalent at all
replicas that ever hear (transitively) from Rα. We refer to the partitions induced by this equivalence
as equivalence classes, or just classes.

For a pair of classes E and E′, we say E takes E′ into account if there exist events x ∈ E
and y ∈ E′ with y ∈ cone(x). We noted above that there can be cycles in the took-into-account
relation: two distinct equivalence classes may each contain an event that has an event from the
other in its cone. For example, suppose that the latest (conflicting) values in replicas Ra and Rb

are va
i and vb

j , respectively, and that Ga and Gb both contain the complete system history. Ra tries

to reconcile the conflict by adopting the value of vb
j (by creating an event va

i+1 with the same value

as vb
j and declaring va

i+1 to be in an equivalence class E with vb
j). Rb tries to reconcile the conflict

by similarly adopting the value of va
i , by putting vb

j+1 in an equivalence class E′ with it. E takes

E′ into account, because va
i is in the cone of va

i+1; similarly, E′ takes E into account because vb
j

is in the cone of vb
j+1. We call such situations reconciliation conflicts, since they arise when users

at different replicas make different decisions about which of a set of conflicting events should be
preferred.

In general, a class can belong to multiple cycles—i.e., it can be involved simultaneously in
multiple reconciliation conflicts. To arrive at a clear notion of “better-than”, we will define a

7

dominance relation. We consider strongly connected components of the graph Gα
≡

(i.e., sets of
events such that there is some path from every event in the set to every other event in the set),
which we refer to simply as components. Every pair of classes in a component belongs to some cycle
denoting a reconciliation conflict, and so intra-component “took into account” relations between
events cannot be used to determine dominance.

Now, a class E is said to dominate a class E′, written E > E′, if E and E′ belong to different
components and there exist events x ∈ E and y ∈ E′ with y ∈ cone(x). Note that E > E′ implies
E′ 6> E because of the assumption that the two are in different components.

We say that an event vβ
i ∈ Gα is latest if no successor event vβ

i+ belongs to Gα. We are
particularly interested in events belonging to classes that are not dominated by other classes and,
among these, in the ones that are latest: if the entire system is going to converge to a single value
(or set of equivalent values), such events are the only possible candidates. Formally, we say that a
class E is a maximal class if it contains a latest event and there is no class E′ with E′ > E. An
event v is a maximal event if it is a latest event in a maximal class.

When considering a component, there are two kinds of latest events in it: those which are taken
into account by events in another component, and those which are not. The former are clearly not
candidates for solving a conflict, the latter are the maximal events defined above. These maximal
events may however be superseded by other events in the component but, as components consist
of cycles of classes, the converse is also true. Hence these intra-component relationships do not
matter when defining maximal events.

When can a replica Rα conclude that there is no conflict between the values in Gα? Based
on our definition of dominance, it is easy to see that, if all maximal events belong to the same
(maximal) class E, we can be sure that the events in E took every event in Gα into account and
that no other events took them into account, implying that there is no conflict between these events
(at least according to the present local state of knowledge) and that these events are “better than”
all other events. Rule 3 in the specification below guarantees that Rα will then adopt an event
from E.

Let us see how our model applies to the examples we discussed in Section 1. Figure 3 shows
the evolution of the history graphs in the example from Figure 1. The initial values at the replicas
are represented by va, vb and vc respectively. For the example in Figure 1, after receiving state
updates from Ra and Rb, Rc joins va, vb, and vc into an equivalence class by creating a new event
vc
+ and adding =⇒ edges from vc

+ to them. Independently, Rb, after receiving Ra’s state, makes
va, vb and vb

+ into an equivalence class. Fortunately, these new events vc
+ and vb

+ do not conflict,
and anyone who later hears of both can calculate that va, vb, vc, vb

+, and vc
+ all belong to the same

equivalence class, so that any new event dominating any of them will also dominate all the others.
Similarly, in the scenario in Figure 2, Rb makes va, vb, and vb

+ equivalent and later Rc adds vc to
this equivalence class (via a new event vc

+ with =⇒ edges to vc, va, vb, and vb
+). Independently, Ra

adds a new event va
+ (with value y), dominating va. Henceforth, regardless of the order of messages

from Ra and Rc, any replica that learns of both va
+ and vc

+ can see that va
+ dominates all the values

from the other replicas.
Continuing the example, it is possible that, for some time, some other replica Rd may hear only

from Ra and Rb(before Rb creates the event vb
+) but not Rc and therefore believe that events va

+

and vb are in conflict. Once it hears from Rc as well, the apparent conflict will disappear. But if, in
the meantime, the user at Rd decides to repair the apparent conflict by declaring that vb dominates
va
+ (by creating an event vd dominating va

+ and then another event vd
+ in agreement with both

8

ε

R b
R

c
R

v0
a=x

ε

v0
c=x

ε

v0
b=x

ε

a
R

c
R

c
R

b
Rand

v0
b

ε

v0
a

ε

v0
a v0

b v0
c

ε

a
R

b
R

v0
a

ε

v0
b

εv0
av1

c v0
b

v0
c

= x, and equiv to

and
, ,

v0
a

ε

v0
a v0

b v0
c

v1
c

ε

v0
a v0

b v0
c

v1
c

ε

v0
a

v0
b

v1
b v0

a v0
b

v1
b

Event

Local Updates

= x, and equiv to

and

,

a

Figure 3: Example from Figure 1, using history graphs. Single line arrows represent “took into
account through dominance”, and double-lined arrows represent “took into account through agree-
ment”. The circled events are in the same class. It is easy to see that no conflicts or cycles will be
caused by the union of any subset of these graphs.

9

vb and vd), then a reconciliation conflict will be created, requiring one more user intervention to
eliminate.

We have now presented all the basic concepts on which our reconciliation scheme is based. It
remains to specify exactly what state is maintained at each replica and how this state changes
as various actions are performed. These actions are of two sorts: local actions by the user, and
gossiping between replicas, in which one replica periodically passes its state to another, which
updates its picture of the world and later sends the combined state along to yet other replicas.

We will not be precise in this paper about exactly how replicas determine when and with whom
to communicate—we simply treat communication as a non-deterministic transmission of state from
one replica to another. (We have in mind a practical implementation based on a gossip architecture
such as [6].) However, to ensure that our implementation in Section 3 can work in bounded space,
we need to make one restriction on the pattern of communication: after a replica Rα has sent
its state to a particular neighbor Rβ, it should wait until it receives an update message from Rβ

before sending another message of its own to Rβ. (Indeed, in Appendix ?? we prove that, with
unrestricted asymmetric communication, no representation that operates in bounded space can
implement the specification correctly.) This reciprocality of communication bounds the number of
possible open events on each replica. To guarantee reciprocality, each replica maintains a boolean
flag CanSend(β) for each replica Rβ, initially set to true. It is reset to false each time Rα sends
a communication to Rβ and reset to true each time Rα receives a communication from Rβ. (This
definition places a somewhat unrealistic constraint on the communication substrate: it assumes
that messages are not lost and are not reordered in transit. We believe that this constraint can
probably be relaxed, but we do not have a proof yet.)

Specification

The state of the entire system at any moment comprises the following information: a history graph
Gα for each replica Rα, a reciprocity predicate CanSendα for each replica Rα, and a current event
Currentα ∈ Gα for each replica Rα. The initial state of the system has all history graphs Gα

containing a single vertex vinit and no edges, CanSendα(β) = true for all α and β, and Currentα =
vinit for all α.

At any given moment, a user (or user-level program) at replica Rα can query the current event
at Rα, as well as the current set of maximal events in Gα and, for each of these, the other events
in its equivalence class.

Each step in the system’s evolution must obey one of the following rules:

1. A replica Rα may generate a new event vα
i , where i = 1 + max(j | vα

j ∈ Gα), taking into
account some subset W (containing Currentα) of the maximal events in Gα. If vα

i−1 6∈ W ,
it is added to the set. The current event Currentα is set to vα

i . A vertex vα
i and an edge

vα
i −→ w for each w ∈ W are added to the graph Gα.

