Combinators for Bi-Directional Tree Transformations:
A Linguistic Approach to the View Update Problem

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt

Technical Report MS-CIS-04-15
Department of Computer and Information Science
University of Pennsylvania

August 7, 2004

Supercedes MS-CIS-03-08

Abstract

We propose a novel approach to the well-known view update problem for the case of tree-structured data:
a domain-specific programming language in which all expressions denote bi-directional transformations
on trees. In one direction, these transformations—dubbed lenses—map a “concrete” tree into a simplified
“abstract view”; in the other, they map a modified abstract view, together with the original concrete
tree, to a correspondingly modified concrete tree. Our design emphasizes both robustness and ease of
use, guaranteeing strong well-behavedness and totality properties for well-typed lenses.

We identify a natural mathematical space of well-behaved bi-directional transformations (over arbi-
trary structures), study definedness and continuity in this setting, and state a precise connection with
the classical theory of “update translation under a constant complement” from databases. We then
instantiate this semantic framework in the form of a collection of lens combinators that can be assem-
bled to describe transformations on trees. These combinators include familiar constructs from functional
programming (composition, mapping, projection, conditionals, recursion) together with some novel prim-
itives for manipulating trees (splitting, pruning, copying, merging, etc.). We illustrate the expressiveness
of these combinators by developing a number of bi-directional list-processing transformations as derived
forms. An extended example shows how our combinators can be used to define a lens that translates
between a native HTML representation of browser bookmarks and a generic abstract bookmark format.

1 Introduction

Computing is full of situations where one wants to transform some structure into a different form—a view—
in such a way that changes made to the view can be reflected back as updates to the original structure.
This view update problem is a classical topic in the database literature, but has so far been little studied by
programming language researchers.

This paper addresses a specific instance of the view update problem that arises in a larger project
called Harmony [38]. Harmony is a generic framework for synchronizing tree-structured data—a tool for
propagating updates between different copies of tree-shaped data structures, possibly stored in different
formats. For example, Harmony can be used to synchronize the bookmark files of several different web
browsers, allowing bookmarks and bookmark folders to be added, deleted, edited, and reorganized in any
browser and propagated to the others. The ultimate aim of the project is to provide a platform on which
a Harmony programmer can quickly assemble a high-quality synchronizer for a new type of tree-structured
data that is stored in a standard low-level format such as XML. Other Harmony instances currently in daily
use or under development include synchronizers for calendars (Palm DateBook, ical, and iCalendar formats),
address books, slide presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize disparate data formats we define a single common
abstract view and a collection of lenses that transform each concrete format into this abstract view. For
example, we can synchronize a Mozilla bookmark file with an Internet Explorer bookmark file by transforming
each into an abstract bookmark structure and synchronizing the results. Having done so, we need to take
the updated abstract structures and perform the corresponding updates to the concrete structures. Thus,
each lens must include not one but two functions—one for extracting an abstract view from a concrete one
and another for pushing an updated abstract view back into the original concrete view to yield an updated
concrete view. We call these the get and put components, respectively. The intuition is that the mapping
from concrete to abstract is commonly some sort of projection, so the get direction involves getting the
abstract part out of a larger concrete structure, while the put direction amounts to putting a new abstract
part into an old concrete structure. We present a concrete example of this process in Section 2.

The difficulty of the view update problem springs from a fundamental tension between expressiveness
and robustness. The richer we make the set of possible transformations in the get direction, the more difficult
it becomes to define corresponding functions in the put direction in such a way that each lens is both well
behaved, in the sense that its get and put behaviors fit together in a sensible way, and total, in the sense that
its get and put functions are guaranteed to be defined on all the inputs to which they may be applied.

To reconcile this tension, any approach to the view update problem must be carefully designed with a
particular application domain in mind. The approach described here is tuned to the kinds of projection-
and-rearrangement transformations on trees and lists that we have found useful for implementing Harmony
instances. It does not directly address some well-known difficulties with view update in the classical setting
of relational databases—such as the difficulty of “inverting” queries involving joins—though we hope that
our work may suggest new attacks on these problems.

A second difficulty concerns ease of use. In general, there are many ways to equip a given get function with
a put function to form a well-behaved and total lens; we need some means of specifying which put is intended
that is natural for the application domain and that does not involve onerous proof obligations or checking
of side conditions. We adopt a linguistic approach to this issue, proposing a set of lens combinators—a
small domain-specific language—in which every expression simultaneously specifies both a get function and
the corresponding put. Moreover, each combinator is accompanied by a type declaration, designed so that
the well-behavedness and—for non-recursive lenses—totality of composite lens expressions can be verified by
straightforward, compositional checks. (Proving totality of recursive lenses, like ordinary recursive programs,
requires global reasoning that goes beyond types.)

The first step in our formal development, in Section 3, is identifying a natural mathematical space of
well-behaved lenses over arbitrary data structures. There is a good deal of territory to be explored at this
abstract level, before we fix the domain of structures being transformed or the syntax for writing down
transformations. First, we must phrase our basic definitions to allow the underlying functions in lenses to
be partial, since there will in general be structures to which a given lens cannot sensibly be applied. The

sets of structures to which we do intend to apply a given lens is specified by associating it with a type of the
form C' = A, where C' is a set of concrete “source structures” and A is a set of abstract “target structures.”
Second, we define a notion of well-behavedness that captures our intuitions about how the get and put parts
of a lens should behave in concert. (For example, if we use the get part of a lens to extract an abstract
view a from a concrete view ¢ and then use the put part to push the very same a back into ¢, we should
get ¢ back.) Third, we use standard tools from domain theory to define monotonicity and continuity for
lens combinators parameterized on other lenses, establishing a foundation for defining lenses by recursion
(which we need because the trees that our lenses manipulate may in general have arbitrarily deep nested
structure—e.g., when they represent directory hierarchies, bookmark folders, etc.). Finally, to allow lenses
to be used to create new concrete structures rather than just updating existing ones (which can happen, for
example, when new records are added to a database in the abstract view), we show how to adjoin a special
“missing” element to the structures manipulated by lenses and establish suitable conventions for how it is
treated.

