
Combinators for

Bi-Directional Tree Transformations:

A Linguistic Approach to the

View Update Problem

J. Nathan Foster (Penn)
Michael B. Greenwald (Lucent)

Jon Moore (Penn)
Benjamin C. Pierce (Penn)

Alan Schmitt (INRIA)



View Update

An old problem from the database community:

Structure

Updated
Concrete

Structure
Concrete

Abstract
Updated

View

Abstract
View

Get

PutBack

Edit

Combinators for Bi-Directional Tree Transformations - 1 POPL ’05



View Update

Our approach: a domain specific language for writing get
and putback at once. A lens is a bi-directional map between

concrete structures and abstract views.

Structure

Updated
Concrete

Structure
Concrete

Abstract
Updated

View

Abstract
View

Get

PutBack

Edit

Combinators for Bi-Directional Tree Transformations - 2 POPL ’05



Lenses and Synchronization

Harmony project goal: a generic synchronization framework

for heterogeneous data:

A’

A

Sync

B

B’

Get Get

PutBackPutBack

Combinators for Bi-Directional Tree Transformations - 3 POPL ’05



Example

• Our data model is unordered, edge-labelled trees of finite
width where every node has at most one child for every
name n.

• Equivalently a trees is a finite map from names to trees.

• (We draw trees sideways to save space.)

Suppose that we have an address book represented as a
tree:































Pat 7→







Phone 7→
{

333-4444 7→ {}
}

URL 7→
{

http://pat.com 7→ {}
}







Chris 7→







Phone 7→
{

888-9999 7→ {}
}

URL 7→
{

http://chris.net 7→ {}
}





































Combinators for Bi-Directional Tree Transformations - 4 POPL ’05



Example

... and we only want to synchronize phone numbers and add

or drop complete entries. Using the get component of a lens,

we transform






























Pat 7→







Phone 7→
{

333-4444 7→ {}
}

URL 7→
{

http://pat.com 7→ {}
}







Chris 7→







Phone 7→
{

888-9999 7→ {}
}

URL 7→
{

http://chris.net 7→ {}
}





































into






Pat 7→
{

333-4444 7→ {}
}

Chris 7→
{

888-9999 7→ {}
}







Combinators for Bi-Directional Tree Transformations - 5 POPL ’05



Example

Now we synchronize the abstract view, yielding a tree:







Pat 7→
{

333-4321 7→ {}
}

Jo 7→
{

555-6666 7→ {}
}







and putback the updated abstract view into the original tree:































Pat 7→







Phone 7→
{

333-4321 7→ {}
}

URL 7→
{

http://pat.com 7→ {}
}







Jo 7→







Phone 7→
{

555-6666 7→ {}
}

URL 7→
{

http://google.com 7→ {}
}





































Combinators for Bi-Directional Tree Transformations - 6 POPL ’05



Contributions

1. A natural semantic space of well-behaved lenses.

2. A domain specific language where

• reasoning about well-behavedness is compositional

• every well-typed program denotes a well-behaved

lens.

3. A concrete application: a synchronizer built using lenses.

Combinators for Bi-Directional Tree Transformations - 7 POPL ’05



Semantic Foundations



Lenses

Let C be a set of concrete structures and A a set of abstract

views.

A (total) lens l between C and A is a pair of functions

• l↗ from C to A [Get]

• l↘ from A × C to C [PutBack]

But we don’t want any pair of functions with these types...

Combinators for Bi-Directional Tree Transformations - 8 POPL ’05



Well-Behaved Lenses

... we need guarantees on round-trip behavior

l↘ (l↗ c, c) = c [GetPut]

Abstract
ViewStructure

Concrete
Get

PutBack

Combinators for Bi-Directional Tree Transformations - 9 POPL ’05



Well-Behaved Lenses

... we need guarantees on round-trip behavior:

l↘ (l↗ c, c) = c [GetPut]

Abstract
ViewStructure

Concrete
Get

PutBack

Combinators for Bi-Directional Tree Transformations - 9 POPL ’05



Well-Behaved Lenses

... in both directions:

l↗ l↘ (a, c) = a [PutGet]

Structure
Concrete

Structure
Concrete
Updated

Abstract
View

Get

PutBack

Write l ∈ C ⇐⇒ A for a well-behaved lens between C and A.

