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The View Update Problem
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View Update, Functionally
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Terminology: A lens is a pair of a get function from concrete to abstract

structures and a put function from abstract plus concrete back to concrete.
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A Small Example
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Example

Suppose we have an address book, represented as a tree...
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(We work, throughout, with unordered, edge-labeled trees
with all edges from a node labeled distinctly—i.e., a tree is
a finite function from labels to subtrees. We draw trees
sideways.)
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Example

... and we want to edit just the names and phone
numbers.
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Example

We would use a lens that maps from full address books to
phone-numbers-only address books. Its get component
maps
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Example

Its put component maps the edited abstract tree
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together with the original concrete tree to a new concrete
tree:
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Some Questions

1. What are lenses, exactly? What properties must a
pair of functions have to be called a “well-behaved”
lens?

2. How can we construct well-behaved lenses?
• Write by hand and prove well-behavedness :-|

• Design a new programming language :-)

3. Can we use lenses to do useful things?
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Contributions

1. A natural semantic space of well-behaved lenses.

2. A domain-specific programming language in which
every well-typed expression denotes a well-behaved
lens.

map (filter {Phone} {URL = http://google.com})

3. A concrete application of this programming language
in a generic data synchronization tool.
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What are Lenses?
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Semantics of Lenses

Let’s begin by forgetting about trees and just thinking
about what kinds of properties we would want lenses to
have in general.

Let C be some set of “concrete structures” and A a set of
“abstract structures.”
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Lenses, Formally

A (total) well-behaved lens l from C to A is a pair of
functions

• l↗ from C to A (get)

• l↘ from A × C to C (put)

satisfying two laws:

1. l↘ (l↗ c, c) = c (GETPUT)

2. l↗ (l↘ (a, c)) = a (PUTGET)

We write C ⇐⇒ A for the set of well-behaved lenses from
C to A.
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Properties of Lenses

Some useful properties follow directly from the definition.

Theorem: The put component of a well-behaved lens l is
always injective in its abstract argument:

a1 6= a2 =⇒ l↘(a1, c) 6= l↘(a2, c).

Theorem: If p ∈ A × C → C is injective in its abstract
argument, then there is a unique g ∈ C → A such that
(g, p) is a total well-behaved lens.

I.e., we can design lenses by thinking just about injective put functions.
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Creation

There are cases where we want to apply the put function
of a lens, but where no old concrete structure is available
— as we saw with Jo’s URL in the example.

We deal with this by enriching C and A with a special
placeholder Ω (“missing”).

Intuitively, l↘ (a, Ω) means “create a new concrete
structure using the information in the abstract structure
a.”
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Creation

By convention, Ω is only used in an interesting way when it
is the second argument to the put function. In all the
lenses that we define later, we maintain the invariants that

1. l↗Ω = Ω,

2. l↘ (Ω, c) = Ω for any c,

3. l↗ c 6= Ω for any c 6= Ω, and

4. l↘ (a, c) 6= Ω for any a 6= Ω and any c (including Ω).

We write C ⇐⇒Ω A for the set of total well-behaved lenses
from C ∪ {Ω} to A ∪ {Ω} obeying these conventions.
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Partiality

The real story is a little more complicated because we
want to define lenses over trees by recursion — as limits
of sequences of partially defined lenses.

In the paper, we define suitable notions of partial
well-behaved lenses, ordering, and limits, and show that the
set of partial well-behaved lenses forms a CPO — i.e., a
setting in which we can solve recursive equations.

I’ll elide these details here and talk only about total lenses.

17/61



Variation: One more lens law

There are several other laws we could consider imposing.
Here is one particularly natural one:

l↘ (a1, (l↘ (a2, c))) = l↘ (a2, c) (PUTPUT)

However, one of our most important combinators (map)
does not satisfy this law.

Fortunately, GETPUT and PUTGET have proved strong
enough in practice to place useful constraints on the
design of lens primitives.
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Variation: Weaker Lens Laws

Weaker lens laws have also been advocated. For example,
[Hu, Mu, and Takeichi] propose these:

l↗ l↘ (a, c) = a where a = l↗ c (GETPUTGET)
l↘ (l↗ c′, c′) = c′ where c′ = l↘ (a, c) (PUTGETPUT)

However, the reason these weak laws are needed in their
setting is to allow a primitive (a form of copying) that is
also not total. Since we want all lenses to be total, we don’t
want this primitive, so we can keep the stronger laws.
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Combinators for Lenses
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A Language of Lenses

Question: How do we make it easy for people to write
well-behaved lenses?