2. A replica Rα may generate a new event vα
i , where i = 1 + max(j | vα

j ∈ Gα), and declare it to
be in agreement with some subset W of the maximal events in Gα. A vertex vα

i , and an edge
vα
i =⇒ w for each w ∈ W , are added to the graph Gα. If Currentα 6∈ W and Currentα is a

predecessor of vα
i , an edge vα

i −→ Currentα is also added to the graph. The current event
Currentα is then set to vα

i . If vα
i−1 6∈ W , an edge vα

i −→ vα
i−1 is added to the graph Gα.

The choice of W is constrained by one technical condition: Let E1 . . . Ep be the maximal
classes containing the subset of maximal events W . This operation is allowed only if for each

10

replica Rβ, the set of events from the creating replica Rβ that will now be in the new merged
class, call it E, correspond to a contiguous range of indices—that is, for any i < j < k if
vβ
i ∈ E and vβ

k ∈ E then vβ
j ∈ E. The interpretation of this restriction is that a user is not

allowed to establish agreement between two distinct events vβ
i and vβ

k created by a replica Rβ

unless it can do so for every event that was created by Rβ in between.

3. A replica Rα may send its current state to another replica Rβ, provided that CanSendα(β) =
true. The history graph Gβ is replaced by Gβ ∪ Gα. A new maximal event x (if one exists)
in the combined Gβ is better-than Currentβ (and hence overwrites it) if Currentβ is not a
maximal event in Gβ. The reciprocity predicates are updated with CanSendα(β) = false and
CanSendβ(α) = true.

3 A Bounded-Space Implementation

We now develop an efficient implementation based on a sparse representation of history graphs,
written Sα. The crucial property that we establish is that the size of Sα depends only on the
maximum number of distinct replicas that ever communicate with Rα. For analyzing this repre-
sentation, it is helpful to be able to refer to the local state at any replica at particular points in
time. To this end, we introduce an imaginary global time counter t, which is incremented each time
any action is taken by any replica—i.e., each time the whole system evolves one step by a replica
taking one of the steps described in Section 2. The graph at replica Rα at time t is written Gα(t).

There are two core concepts that facilitate our polynomial-space representation of all “relevant”
information contained in a history graph. The first is the notion of open and closed events, and the
second is the notion of a sparse cone of an event v. We start by decribing these concepts and some
of their properties.

Open and Closed Events

The creator replica of an event v = vα
i is the replica Rα at which the event was created. It is clear

from the specification that only a creator replica can add edges originating from v to its graph, and
only at the time v is created. It can later add an =⇒ edge into v (in addition to the −→ edge that
is always added), when it creates v’s immediate successor. Another replica that later hears about
v can create =⇒ or −→ edges into v as long as v is a maximal event in its local graph.

An important lesson from the intractability result mentioned in the previous section is that no
replica R can afford to forget about an event or any edges from or into it, as long as it is possible for
some replica to create edges into it. Reciprocal communication enables us to track such “critical”
events with bounded space.

An event v is globally closed if, at every replica Rα, if v ∈ Gα then v+ ∈ Gα for some successor
v+ of v; an event that is not globally closed is globally open. If v is globally closed, then any replica
that hears about v will simultaneously hear about a successor of v. It follows from this that a
globally closed event can never be a latest event at any replica (hence also not a maximal one),
and the following fact holds:

3.1 Fact: Once an event is globally closed, it stays globally closed forever. No edges can be created
to or from a globally closed event at any replica at any time in the future.

11

v

v’

v’’

v’’’

u

u’

u’’

u’’’

sparse
edge

cone edge

R^b

R^a

Figure 4: The black edges shown are the edges from the events u, u′, . . . on Rb to the events v, v′, . . .
on Ra. The red, thick, edge is the only edge from u to v in sparse-cone(u). It’s the edge from the
earliest predecessor of u that has an edge to the latest event on Ra that has any edges from Rb.

An omniscient observer can see when an event becomes globally closed. But how can a replica
know that an event is closed using only locally available information?

We maintain a data structure Oα (described in Section 3.1) at every replica Rα that can be
used to certify that events are closed. The creator replica of an event v marks it closed when it
knows that all other replicas who ever heard of v, have also heard of a successor to v. The other
replicas mark the event closed when they hear that it has been marked closed by the event’s creator
replica. We say that an event that is marked closed by replica Rα is considered closed at Rα. An
event that is not considered closed at a given replica is considered open at that replica.

When there is no room for ambiguity we will use the phrase “closed” to refer to globally closed
events.

Sparse Cone

The sparse cone of an element vα
l , written sparse-cone(vα

l), can be derived from its cone in the

following manner. For each β 6= α, let j be the largest index, if any exists, such that vβ
j ∈ cone(vα

l).

If such a j does exist, then add the vertex vβ
j and a directed edge (vα

l , vβ
j) to sparse-cone(vα

l).
Note that both cone(v) and sparse-cone(v) are determined at the time of v’s creation and are

time invariant. Also, even though cone(v) can be arbitrarily large, sparse-cone(v) is O(n) in size
and implicitly contains all the necessary information from cone(v) as shown in the next Lemma.

3.2 Lemma: For any element w, it can be determined whether or not w ∈ cone(v) using sparse-cone(v).

Proof: There are two cases — either w ∈ cone(v) or w 6∈ cone(v). If w ∈ cone(v), then consider
the latest successor of w, say w+, such that w+ ∈ cone(v). By definition, w+ ∈ sparse-cone(v),
and thus we can conclude that w ∈ cone(v) from the evidence in sparse-cone(v). On the other
hand, if w 6∈ cone(v), then for any successor of w, say w+, it also holds that w+ 6∈ cone(v). Since
sparse-cone(v) is a subgraph of cone(v), neither w nor any successor of w belong to sparse-cone(v)
and hence we can infer w 6∈ cone(v). �

12

Sparse Representation

We now describe a polynomial-space representation that summarizes the information contained in
Gα(t) at any time t. In Section 3.1 we show how to maintain this representation incrementally as the
system evolves, calculating the compact representation at each step from the compact representation
at the previous step. Finally, in Section 3.2, we prove that the representation is correct in the
sense that it will report the same maximal events (and equivalence classes) as the specification in
Section 2.

We start with the observation that the graph Gα(t) may be viewed as simply a union of the
cones of all the elements known to replica Rα at time t. We will represent Gα(t) by a pair of sparse
graphs, denoted Hα(t) and Hα

≡
(t). The sparse graph Hα(t) is defined to be simply the union of the

sparse cones of latest events known at Rα at time t. It thus takes O(n2) space. The sparse graph
Hα

≡
(t), summarizes the information contained in Gα

≡
(t) as follows. Let v w denote the existence

of a path from an event v to event w in a graph Gα
≡
. For each event vβ

i considered open at Rα(t),

Hα
≡
(t) records, for every other replica Rγ , the earliest event vγ

j from Rγ for which vγ
j vβ

i in Gα
≡
(t).

(Even though the information contained in Gα
≡
(t) can be derived from Gα(t), we need to explicitly

maintain the graph Hα
≡
(t) since Hα(t) does not contain all the information in Gα(t).) Formally,

for every pair of events vβ
i and vγ

j in Gα
≡
(t) such that (i) vγ

j vβ
i in Gα

≡
(t), (ii) vβ

i is considered

open at Rα(t), and (iii) there is no j′ < j such that vγ
j′ vβ

i in Gα
≡
(t), we include in Hα

≡
(t) the

events vβ
i and vγ

j and a directed edge (vγ
j , vβ

i). Note that an edge (u, v) in Hα
≡

merely indicates the
existence of a path u v ∈ Gα

≡
but not whether its edges are −→ or =⇒ or a mixture of the two.

3.3 Definition: [Sparse Representation] The sparse representation at a replica Rα at time t is a
4-tuple Sα(t) = 〈Oα(t),Hα(t),Hα

≡
(t), Cα(t)〉, where

• Oα(t) is a data structure containing the set of events from each replica that are considered
open at Rα as well as the tables to maintain these open events (defined in Section 3.1),

• Hα(t) is the sparse graph derived from Gα(t),

• Hα
≡
(t) is the sparse graph derived from Gα

≡
(t), and

• Cα(t) is a collection of sets, one for each event v considered open at Rα, such that the set
corresponding to v contains all events in the equivalence class of v.