Combinators for Bi-Directional Tree Transformations - 10 POPL ’05



Well-Behaved Lenses

... in both directions:

l↗ l↘ (a, c) = a [PutGet]

Structure
Concrete

Structure
Concrete
Updated

Abstract
View

Get

PutBack

Write l ∈ C ⇐⇒ A for a well-behaved lens between C and A.

Combinators for Bi-Directional Tree Transformations - 10 POPL ’05



Recursive Lenses

We want to define lenses by recursion.

We can refine lenses to a partial setting and take fixed points

using standard techniques.

See paper for details; in this talk, we’ll only look at total

lenses.

Combinators for Bi-Directional Tree Transformations - 11 POPL ’05



A Lens Language



Identity

id ∈ C ⇐⇒ C

id↗ c = c

id↘ (a, c) = a

The get function yields c;

the putback function ignores c and yields a.

Combinators for Bi-Directional Tree Transformations - 12 POPL ’05



Hoist & Plunge

hoist n ∈
{

n 7→ C

}

⇐⇒ C

hoist n↗ c = t if c =
{

n 7→ t

}

hoist n↘ (a, c) =
{

n 7→ a

}

plunge n ∈ C ⇐⇒
{

n 7→ C

}

plunge n↗ c =
{

n 7→ c

}

plunge n↘ (a, c) = t if a =
{

n 7→ t

}

Combinators for Bi-Directional Tree Transformations - 13 POPL ’05



Composition

If l ∈ C ⇐⇒ B and k ∈ B ⇐⇒ A then (l; k) ∈ C ⇐⇒ A.

(l; k)↗ c = k↗ (l↗ c) [Get]

Abstract
ViewStructure

Concrete

l k

Get

PutBack

Get

PutBack

Combinators for Bi-Directional Tree Transformations - 14 POPL ’05



Composition

If l ∈ C ⇐⇒ B and k ∈ B ⇐⇒ A then (l; k) ∈ C ⇐⇒ A.

(l; k)↘ (a, c) = l↘ (k↘ (a, l↗ c), c) [PutBack]

Structure
Concrete
Updated

Structure
Concrete Abstract

View

l k

Get

PutBack

Get

PutBack

Combinators for Bi-Directional Tree Transformations - 15 POPL ’05



XFork

xfork pc pa l1 l2 splits the tree and applies a different lens to

each part:

������� ??
??

??
?

pa pa

�������
pa

;;

??
??

??
?

pa

cc

�������
pc

(l1↗)

OO

??
??

??
?

pc

(l2↗)

OO

������� ??
??

??
?

pc pc

dd ::

Combinators for Bi-Directional Tree Transformations - 16 POPL ’05



Map

Map applies a lens one level deeper in the tree.

The get function is easy:

(map l)↗





























n1 7→ t1
...

nk 7→ tk





























=



















n1 7→ l↗ t1
...

nk 7→ l↗ tk



















When a and c have the same children the putback function
is also easy:

(map l)↘





























n1 7→ t1
...

nk 7→ tk



















,



















n1 7→ t′1
...

nk 7→ t′k





























=



















n1 7→ l↘ (t1, t′1)
...

nk 7→ l↘ (tk, t′k)



















In general, a and c might have different children...

Combinators for Bi-Directional Tree Transformations - 17 POPL ’05



Map
A natural choice for the putback of (map l) is to keep the
children in a, and discard children that only appear in c. (In
fact PutGet requires it.)

• Children appearing only in c are dropped;

• Children in both a and c are putback as in simple case;

• Children appearing only in a are putback with what?

– Use special tree, Ω (“missing”) to mark where a
default is needed.

(map l)↘ (a, c)=







n 7→ l↘ (a(n), c(n)) | n ∈ dom(a) ∩ dom(c)

n 7→ l↘ (a(n), Ω) | n ∈ dom(a) \ dom(c)







Combinators for Bi-Directional Tree Transformations - 18 POPL ’05



Constant

Lenses whose get functions are projections need to handle

handle Ω (by providing defaults).

const t d ∈ C ⇐⇒ {t}

const t d↗ c = t

const t d↘ (a, c) = c if c 6= Ω and a = t

d if c = Ω and a = t

The get function discards the entire concrete tree.

The putback function restores the original concrete tree, or a

default if c is Ω:

Combinators for Bi-Directional Tree Transformations - 19 POPL ’05



Conditionals

Conditionals are a fun challenge in a bi-directional setting.

Have to select a lens in both directions.