Answer: By defining a domain-specific language in which
all well-typed expressions denote well-behaved lenses over
trees.

The language is roughly similar to a combinator-style
(“point-free”) functional language like Backus’s FP, but with
many novel details.
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Design Constraints

1. All primitive lenses must be well-behaved and total

2. All lens combinators must map total well-behaved
lenses to total well-behaved lenses (perhaps subject to
some side conditions)

3. These side conditions must be compositional — i.e.,
the well-formedness of a composite lens must always
follow from the types of its component lenses.

(Caveat: as might be expected... for recursive lenses, well-behavedness follows

compositionally, but totality requires some global reasoning.)
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Identity

In the get direction, the identity lens copies its concrete
argument.
In the put direction, it copies its abstract argument (and
ignores its concrete argument).

id↗ c = c

id↘ (a, c) = a

∀C.
& 1
∈ C ⇐⇒Ω C
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Constant

In the get direction, the " � � ' � lens discards its concrete
argument and returns a fixed abstract structure v.
In the put direction, it restores its constant argument
(unless this is Ω, in which case it returns a default
structure d).

(const v d)↗ c = v

(const v d)↘ (a, c) = c if c 6= Ω

d if c = Ω

∀C. ∀v. ∀d∈C. " � � ' � v d ∈ C ⇐⇒Ω {v}
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Hoist

In the get direction, the

� � & ' � lens clips out a top-level
edge labeled n. In the put direction, it pushes the abstract
tree under an edge labeled n.
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{
∣

∣

∣n 7→ t

∣

∣

∣

}

(hoist n)↘ (a, c) =
{∣

∣

∣n 7→ a

∣

∣

∣

}

∀C. ∀n∈N .

� � & ' � n ∈
{∣

∣

∣n 7→ C

∣

∣

∣

}

⇐⇒Ω C

25/61



Plunge

The � 0 2 � * � lens does the opposite of � � & ' � .
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Composition

The composite lens l; k applies l and k sequentially.

(l; k)↗ c = k↗ (l↗ c)

(l; k)↘ (a, c) = l↘ (k↘ (a, l↗ c), c)

∀A,B,C. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A.

l; k ∈ C ⇐⇒Ω A
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Map

The lens # � � l “applies l to all immediate children.”

getting
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More on Map

In the general case, we must consider what happens when
the domains of the abstract and concrete trees are
different.

• Children missing from the abstract tree may be
deleted from the final concrete tree.

• Children added to the abstract tree must be created
in the resulting concrete tree. We can achieve this by
putting them into Ω.
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More on Map

Full definition of put direction:

(map l)↘ (a, c) =
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A Fun Primitive Lens:

3 4 5 6
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Some Derived Lenses

• 7 & 0 � � % p =

7 � % 8 p

& 1

( " � � ' � {})

• 7 � " 2 ' n =

7 & 0 � � % {n}; � � & ' � n
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List Processing with Lenses...
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Representing Lists

The list
[ 9

1 . . . 9

n]

can be represented by the tree
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where : � and : � are special distinguished labels.
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Derived Lenses for Lists

• � 1

=

7 � " 2 ' : �

• � 0 =

7 � " 2 ' : �

• # � � � p l =

7 � % 8 p ( # � � l)

& 1

• # � �;
0 & ' � l = # � � � { : �} l; # � � � { : �} ( # � � ;
0 & ' � l)
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More Primitives

Several more primitives are defined in the paper:

• conditionals (two completely different ones!)

• renaming

• pivoting

• copying and merging

• flattening and (a limited form of) joining

• etc.
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More List Processing

Using these combinators, we can write:

• list reverse

• list filter

• group list into sublists of given length

• etc.

(N.b.: Not trivial!)
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A Real Example
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Representing XML

The XML element

<tag attr1="val1" ... attrm="valm">

subelt1 ... subeltn

</tag>

is represented by the tree
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Mozilla Bookmarks (as HTML)

<html>

<head> <title>Bookmarks</title> </head>

<body>

<h3>Bookmarks Folder</h3>

<dl>

<dt> <a href="www.google.com"

add_date="1032458036">Google</a> </dt>

<dd>

<h3>Conferences Folder</h3>

<dl>

<dt> <a href="www.cs.luc.edu/icfp"

add_date="1032528670">ICFP</a> </dt>

</dl>

</dd>

</dl>

</body>

</html>
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Mozilla Bookmarks (as a tree)