Whenever replica Rα communicates to another replica Rβ, it sends the tuple Sα.

3.1 Incremental Maintenance of the Sparse Representation

The incremental maintenance of the sparse graphs in Sα(t) depends critically on the component
data structure Oα that is used to mark events as open or closed. We now describe Oα in detail and
present an algorithm for maintaining it incrementally.

For a replica Rα, we use the term local to qualify events created at that replica, that is, an
event vα

i . We use non-local to qualify events which were created at other replicas, that is, an event

vβ
j where β 6= α. We use n to denote the number of replicas. Let ml denote an upper bound on the

number of local events that are considered open at a replica at any given moment. We can group
the non-local events considered open at a replica based on the replica they were created at. Let mnl

denote an upper bound on the number of events created at any replica Rβ that are considered open

13

at a replica Rα. Hence the total number of events considered open at a replica can be bounded
by ml + (n − 1)mnl. Claim 3.1.4 will show that these two upper bounds, ml and mnl are precisely
equal. Henceforth, we will use m for the common upper bound for ease of notation. Claim 3.1.3
will prove that this common bound is in fact O(n2), from which it follows that the total number of
events considered open by any replica at any given moment is O(n3).

Let lαβ (t) represent the index of the latest event from Rβ in the graph Gα(t). We elide t when

it is clear from context. Let tαβ denote, for any Rβ that communicated with Rα, the largest value

of t′ ≤ t (in other words, the latest time before t) such that Rα received Gβ(t′). In the treatment
below, although the implementation maintains, sends, and receives Sα, we refer to latest events in
the graph Gα instead of in the sparse representation Sα. Similarly, we refer to the transmission
and reception of Gα. Our terminology has been mostly defined in Gα, and not in Sα. The two
formulations are equivalent when we discuss latest events and their classes, because at all times
latest events are always considered open and hence belong to Sα.

At each replica Rα and for all times t, we maintain the following structures (collectively called
Oα):

• NonLocalSentα, a table of n.m entries storing sets of replicas. For each β 6= α and for each
event vβ

i considered open at Rα, the entry1 NonLocalSentα[β, i](t) is the set of replicas that

heard from Rα while vβ
i was the latest event from Rβ in the graph Gα. (Slightly more formally,

NonLocalSentα[β, i](t) is the set of all Rγ , s.t. ∃t′, lαβ (t′) = i and Rα sent the graph Gα(t′) to
Rγ .)

• LocalKnownToBeSentα, a table of m entries storing sets of replicas. For each local event vα
i

considered open at Rα, the entry LocalKnownToBeSentα[i](t) is a set of all replicas that have
received vα

i as a latest value, that Rα is aware of. (LocalKnownToBeSentα[i](t) is the set of
all Rβ such that there exist a t′ and γ s.t. t′ < tαγ , and lγα(t′) = vα

i , and Rγ sent G(t′) to Rβ.)

• LastHeardBackα, an n×n table indexed by pairs of replicas and storing event indices. At time
t, the entry LastHeardBackα[β, γ](t) records Rα’s knowledge of the index of the latest event

from Rγ in the graph Gβ(t′), for some t′ ≤ t. In other words, LastHeardBackα[β, γ](t) = lβγ (tαβ).

• Openα, a set containing all the events (from all replicas) that are considered open at Rα.

Rα updates the components of Oα as follows.
Before Rα sends Sα to another replica Rβ, it sets LastHeardBackα[α,α] = lαα and adds vα

lαα
to

the set Openα. After sending Sα, it adds Rβ to the set LocalKnownToBeSentα[lαα] and, for all γ,
adds Rβ to NonLocalSentα[γ, lαγ].

Whenever Rα receives a transmission of Sβ from another replica Rβ it performs the following
steps in order:

1. For each local event vα
i considered open at Rα, it sets

LocalKnownToBeSentα[i] = LocalKnownToBeSentα[i] ∪ NonLocalSentβ [α, i].

1In both NonLocalSent as well as LocalKnownToBeSent, i should be thought of as a key for lookup rather than

an index into the table.

14

2. For every pair of replicas (γ, δ), Rα sets

LastHeardBackα[γ, δ] = max{LastHeardBackα[γ, δ],LastHeardBackβ[γ, δ]}.

3. For all vγ
i ∈ (Openβ − Openα), γ 6= α, if lαγ < i, it sets Openα = Openα ∪ vγ

i .

4. For all vγ
i ∈ (Openα − Openβ) with γ 6= α, if lβγ ≥ i, it sets Openα = Openα − vγ

i .

5. For all vα
i ∈ Openα, if LastHeardBackα(β, α) ≥ i + 1 for every replica Rβ such that Rβ ∈

LocalKnownToBeSentα[i], it sets Openα = Openα − vα
i .

The third step ensures that any new events that get added to Gα and are considered open at
Rβ, get added to set of events considered open at Rα. Earlier we defined an event to be “considered
closed at a replica” when that replica marked it closed. This is accomplished at a replica Rα by
removing the event from the set Openα. For non-local events, Rα can mark it closed only after
it knows that the creator replica marked it closed. This is captured in Step 4 above where the
if condition checks whether vγ

i ∈ Gβ(t′) for some t′ < t (accomplished by checking lβγ ≥ i). If
the event is considered closed at Rβ (accomplished by checking if vγ

i ∈ Openβ), it must have been
considered closed through a chain of communication originating from the event’s creator replica,
Rγ in this case, and so it is safe for Rα to consider it closed too.

A creator replica marks an event closed when it has a certificate for it to be globally closed.
The last step determines when a creator replica can mark its event closed. Note that once
LastHeardBackα(β, α) ≥ i + 1, Rα knows that vα

i is no longer a latest event at Rβ and also any
edges created to it have been communicated to Rα. Therefore, the following claim is sufficient to
show that when a creator replica marks an event closed, it is globally closed and hence Oα(t) can
be used to determine events which are considered closed correctly.

3.1.1 Claim: If vα
i is ever a latest event in Gβ then Rβ ∈ LocalKnownToBeSentα[i] before vα

i is
marked closed by Rα.

Proof: Assume for a contradiction that for some Rβ, Rβ 6∈ LocalKnownToBeSentα[i] before vα
i

is marked closed at its creator Rα. At least one such Rβ must have received a Gγ(t) containing vα
i

from a replica Rγ 6= Rα in which the Claim holds. (vα
i must originally be communicated from Rα.

The claim must hold in any replica Rγ that directly received a Gα containing vα
i from Rα, because

Rα would have added Rγ to LocalKnownToBeSentα[i].) By assumption vα
i is a latest event in Gβ ,

and therefore vα
i was the latest event from Rα(in Gγ) at the time of transmission, and therefore

Rβ ∈ NonLocalSentγ [α, i] by our update rules.
But when vα

i is closed, LastHeardBackα[γ, α] must be at least i + 1, implying that Rγ com-
municated (perhaps transitively) with Rα after transmitting vα

i to Rβ. So Rα must have updated
LocalKnownToBeSentα[i] when it (transitively) received a communication from Rγ and added Rβ

to the list LocalKnownToBeSentα[i]. This must happen before vα
i is marked closed and is hence a

contradiction. �

The next lemma follows from the correctness of Oα and the definition of closed events. It is
used only for analysis while arguing the correctness of Sα.

3.1.2 Lemma: If an event v is considered closed at Rα at time t, all edges added to/from it at
any replica belong to Gα

≡
(t) and no more edges can be added to/from it at a replica at a time > t.

Also, if there exists an edge (v,w) ∈ Gβ
≡(t) such that (v,w) 6∈ Gα

≡
(t), v is considered open at Rα at

time t.

15

Next we bound the number of local events which are considered open at any replica.