Combinators for Bi-Directional Tree Transformations - 20 POPL ’05



ACond

If l1 ∈ (C ∩ PC) ⇐⇒ (A ∩ PA) and l2 ∈ (C \ PC) ⇐⇒ (A \ PA)

then acond PC PA l1 l2 ∈ C ⇐⇒ A.

l1

l2

PC PA

C \ P
C A \ PA

Get

PutBack

Get

PutBack

Combinators for Bi-Directional Tree Transformations - 21 POPL ’05



ACond

If l1 ∈ (C ∩ PC) ⇐⇒ (A ∩ PA) and l2 ∈ (C \ PC) ⇐⇒ (A \ PA)

then acond PC PA l1 l2 ∈ C ⇐⇒ A.

l1

l2

C A

Get

PutBack

Get

PutBack

Combinators for Bi-Directional Tree Transformations - 22 POPL ’05



ACond

l1 ∈ (C ∩ PC) ⇐⇒ (A ∩ PA)

Abstract
View

l1

l2

Structure
Concrete

in P ?C

No

Yes

Get

PutBack

Get

PutBack

Combinators for Bi-Directional Tree Transformations - 23 POPL ’05



ACond

l1 ∈ (C ∩ PC) ⇐⇒ (A ∩ PA)

l1

l2Structure
Concrete

in P ? Abstract
View

No

Yes

Get

PutBack

Get

PutBack

A

Combinators for Bi-Directional Tree Transformations - 24 POPL ’05



ACond

l1 ∈ (C ∩ PC) ⇐⇒ (A ∩ PA)

l1

l2
Ω

Structure
Concrete

Updated
Concrete
Structure

in P ?C

in P ?A
Abstract
View

No

Yes

Get

PutBack

Get

PutBack

Combinators for Bi-Directional Tree Transformations - 24 POPL ’05



Lenses for Lists

Can encode lists using standard “cons cells”.

The list [v1 . . . vn] is represented by the tree






























*h 7→ v1

*t 7→



















*h 7→ v2

*t 7→







. . . 7→







*h 7→ vn

*t 7→ {}





























































Lenses implementing functions on lists are derived forms.

Combinators for Bi-Directional Tree Transformations - 25 POPL ’05



Demo



Lenses for Lists

let hd = xfork {*h} {*h} id (const {} {*t=[]});

hoist *h

let tl = xfork {*t} {*t} id (const {} {*h={}});

hoist *t

let rec list_map l =

xfork {*h} {*h} (map l) (map (list_map l))

Combinators for Bi-Directional Tree Transformations - 26 POPL ’05



Lenses for Lists

let rename x y = xfork {x} {y} (hoist x; plunge y) id

let swaphd =

rename *h tmp;

xfork {*t} {*h *t} (hoist *t) id;

xfork {tmp *t} {*t} (rename tmp *h; plunge *t) id

let rec rotate =

acond isSingletonOrEmptyList isSingletonOrEmptyList

id

(swaphd; xfork {*t} {*t} (map rotate) id)

let rec list_reverse =

xfork {*t} {*t} (map list_reverse) id; rotate

Combinators for Bi-Directional Tree Transformations - 27 POPL ’05



Other Lenses

We have investigated several other lenses:

• pivoting, copying, and merging

• conditionals (two additional ones!)

• filtering and flattening (for lists)

and have built several applications using these lenses:

• a bookmark synchronizer

• a calendar synchronizer

• an addressbook synchronizer

Combinators for Bi-Directional Tree Transformations - 28 POPL ’05



Future Work

1. Semantic Framework

• Explore stronger lens laws (e.g., in a metric space).

2. A Lens Language

• Mechanical type checking for lenses.

• Characterization of the expressive power of lenses

and our language.

• Beyond trees (e.g., relational lenses).

3. Applications of Lenses

• End-to-end typed synchronizer.

• More applications.

Combinators for Bi-Directional Tree Transformations - 29 POPL ’05



Related Work

• Semantic Framework - many related ideas in database
literature (see paper).

– [Bancilhon, Spryatos ’81] “translators under constant
complement”.

– [Gottlob, Paolini, Zicari ’88] “dynamic views”.

• Bi-Directional Languages

– [Meertens] - language for constaint maintainers;
similar behavioral laws.

– [Hu, Mu, Takeichi ’04] - language at core of a
structured document editor.

• Bijective and Reversible Languages

Combinators for Bi-Directional Tree Transformations - 30 POPL ’05



http://www.cis.upenn.edu/~bcpierce/harmony/