{*contents ->

[{html -> {*contents ->

[{head -> {*contents -> [{title ->

{*contents ->

[{PCDATA -> Bookmarks}]}}]}}

{body -> {*contents ->

[{h3 -> {*contents ->

[{PCDATA -> Bookmarks Folder}]}}

{dl -> {*contents ->

[{dt -> {*contents ->

[{a -> {*contents -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> www.google.com}}]}}

{dd -> {*contents ->

[{h3 -> {*contents -> [{PCDATA ->

Conferences Folder}]}}

{dl -> {*contents ->

[{dt -> {*contents ->

[{a ->

{*contents -> [{PCDATA -> POPL}]

add_date -> 1032528670

href -> cristal.inria.fr/POPL2004

}}]}}]}}]}}]}}]}}]}}]}
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Bookmarks (abstract tree)

{name -> Bookmarks Folder

contents ->

[{link -> {name -> Google

url -> www.google.com}}

{folder ->

{name -> Conferences Folder

contents ->

[{link ->

{name -> POPL

url -> cristal.inria.fr/POPL2004}}]}}]}
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Bookmark lens

link = rename {dt = link};

map (hoist *contents;

hd {};

hoist a;

rename {href = url, *contents = name};

prune add_date {$today};

mapp {name} (hd {}; hoist PCDATA))

folder = rename {dd = folder};

map (hoist *contents; folder_contents)

folder_contents =

hoist_list [{h3} {dl}];

rename {h3 = name, dl = contents};

mapp {name} (hoist *contents; hd {}; hoist PCDATA);

mapp {contents} (hoist *contents; map_list item)
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Bookmark lens (continued)

item =

dispatch [({dd},{folder},folder)

({dt},{link},link)]

bookmarks =

hoist *contents; hd {}; hoist html; hoist *contents;

tl {head -> {*contents -> [{title -> {*contents ->

[{PCDATA -> Bookmarks}]}}]}};

hd {}; hoist body; hoist *contents;

folder_contents
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What Can We Do With Lenses?
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The Harmony Project

Goal:

Build a generic synchronization framework for
tree-structured data (stored, e.g., as XML documents).

Instances:
calendars (ical, iCalendar, palm datebook) running
bookmarks (Mozilla, Safari, IE5, ...) ∼running
address books (palm, vcard, xcard, ...) underway
presentations (Keynote, PPT, ...) planned
structured documents (docbook, Word, ...) planned
preference files, etc., etc. planned

User base: 2 :-)
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Basic Harmony Architecture

Sync

Orig

BA

A' B'
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Heterogeneity

We want to synchronize many different concrete formats
for, e.g., bookmarks, without writing n2 different
synchronizers.

This is achieved in Harmony by writing lenses mapping
each particular concrete format to a single common
abstract format.
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Full Harmony Architecture
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The Real Story

=> ? @
A B C DE

FG
H I J K H I J K

G L F L

M H KM H K
NOK NOK

=> ? @
P Q R S TU V

F L LG L L
G L L L F L L L

M H KM H K
N OK NOK

W V XP Q R S TU V

H I J K H I J K
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Finishing Up...
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Related Work

Lots! [See paper for details...]

Main categories:

• Bidirectional languages

• Bijective languages

• Reversible languages
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Bidirectional Languages

In bidirectional languages, the get direction can throw
away information and the put direction restores it.

• our work

• later work by Hu, Mu, and Takeichi (uses weaker lens
laws and does not require totality)

• earlier work by Meertens (similar, but never published
or implemented; no type system)

• classical database literature, e.g., Bancilhon&Spyratos
(closely related to our semantic framework)
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Bijective Languages

In bijective languages, the get and put functions form an
isomorphism

Many instances in various areas...
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Reversible Languages

Reversible languages have a quite different flavor: there is
no “editing” of the abstract view—we just want to be able
to run programs backwards from output to input.

Such languages arise mainly in connection with quantum
computing. Not too relevant to our setting.
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Further Challenges...
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Typechecking

Types play a critical role both in the design of primitive
lenses and in programming with lenses.

At the moment, though, our “type declarations” are just
statements in set theory. “Typechecking” must be
performed by hand by programmers.

We are working on designing a syntactic type algebra with
a mechanical typechecking procedure.
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The Relation to Relations

The classical view update problem arose in the setting of
relational databases.

Does our approach shed any new light?
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The Issue of Expressiveness

What tree transformations can we write using our present
combinators?

What could we write if we added new primitives?

Are there any transformations that could never be
expressed in any extension of our language because they
cannot, in principle, be “reversed”?
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http://www.cis.upenn.edu/∼bcpierce/harmony
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