3.1.3 Claim: For each replica Rα, the number of local events considered open at Rα at any time
t is O(n2).

Proof: Let vα
i be a local event considered open at replica Rα at time t. We call a pair of replicas

(Rβ, Rγ) a witness pair for vα
i if the pair satisfies the following: (i) vα

i was not an event at Rγ

until it received some Gβ(t′) from Rβ, (ii) vα
i was a latest event in Gγ(t′) for some t′ < t (iii)

LastHeardBackα[β, α](t) ≥ i + 1, and (iv) LastHeardBackα[γ, α](t) < i + 1.
Note that for every local event vα

i considered open at time t, except the latest such event,
LastHeardBackα[α,α](t) ≥ i+1. Also, there exists at least one replica Rγ ∈ LocalKnownToBeSent[i](t)
such that LastHeardBackα[γ, α](t) < i + 1. So there exists at least one witness pair (Rβ , Rγ) (if
we trace the path from Rα to Rγ through which the latter heard of vα

i , Rβ is the replica that
immediately precedes Rγ). If there is more than one witness pair, we can choose one arbitrarily.

We now claim that a pair (Rβ, Rγ) can be chosen as a witness pair for at most 2 open events
from Rα. Since there are at most n(n − 1) distinct replica pairs, the claim follows.

Suppose not and let vα
i1

, vα
i2

, vα
i3

with i1 < i2 < i3 denote the open events for which (Rβ, Rγ) are
witness pairs with t1 < t2 < t3 denoting the times when the events were communicated to Rγ by
Rβ respectively.

Note that at time t, LastHeardBackα[β, α](t) ≥ i3 + 1 and LastHeardBackα[γ, α](t) < i1 + 1
by our definition of a witness pair. Our rules for reciprocal communication ensure that between
time instances t2 and t3, Rβ must have received a direct communication from Rγ at which point
the latest event from Rα in Gγ was vα

i2
, or some successor of vα

i2
. Hence when Rβ receives a

communication from Rγ , it sets LastHeardBackβ[γ, α] ≥ i2. Now since LastHeardBackα[β, α] ≥
i3 + 1, it communicated (transitively) with Rα after t3 and hence LastHeardBackα[γ, α](t) ≥
LastHeardBackβ[γ, α](t3) ≥ i2 which is a contradiction because LastHeardBackα[γ, α](t) < i1 + 1 ≤
i2 for (Rβ, Rγ) to be a witness pair. �

3.1.4 Claim: For each replica Rγ , for each replica Rα, the number of events created at Rα and
considered open at Rγ at any time t is O(n2).

Proof: lγα(t) is not just the index of the latest event from Rα currently in Gγ , but the index of
the latest event that Rγ ever received up to time t. If Rγ never received a vα

j , with j > i, then vα
i

must still be considered open at Rγ because it has no known successor on Rγ . It follows that any
event created on Rα and considered open on Rγ was already created on Rα at the time vα

lγα(t)
was

created.
It is also easy to see that if Rβ sends Sβ(t) to Rγ , then any event considered closed on either

Rγ or Rβ will be considered closed on Rγ after processing Sβ(t). Because vα
lγα

was sent originally
from Rα, it follows that every event that was considered closed on Rα at the time vα

lγα
was created

is also closed on Rγ .
Consequently, the set of events created on Rα and currently considered open at Rγ is a subset

of the local events considered open at Rα at the time vα
lγα

was created. By Claim 3.1.3 the number

of open local events on Rα at any time was at most O(n2) and our claim follows. �

These claims provide an upper bound on the number of open events at a replica. We next show
that this bound is tight.

16

3.1.5 Lemma: The number of local events considered open at a replica can be Ω(n2). The total
number of events considered open at a replica can be Ω(n3).

Proof: Consider n/2 + 1 replicas, with a special replica Ra and n/2 replicas named Rb1 . . . Rbn/2 .
We will first show that there can be Ω(n2) events considered open at Ra. For events which are
created and considered open at Ra, we will ”blame” i events on a replica Rbi , there by getting the
desired bound.

In the first round, Ra creates an event and sends va
1 to Rbn/2 , does an update, sends va

2 to
Rbn/2−1 , and so on till it sends va

n/2 to Rb1 . Next, the replicas Rb1 . . . Rbn/2−1 send their graphs to

Rbn/2 and Ra. Rbn/2 does not communicate with anyone from this time instance (neither sending
its own graph, nor receiving any other graph) and hence these n/2 events will remain open.

Likewise, in the ith round, replicas Ra and Rb1 . . . Rbi−1 conspire together to send n/2 + 1 − i
new events created at Ra to Rbn/2+1−i , thus ”blaming” these open events on Rbn/2+1−i . Replica
Rbn/2+1−i stays disconnected from everyone from this instance.

So, after n/2 rounds, there are
∑n/2

i=1 = Ω(n2) events considered open at Ra.
If we consider a set of n/2 replicas Ra1 . . . Ran/2 such that they simultaneously create new events

and send their graphs to replicas in the other set, we will have Ω(n2) events considered open at
each replica Rai . We have to be slightly careful in setting up the communication pattern to ensure
this given our reciprocality constraints. A replica Rbj waits till it receives graphs from all replicas
Ra1 . . . Ran/2 before sending its graph to a replica Rb′j .

Now if all replicas Ra2 . . . Ran/2 send their graphs to Ra1 , the total number of events (local as
well as non-local) considered open at Ra1 is Ω(n3). �

It is easy to see that all events considered open in the proof are also globally open. This leads
to the following corolllary:

3.1.6 Corollary: The number of local events at a replica which are globally open can be Ω(n2).
The number of events which belongs to a replica’s graph and are globally open can be Ω(n3).

By inspection of the structures in Oα, we see that the size of the tables in Oα is O(mn2) +
O(mn) + O(n2) + O(mn). By Claims 3.1.3 and 3.1.4, we know that the upper bound m is O(n2),
which leads us to the following claim:

3.1.7 Claim: The size of tables at each replica to maintain the list of events considered open at
that replica is O(n4).

Having established a bound on the number of events considered open at each replica as well as
the data structure to maintain them, we can prove a bound on the size of sparse representation Sα

at a replica Rα.

3.1.8 Theorem: At any time t, Sα(t) takes O(n4) space, where n is the number of replicas in the
system.

Proof: We will separately bound the space needed by each component in the representation. We
know from Claim 3.1.7 that the size of the tables in Oα is is O(n4). The size of the sparse cone of
any element is O(n) as it contains O(1) entries per replica. Since at any time t, Rα has at most
one latest element for each replica Rβ, the size of Hα(t) is O(n2). The size of Hα

≡
is O(n4) as it

may need O(n) events per open event, and it uses O(1) space per event.

17

Finally, consider the (equivalence) class of any open event v. For any replica Rβ, we have the

property that if vβ
i and vβ

j belong to this class then so does vβ
k for any i > k > j. Thus all events

from Rβ that are in the class of v can be compactly described by simply storing the earliest and
the latest events from Rβ known to be equivalent to v. Hence each equivalence class takes O(n)
space and the total space taken by Cα(t) is O(n4). Adding up the sizes of all three components,
the theorem follows.

�

3.2 Correctness of the Sparse Representation

Our next goal is to show that if Sβ(t′) is maintained correctly at all replicas Rβ for all times t′ < t,
then at any replica Rα we can derive Sα(t).

Claim 3.1.1 already shows that Oα(t) can be maintained correctly . We will rely on this claim
to show it to be true for Hα(t), Hα

≡
(t) and Cα(t) as well.

3.2.1 Lemma: If for all β, we have correctly computed Hβ(t′) at each replica Rβ and at each time
t′ < t, then we can correctly compute Hα(t) at any replica Rα(t).

Proof: At a given time t, Hα(t) is (re)computed only when either Rα receives Sβ(t − 1) from
some replica Rβ, or when Rα injects a new local event.

If a user sent Sβ(t − 1) to Rα from some replica Rβ at time t, then Hα(t) can be computed by
taking the union of the sparse cones of latest elements from the union of Hα(t− 1) and Hβ(t− 1).

Alternatively, suppose the user action at time t is to inject a new local event, say vα
l , with edges

to a subset W of maximal elements as well as to element vα
l−1. Each maximal element is necessarily

a latest element, therefore Hα(t− 1) contains sparse cones of all elements in W ∪{vα
l−1}. It is easy

to verify that sparse-cone(vα
l) can be derived from the sparse cones of elements in W ∪ {vα

l−1}. �

We did not yet give a detailed description of how Rα maintains the graph Hα
≡
. It proceeds in

two stages. The first stage, which we denote by tu, is the update stage when Rα updates its graph
Hα

≡
. The second stage, which we denote by ts, is the sparsifying stage when Rα deletes unneeded

edges and vertices from the graph.
During stage tu, Rα either receives a graph Hβ

≡ or updates the local event by adding new edges.
If the former, Rα sets Hα

≡
(tu) = (Hα

≡
(t − 1) ∪ Hβ

≡(t − 1)). If the latter, (updating the local event),
the new event along with its (new) edges are added to Hα

≡
(t − 1). Edges are only added to latest

events, and latest events are open and hence are contained in Hα
≡
(t − 1). In either case, for every

pair of events w and w− in the graph (where w− is a predecessor of w) we add the edge (w,w−),
if it does not already exist. We then recompute the transitive closure of the entire graph. We refer
to this graph as Hα

≡
(tu).

In the sparsification stage, based on the set of events considered open, the graph Hα
≡
(tu) is

suitably sparsified to retain the relevant edges and vertices to obtain the graph Hα
≡
(t)

For a graph Hβ
≡(t′), a pair of events (v,w) is called a valid query pair if w is considered open

at Rβ(t′) and v ∈ Gβ
≡(t′).

3.2.2 Claim: For every valid query pair (v,w) in Hα
≡
(t), Hα

≡
(t) can be used to determine whether

a path from v to w is in Gα
≡
(t).

18

Proof: Let v− be the earliest predecessor of v which has a path to w in Gα
≡
(t). By assumption

w is an event that is considered open at Rα. It follows from our definition of Hα
≡
(t) that the edge

(v−, w) belongs to Hα
≡
(t). We can determine if v has a path to w, because the path (v, v−) always

exists. �

We can further show that Hα
≡
(tu) (the augmented Hα

≡
(t − 1) before sparsification eventually

yields Hα
≡
(t)) has as much information.

3.2.3 Claim: For every query pair (v,w) that is valid for Hα
≡
(t), Hα

≡
(tu) can be used to determine

correctly whether a path from v to w exists in Gα
≡
(t) if and only if Hα

≡
(t) can be used to do so.

The claim follows from the fact that Hα
≡
(t) ⊆ Hα

≡
(tu) and that, by Claim 3.1.1, Oα(t) maintains

the list of open events correctly.

3.2.4 Lemma: If for all β, we have correctly computed Hβ
≡(t′) at each replica Rβ and at each time

t′ < t, then we can correctly compute Hα
≡
(t) at any replica Rα(t).

Proof: By the definition of Hα
≡
(t), for each event v considered open at Rα, Hα

≡
(t) must contain

the earliest event wγ from Rγ such that wγ
 v ∈ Gα

≡
(t). In other words, for each v considered

open at Rα, and for each Rγ , Hα
≡
(t) contains the query pair (wγ , v) with the earliest wγ .

Claim 3.1.1 shows that we correctly maintain the set of events considered open, so sparsifica-
tion preserves correctness. Therefore the earliest incorrectly maintained Hα

≡
(t) must occur during

update, for some Hα
≡
(tu).

Suppose the claim is not true at time t at replica Rα. This implies there exists at least one
event z that has a path to an event y considered open in Gα

≡
(t) and no predecessor of z has a path

to y in Gα
≡
(t) but the edge (z, y) 6∈ Hα

≡
(t).

We fix (z, y) by considering all query pairs (p, q) that are valid for Hα
≡
(t) such that Hα

≡
(t) cannot

determine that a path from p to q exists, even though a path p q ∈ Gα
≡
(t). Among all such pairs,

let (z, y) denote the pair with the shortest path in the graph Gα
≡
(t). (Pick one arbitrarily if more

than one pair have the same shortest path).
Based on Claim 3.2.3, we will show that there exists a different pair (p, q) valid for Hα

≡
(t) such

that p q is shorter than z y for which Hα
≡
(tu) fails to answer correctly if Hα

≡
(tu) fails to answer

correctly for (z, y), thereby contradicting our assumption that (z, y) has the shortest path.

We assume from the inductive hypothesis that for all β and time t′ < t, Hβ
≡(t′) can be used to

correctly determine the existence of a path from p to q in Gβ
≡(t′) for a query pair valid for Hβ

≡(t′).
Fix a shortest path z y ∈ Gα

≡
(t). Let z x be the largest subpath of z y in Gα

≡
(t − 1).

(More formally, let x be an event on z y ∈ Gα
≡
(t), such that if z x′ ∈ Gα

≡
(t− 1), then x′ is an

event on z x.) Consider the following cases:

1. x = y. Clearly y is also considered open at Rα(t−1) implying that (z, y) is a valid query pair
for Hα

≡
(t − 1). Hence Hα

≡
(t − 1) and thus Hα

≡
(tu) ⊇ Hα

≡
(t − 1) answers “yes” for the query

pair, which contradicts our assumption that (z, y) is not in Hα
≡
(t).

2. y 6= x 6= z. If x is open at Rα(t − 1) then (z, x) is a valid query pair for Hα
≡
(t − 1). Hence

Hα
≡
(t − 1) and thus Hα

≡
(tu) ⊇ Hα

≡
(t − 1) answer “yes” for this query pair. Since (x, y) is a

valid query pair for Hα
≡
(t), we have a shorter contradiction for the pair else Hα

≡
(tu) would

answer “yes” for (z, y).

19

Otherwise, if x is considered closed at Rα(t − 1), then we know from Lemma 3.1.2 that no
more edges can be added to or from x, contradicting the existence of the path z y at time
t.

3. x = z or z 6∈ Gα
≡
(t − 1). There are two cases to consider, depending on the user action at

time t.

First, suppose the action at time t at replica Rα was updating the local event. Let w be the
next event on the path. The only possibility is that the edge (z,w) was created at time t
and hence (z,w) ∈ Hα

≡
(tu). Since (w, y) is a valid query pair for Hα

≡
(t), we have a shorter

contradiction for (w, y).

Second, suppose the action at time t was receiving a graph from replica Rβ. If the entire
path z y ∈ Gβ

≡(t − 1), (z, y) is a valid query pair for Hβ
≡(t − 1) as y has to be considered

open at Rβ(t − 1) or else y would be considered closed at Rα(t). Hence Hβ
≡(t − 1) and thus

Hα
≡
(tu) ⊇ Hβ

≡(t − 1) answer “yes” for the query pair which is a contradiction.

Otherwise, let (w, v) be the edge closest to z on the path z y such that (w, v) 6∈ Gβ
≡(t− 1).

Note that there is at least one such edge by our assumption and w 6= z because the first edge
on the path has to belong to Gβ

≡(t−1) since it does not belong to Gα
≡
(t−1). Now w should be

considered open at Rβ(t − 1) or else using Lemma 3.1.2, the edge (w, v) ∈ Gβ
≡(t − 1). Hence

(z,w) is a valid query pair for Hβ
≡(t − 1) implying both Hβ

≡(t − 1) and Hα
≡
(tu) answer “yes”

for it. Since (w, y) is a valid query pair for Hα
≡
(t), we have a shorter contradiction. �

3.2.5 Lemma: If for all β, we have correctly computed Cβ(t′) at each replica Rβ and at each time
t′ < t, then we can correctly compute Cα(t) at any replica Rα(t).

Proof: Suppose the user action at replica Rα at time t is injecting a new local event, say vα
l .

If there are no equivalence edges incident from vα
l , then Cα(t) is Cα(t − 1) along with a new

equivalence class containing the event vα
l . Otherwise, since equivalence edges can be created only

to other latest events (which are always considered open), we know their equivalence classes by the
inductive assumption. We merge classes of each of these events into a single new class along with
the event vα

l . The other classes in Cα(t − 1) remain unchanged.
Suppose the user action at replica Rα is receiving Sβ(t− 1) from another replica Rβ. The only

interesting case is when there exists E in Gα(t−1) and E′ ∈ Gβ(t−1) such that E∩E′ 6= ∅. In this
case, the graph Gα(t) contains a new merged class E ∪ E′. If each of E and E′ contains an event
considered open at Rα(t − 1) and Rβ(t − 1) respectively, then by inductive assumption, we know
all elements in E and E′ in Cα(t − 1) and Cβ(t − 1), respectively. Hence we can compute E ∪ E′

in Cα(t). If one of them, say E, consists only of events considered closed at Rα(t − 1), then by
Lemma 3.1.2 any element with an equivalence path to an element in E must already be in E. So
E′ ⊆ E and both classes will be discarded from Cα(t). Thus we can correctly determine Cα(t). �

3.3 Maximal Classes can be Computed from the Sparse Representation

In order to establish that a replica working with the sparse representation will have the same
user-visible behavior as if it were working with the complete history graphs, it suffices to show the
following.

3.3.1 Theorem: A class E is maximal in Gα(t) iff E is maximal in Sα(t).

20

In order to prove this theorem, we need to establish a few preliminaries. Recall that in Gα, for
two classes E and E′, we say that E > E′ if E and E′ belong to different components and there
exist events x ∈ E and y ∈ E′ with y ∈ cone(x). A class E is a maximal class if it contains a latest
event and there is no class E′ with E′ > E.

We first show that in the sparse representation, we can correctly determine if two classes, each
containing a latest event, belong to the same component or not.

3.3.2 Lemma: Two classes E and E′, each containing a latest event, belong to the same compo-
nent in Gα(t) if and only if they belong to the same component in Sα(t).

Proof: Let v and w denote a latest event from each class. It suffices to show that a path
v w ∈ Gα

≡
(t) if and only if it can be inferred in Sα(t). Let v− be the earliest predecessor of v

such that a path v− w ∈ Gα
≡
(t). Since w is a latest event and hence considered open, it follows

from the correctness of Hα
≡
(t) that v− w ∈ Gα

≡
(t) if and only if (v−, w) ∈ Hα

≡
(t). Since v v−

always exists, the existence of a path v w ∈ Gα
≡
(t) is correctly inferred in Sα(t). �

Our algorithm for determining maximal classes in the sparse representation works as follows:
Let Cα

l ⊆ Cα be the set of classes containing a latest event. Since each latest event must be
considered open, Cα and hence Cα

l contains all classes in Gα containing a latest event.
For two classes E,E′ ∈ Cα

l , we say that E′ >s E if the two conditions are met:

• E and E′ are in distinct components in Sα, and

• there exist x ∈ E′ and y ∈ E such that x is a latest event and y ∈ cone(x).

Note that sparse-cone(x) ⊆ Hα as x is a latest event, and that y ∈ cone(x) can be inferred from
sparse-cone(x).

We say that a class E ∈ Cα
l is maximal in Sα(t) if there does not exist any E′ ∈ Cα

l for which
E′ >s E. We next show that a class containing a latest event is maximal in Gα(t) if and only if it
is maximal in Sα(t).

3.3.3 Lemma: For a class E containing a latest event, there exists a class E′ in Gα(t) such that
E′ > E if and only if there exists a class Es in Sα(t) such that Es >s E.

Proof: Suppose E′ > E. Then there exist x ∈ E′ and y ∈ E such that y ∈ cone(x) and the
classes E, E′ belong to different components.

For any replica Rβ, let vβ
∗ denote the latest event from Rβ that is known at Rα at time t. If

x = vβ
i , let x∗ = vβ

∗ . Let Es be the class containing x∗. Since E and Es contain latest events, both
these classes belong to Cα

l (t). We now show that Es >s E, that is, both conditions above are met.
Assume, for a contradiction, that the first condition is violated, that is, Es and E are determined

to be in the same component in Sα(t). By Lemma 3.3.2, Es and E belong to the same component
in Sα(t) if and only if they also belong to the same component in Gα

≡
(t). Since Es and E belong to

the same component in Sα(t) and hence in Gα
≡
(t), there is a path from y ∈ E to x∗ ∈ Es in Gα

≡
(t).

This implies that there is a path y to x in Gα
≡
(t) since x ∈ cone(x∗). But then E′ and E are in the

same component in Gα
≡
(t), a contradiction. Hence Es and E belong to different components.

For the second condition, y ∈ cone(x) implies y ∈ cone(x∗). Since x∗ is a latest event,
sparse-cone(x∗) is contained in Hα(t). By Lemma 3.2, sparse-cone(x∗) suffices to determine that
y ∈ cone(x∗). Hence, we get Es >s E.

21

For the converse, suppose Es >s E in Sα(t). This implies the two classes do not belong to the
same component and there exist x ∈ Es and y ∈ E such that x is a latest event and y ∈ cone(x) can
be inferred from sparse-cone(x). But Es belongs to Gα(t), and by Lemma 3.3.2, E and Es belong
to distinct components. Also, sparse-cone(x) is a subgraph of cone(x). It follows that Es > E in
Gα(t). Setting E′ = Es completes the proof. �

Proof of Theorem 3.3.1: In both Gα(t) and Sα(t), only a class E that contains a latest events
can be a maximal class. By Lemma 3.3.3, for any such class E, if there exists a witness for non-
maximality of E in Gα(t), then there also exists a witness in Sα(t), and vice versa. The theorem
follows. �

4 Intractability with Unrestricted Communication

We show in this section that, with completely unrestricted asymmetric communication, no sparse
representation that operates in bounded space can implement the specification described in Sec-
tion 2 correctly. The intuition behind this result is that old conflict resolutions may matter much
later if another replica made choices implicating these old events. As a consequence, old conflict
resolutions must be preserved until every replica has acknowledged them, thus requiring unbounded
storage in the general case.

We first give an example where omitting an edge between two events leads to a scenario where
a latest event is inferred to be non-maximal, though it is maximal. This example provides the key
insight for the more general impossibility proof at the end of the section.

Consider six replicas named Ra . . . Rf . We will consider blocks of time where each block consists
of several time instances. For each block of time t = j, the following actions take place sequentially:

• Ra updates itself to va
j and then sends his state to replicas Rc . . . Rf .

• Rb updates itself to vb
j and then sends his state to replicas Rc . . . Rf .

• Rc uses the following actions to, essentially, declare that va
j dominates vb

j and create a path

from va
j to vb

j in the graph Gc
≡
:

– updates itself to vc
2j and creates vc

2j −→ vb
j

– updates itself to vc
2j+1 and creates vc

2j+1 =⇒ va
j

• Rd does the opposite of Rc, essentially declaring that vb
j dominates va

j and creating a path

from vb
j to va

j in the graph Gd
≡
:

– updates itself to vd
2j and creates vd

2j −→ va
j

– updates itself to vd
2j+1 and creates vd

2j+1 =⇒ vb
j

This sequence of actions goes on till t = k for some suitably large k and replica Rc can not store
the path from va

j to vb
j for all j. Let i be the index for which it omits the path from va

i to vb
i (the

path consists of three edges and omitting one of the two edges other than the default vc
2i+1 −→ vc

2i

suffices to omit the path). Note that replica Rc has not communicated with any other replica so
far and so no other replica knows of a path between va

i to vb
i .

The replicas Re and Rf do the following actions in order for the time block t = i.

22

• Re does the following:

1. creates an event ve

2. sends its state to Rf

3. creates an event ve
+ and an edge ve

+ =⇒ vb
i

• Rf does the following:

1. creates an event vf and an edge vf =⇒ va
i

2. creates an event vf
+ and an edge vf

+ =⇒ ve

They sit idle (except for receiving the graphs from Ra and Rb) for all other time blocks. Note
that they never communicate with any other replica and so their actions are independent of other
replicas.

At time t = k, all replicas communicate their state to a new replica, say Rg. This replica has
been sitting idle until now, so at this instant its state is simply the entire record of actions of all
other replicas. The latest events created by replicas Ra to Rf are va

k , vb
k, vc

2k+1, vd
2k+1, ve

+, and vf
+,

respectively.
Consider first what Rg would see if Rc had not dropped an edge. The events va

k , vb
k, v

c
2k+1, v

d
2k+1

belong to one component, C0; the (unique) cycle2 va
k

≡

⇐⇒ vc
2k+1 −→ vc

2k −→ vb
k

≡

⇐⇒ vd
2k+1 −→

vd
2k −→ va

k is a witness to this fact. There are four classes in component C0:

• E0
1 = {va

k
≡

⇐⇒ vc
2k+1}

• E0
2 = {vc

2k}

• E0
3 = {vb

k
≡

⇐⇒ vd
2k+1}

• E0
4 = {vd

2k}

The events ve
+, vf

+ belong to another component, C1; the cycle ve
+ −→ ve ≡

⇐⇒ vf
+ −→ vf ≡

⇐⇒

va
i

≡

⇐⇒ vc
2i+1 −→ vc

2i −→ vb
i

≡

⇐⇒ ve
+ is a witness to this fact. There are five classes in component

C1:

• E1
1 = {vf

+
≡

⇐⇒ ve}

• E1
2 = {ve

+
≡

⇐⇒ vb
i

≡

⇐⇒ vd
2i+1}

• E1
3 = {vf ≡

⇐⇒ va
i

≡

⇐⇒ vc
2i+1}

• E1
4 = {vc

2i}

• E1
5 = {vd

2i}

Class E1
1 contains a latest event (vf

+) and is not dominated by any class of component C0, hence

it is a maximal class and vf
+ is a maximal event. E1

1 is the only maximal class of component C1.
Now consider the situation where Rc does omit the path between va

i and vb
i and so Rg does

not know about it. Now C1 splits into five different components, one for each equivalence class.

2We use x
≡

⇐⇒ y to denote the bi-directional equivalence edge from x to y in Gk
≡

23

Two of them contain latest events and may qualify as maximal classes: E1
1 = {vf

+
≡

⇐⇒ ve} and

E1
2 = {ve

+
≡

⇐⇒ vb
i

≡

⇐⇒ vd
2i+1}. However E1

2 > E1
1 because ve ∈ cone(ve

+) and they belong to two
different components, and E0

3 > E1
2 because vb

i ∈ cone(vb
k). Thus, the only maximal classes are in

C0, and the set of maximal events does not contain vf
+—the dropped edge changes what is reported

to the user by Rg.
The above example is generalized to prove the following theorem:

4.1 Theorem: No representation with bounded storage space at each replica can decide if a latest
event is maximal or not.

Proof: Suppose, for a contradiction, that B bits of storage at each replica are sufficient to de-
termine which events are maximal. Let us consider a variation on the example above where, at
each time step j < k, we choose at replica Rc whether va

j dominates vb
j , yielding 2k different action

sequences for Rc. Note that B bits can encode at most 2B possible action sequences and so by
choosing k ≥ B + 1, we can be sure that there exist two distinct action sequences that cannot be
distinguished by the representation at Rc using only B bits. Suppose the two sequences differ on
the existence of a path between va

l and vb
l —that is, in one of them, Syes

c (l), there exists a path from
va
l and vb

l and in the other, Sno
c (l), there does not. Consider now the time i when replicas Re and

Rf perform the action described above, creating events ve, ve
+, vf , and vf

+: there are k choices for
i, yielding k action sequences Se,f(i). The action sequence at the other replicas are the same as
above.

We can specify a “possible world” by the action sequences at each replica. There are 2k ∗ k
possible worlds: every action sequence at Rc combined with every action sequence Se,f(i) and the
single action sequence at other replicas. We now focus on two specific possible worlds. The first
one consists of action sequence Syes

c (l) at Rc combined with Se,f(l)—the sequence where Re and
Rf create their events at time l. We call this first possible world Iyes . The second possible world
consists of action sequence Sno

c (l) at Rc also combined with Se,f(l). We call this second possible
world Ino .

Consider now the data received by replica Rg at time k: it is identical, since the only difference
in the action sequences is the creation of a path between va

l and vb
l at Rc, which, by hypothesis,

is not stored. However, as described in the example above, in possible world Iyes the event vf
+

is maximal, whereas in possible world Ino it is not. Hence there is not enough information to
determine which events are maximal, a contradiction. �

5 Related Work

Both theoretical underpinnings and efficient implementation strategies for version vectors [23] and
vector clocks [10, 22] have received a great deal of attention in the literature and have been used in
many systems (e.g. Coda [19, 33, 20], Ficus [13], and Bengal [9]); numerous extensions and refine-
ments have also been studied—see [4] for a recent survey. We conjecture that some of these ideas
can be applied to improve the efficiency of our sparse representation. In that vein, generalizations
of recent work on the use of PVEs in WinFS [21] may be applicable to our sparse representation,
and useful in reducing the per-object overhead, when we extend our work to replicas with a large
number of objects. However, we are not aware of any work in this context that explicitly addresses
the main concern of our work—an explicit treatment of declarations of agreement (and dominance)
between existing events.

24

A number of systems have used replica equality (e.g., identity of file contents) as an implicit
indication of agreement. The user-level filesystem synchronization tool Unison [26], for example,
considers two replicas of a file to be in agreement whenever their current contents are equal at the
point of synchronization. This gives users an easy way to repair conflicts (decide on a reconciled
value for the file, manually copy it to both replicas, and re-synchronize), as well as automatically
yielding sensible default behavior when Unison is run between previously unsynchronized (but
currently equal) filesystems. A similar strategy is used in Panasync [2]. The version histories used
in the Reconcile file synchronizer [15] and the Clique peer-to-peer filesystem [29], as well as Kang’s
hash histories [16], all represent the causal history of the system directly—storing and transmitting
(hashes of) complete histories of updates — rather than deducing causal ordering from reduced
representations such as clock vectors. They treat identical file contents as agreement, and keep a
version history of each file (storing a SHA1 hash of the file contents after each synch operation).
Agreement is therefore possible even between past versions of two different files, and can be used to
determine whether two different files may be considered causally related, and hence not in conflict.
Identical contents can also be used to find the latest common ancestor of two files. This can
reduce communication costs during conflict resolution, by only transmitting the modifications to
the common ancestor rather than the entire file. An advantage of such schemes is that their cost is
proportional to the number of updates to a file rather than the number of replicas in the system,
which may be advantageous in some situations. This suggests that it may be worth considering
the possibility of implementing something akin to our naive specification from Section 2 directly,
bypassing the sparse representation.

Care must be taken to avoid equating two equivalent instances of an object, when the object
can take on the same value more than once. Consider a file initially containing v. Editing produces
a version with contents v′. Later, on another replica, the file is edited to deliberately undo the
changes, producing a version containing v again. If one replica, Ra hears only of the partial history
v, v′, and the another Rb hears of the complete v, v′, v, then one should not equate the v on Ra

with the latest v on Rb — else the system will converge to v′, losing the final edit. [16] reduces the
likelihood of this happening by using both the file contents and a “generation number” for equality
tests.

Parker’s original paper on version vectors [23] argues against implicit agreement based solely
on equality of value. Consider an object representing an account balance: if it were originally
$1000 and was reduced to $900 on two different nodes, perhaps reconciliation should combine the
differences and set it to $800?) Application-level knowledge is required to explicitly mark events
as in agreement, even if their values are equal.

For applications where equality can safely imply agreement, though, the optimization appears
to have significant benefit. Kang [16] used simulation over trace data from sourceforge.net to
show that “coincident equalities” (independent updates or reconciliations that resulted in identical
contents) appear to be common. The paper showed that recognizing equality as agreement sub-
stantially sped up convergence. Further, they showed that the fact that version vectors did not
remember “agreement events” noticeably delayed convergence: updates of one replica out of a set
of replicas with equal values occured in the trace data. The update conflicted with other replicas
in the set, rather than superseding it. Convergence was delayed until lengthy periods of inactivity.

Almeida, Baquero, and Fonte [3] do not use local agreement events, as we do, but rather
represent reconciliation in a manner that is fundamentally quite similar to a version vector approach
that would take the pointwise maximum for agreement events. However, in a restriction reminiscent

25

of our reciprocality requirement, they only consider synchronous synchronization (both replicas
synchronize at the same time).

Many refinements to version vectors and vector clocks have addressed performance issues that
may be relevant to our work. Almeida et al. [3] address the problem of efficiently representing
version vectors when replicas can leave and join the system. Almeida, and Baquero[1] show that
version vectors can be represented using only a bounded amount of information per replica, when
they are only being used to check dominance or conflict between current versions of data in a
distributed system. Other work [24, 28, ?] has focused on improving the way vector clock schemes
scale with the number of replicas.

Matrix clocks [32, 35] generalize vector clocks by explicitly representing clock information about
other processes’s views of the system’s execution. Matrix clocks, too, have been optimized [7, 30, 14]
and generalized [18]. We leave for (interesting) future work the question of whether agreement
events such as the ones we are proposing could be generalized along similar lines.

Reconciliation protocols for optimistically replicated data can be divided into two general cat-
egories [31]: state transfer and operation transfer protocols. We have concentrated on state-based
protocols in this work. However, a number of systems (e.g., Bayou [8, 34], IceCube [17, 27], and
Ceri’s work [5]) reconcile the operation histories of replicas rather than their states. It is not clear
whether agreement events in the sense we have proposed them could meaningfully be accommodated
in this setting.

References

[1] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded version vectors. In DISC,
pages 102–116, 2004.

[2] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Panasync: dependency tracking among file
copies. In EW 9: Proceedings of the 9th workshop on ACM SIGOPS European workshop, pages 7–12.
ACM Press, 2000.

[3] Paulo Sergio Almeida, Carlos Baquero, and Victor Fonte. Version stamps – decentralized version vectors.
In Proceedings of 22nd IEEE International Conference on Distributed Computing Systems (ICDCS ’02),
2002.

[4] Roberto Baldoni and Michel Raynal. A practical tour of vector clock systems. IEEE Distributed Systems
Online, 3(2), 2002. http://dsonline.computer.org/0202/features/ bal.htm.

[5] Stefano Ceri, Maurice A. W. Houtsma, Arthur M. Keller, and Pierangela Samarati. Independent updates
and incremental agreement in replicated databases. Distributed and Parallel Databases, 3(3):225–246,
1995.

[6] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan
Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance. In Proceedings
of PODC’87, August 1987.

[7] Lúcia M. A. Drummond and Valmir C. Barbosa. On reducing the complexity of matrix clocks. Parallel
Computing, 29(7):895–905, 2003.

[8] W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, and
Marvin M. Theimer. Designing and implementing asynchronous collaborative applications with Bayou.
In ACM Symposium on User Interface Software and Technology (UIST), Banff, Alberta, pages 119–128,
October 1997.

26

[9] Todd Ekenstam, Charles Matheny, Peter L. Reiher, and Gerald J. Popek. The Bengal database repli-
cation system. Distributed and Parallel Databases, 9(3):187–210, 2001.

[10] Colin Fidge. Logical time in distributed computing systems. Computer, 24(8):28–33, Aug 1991.

[11] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C. Pierce, and Alan Schmitt.
Schema-directed data synchronization. Technical Report MS-CIS-05-02, University of Pennsylvania,
March 2005. Supersedes MS-CIS-03-42.

[12] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C. Pierce, and Alan Schmitt.
Exploiting schemas in data synchronization. Journal of Computer and System Sciences, 2006. To
appear. Extended abstract in Database Programming Languages (DBPL) 2005.

[13] Richard G. Guy, Peter L. Reiher, David Ratner, Michial Gunter, Wilkie Ma, and Gerald J. Popek.
Rumor: Mobile data access through optimistic peer-to-peer replication. In Proceedings of the ER
Workshop on Mobile Data Access, pages 254–265, 1998.

[14] A. Heddaya, M. Hsu, and W. Weihl. Two phase gossip: managing distributed event histories. Informa-
tion Science, 49(1-3):35–57, 1989.

[15] John H. Howard. Reconcile user’s guide. Technical Report TR99-14, Mitsubishi Electronics Research
Lab, 1999.

[16] Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The hash history approach for
reconciling mutual inconsistency. In 23rd IEEE International Conference on Distributed Computing
Systems (ICDCS ’03), 2003.

[17] Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro, and Peter Druschel. The IceCube approach
to the reconciliation of diverging replicas. In ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), Newport, Rhode Island, pages 210–218, August 2001.

[18] Ajay D. Kshemkalyani. The power of logical clock abstractions. Distrib. Comput., 17(2):131–150, 2004.

[19] Puneet Kumar. Coping with conflicts in an optimistically replicated file system. In 1990 Workshop on
the Management of Replicated Data, pages 60–64, Houston, TX, Nov 1990.

[20] Puneet Kumar and M. Satyanarayanan. Flexible and safe resolution of file conflicts. In Proceedings
of the annual USENIX 1995 Winter Technical Conference, pages 95–106, January 1995. New Orleans,
LA.

[21] Dahlia Malkhi and Douglas B. Terry. Concise version vectors in WinFS. In Pierre Fraigniaud, editor,
Proceedings of the 19th International Conference on Distributed Computing, DISC 2005, volume 3724
of Lecture Notes in Computer Science, pages 339–353. Springer-Verlag, September 26-29 2005.

[22] Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cosnard et. al.,
editor, Parallel and Distributed Algorithms: proceedings of the International Workshop on Parallel &
Distributed Algorithms, pages 215–226. Elsevier Science Publishers B. V., 1989.

[23] D. S. Parker, Jr., G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow,
D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in distributed systems. IEEE
Trans. Software Eng. (USA), SE-9(3):240–247, 1983.

[24] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers. Flexible
update propagation for weakly consistent replication. In Proceedings of the 16th ACM Symposium on
Operating SystemsPrinciples (SOSP-16), Saint Malo, France, October 1997.

[25] Benjamin C. Pierce et al. Harmony: A synchronization framework for heterogeneous tree-structured
data, 2006. http://www.seas.upenn.edu/~harmony/.

27

[26] Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison? A formal specification and reference imple-
mentation of a file synchronizer. Technical Report MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[27] Nuno Preguia, Marc Shapiro, and Caroline Matheson. Efficient semantics-aware reconciliation for op-
timistic write sharing. Technical Report MSR-TR-2002-52, Microsoft Research, May 2002.

[28] D. Ratner, Peter Reiher, and Gerald Popek. Dynamic version vector maintenance. Technical Report
CSD-970022, University of California, Los Angeles, June 1997.

[29] Bruno Richard, Donal Mac Nioclais, and Denis Chalon. Clique: a transparent, peer-to-peer collaborative
file sharing system. In International Conference on Mobile Data Management (MDM), Melbourne,
Australia, January 2003.

[30] Frederic Ruget. Cheaper matrix clocks, July 1994. CS/TR-94-63, Chorus Systems, Montigny le Bx,
France.

[31] Yasushi Saito and Marc Shapiro. Replication: Optimistic approaches. Technical Report HPL-2002-33,
HP Laboratories Palo Alto, Feb. 8 2002.

[32] Sunil K. Sarin and Nancy A. Lynch. Discarding obsolete information in a replicated database system.
IEEE Transactions onSoftware Engineering, 13(1):39–47, 1987.

[33] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel, and David C.
Steere. Coda: A highly available file system for a distributed workstation environment. IEEE Transac-
tions on Computers, 39(4):447–459, 1990.

[34] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and Carl H.
Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage system. In Pro-
ceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP-15), Copper Mountain
Resort, Colorado, pages 172–183, 1995.

[35] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions to the replicated log and dictionary
problems. In Principles of Distributed Computing, pages 233–242, 1984.

28