With these semantic foundations in place, we proceed to syntax. We first (Section 4), present a group
of generic lens combinators (identities, composition, and constants), which can work with any kind of data.
Next (Section 5) we focus attention on tree-structured data and present several more combinators that
perform various manipulations on trees (hoisting, splitting, mapping, etc.) and show how to assemble these
primitives, along with the generic combinators from before, to yield some useful derived forms. Section 6
introduces another set of generic combinators implementing various sorts of bi-directional conditionals (we
defer these to a separate section for the sake of getting to concrete examples early, and because they are
among our trickier primitives). Section 7 gives a more ambitious illustration of the expressiveness of these
combinators by implementing a number of bi-directional list-processing transformations as derived forms;
our main example is a bi-directional 1ist_filter lens whose put direction must perform a rather intricate
“weaving” operation to recombine a potentially updated abstract list with the concrete list elements that
were filtered away by the get. Section 8 further illustrates the use of our combinators in real-world lens
programming by walking through a substantial example derived from the Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat different region of the lens design space: lenses for
dealing with relational data encoded as trees. We define three more primitives—a “flattening” combinator
that transforms a list of (keyed) records into a bush, a “pivoting” combinator that can be used to promote a
key field to a higher position in the tree, and a “transposing” combinator related to the outer join operation
on databases. The first two combinators play an important role in Harmony instances for relational data
such as address books encoded as XML trees.

Section 10 surveys a variety of related work and states a precise correspondence (amplified in [37]) between
our well-behaved lenses and the closely related idea of “update translation under a constant complement”
from databases. Section 11 sketches directions for future research.

2 A Small Example

Suppose our concrete tree ¢ is a small address book:

Phone — 333-4444
Pat —
. — URL +— http://pat.com
o Chris o J|Phone — 888-9999
URL — http://chris.org

(We draw trees sideways to save space. Each set of hollow curly braces corresponds to a tree node, and
each “X +— ...” inside denotes a child labeled with the string X. The children of a node are unordered. To
avoid clutter, when an edge leads to an empty tree, we usually omit the braces, the — symbol, and the final
childless node—e.g., “333-4444” above actually stands for “{]333-4444 — {[]}[}.” When trees are linearized
in running text, we separate children with commas for easier reading.)

Now, suppose that we want to edit the data from this concrete tree in a simplified format, where each

name is associated directly with a phone number.

0 = Pat +— 333-4444
- Chris — 888-9999

Why would we want this? Perhaps because the edits are going to be performed by synchronizing this abstract
tree with another replica of the same address book in which no URL information is recorded. Or perhaps
there is no synchronizer involved, but the edits are going to be performed by a human who is only interested
in phone information and whose screen should not be cluttered with URLs. Whatever the reason, we are
going to make our changes to the abstract tree a, yielding a new abstract tree a’ of the same form but with
modified content.! For example, let us change Pat’s phone number, drop Chris, and add a new friend, Jo.

o = Pat — 333-4321
o Jo — 555-6666

Lastly, we want to compute a new concrete tree ¢’ reflecting the new abstract tree a’. That is, we want
the parts of ¢’ that were kept when calculating a (e.g., Pat’s phone number) to be overwritten with the
corresponding information from o', while the parts of ¢ that were filtered out (e.g., Pat’s URL) have their
values carried over from c.

Pat s Phone — 333-4321
;o URL +— http://pat.com

© = Phone — 555-6666
Jo +—
URL — http://google.com

We also need to “fill in” appropriate values for the parts of ¢’ (in particular, Jo’s URL) that were created in
a’ and for which ¢ therefore contains no information. Here, we simply set the URL to a constant default, but
in general we might want to compute it from other information.

Together, the transformations from ¢ to a and from ¢’ and ¢ to ¢’ form a lens. Our goal is to find a
set of combinators that can be assembled to describe a wide variety of lenses in a concise, natural, and
mathematically coherent manner. (Just to whet the reader’s appetite, the lens expression that implements
the transformation sketched above is written map (focus Phone {]URL — http://google. com[}).)

3 Semantic Foundations

Although many of our combinators are designed to perform various transformations on trees, their semantic
underpinnings can be presented in an abstract setting parameterized by the data structures (“views”) ma-
nipulated by lenses.? In this section—and in Section 4, where we discuss generic combinators—we simply
assume some fixed set U of views; from Section 5 on, we will choose U to be the set of trees.

3.1 Basic Structures

When f is a partial function, we write f(a) | if f is defined on argument a and f(a) = L otherwise. We
write f(a) C b for f(a) = LV f(a) =b. We write dom(f) for the set of arguments on which f is defined.
When S C U, we write f(S) for {r|se€ S A f(s) | A f(s) =r}. We take function application to be strict,
ie., f(g(x)) | implies g(z) |. We extend function application to sets of arguments in a pointwise fashion,

writing f(C) for {f(c) | c € CNdom(f)}.

INote that we are interested here in the final tree a’, not the particular sequence of edit operations that was used to
transform a into a’. This is important in the context of Harmony, which is designed to support synchronization of off-the-shelf
applications, where in general we only have access to the current states of the replicas, rather than a trace of modifications; the
tradeoffs between state-based and trace-based synchronizers are discussed in [39].

2We use the word “view” here in a slightly different sense than some of the database papers that we cite, where a view is a
query that maps concrete to abstract states—i.e., it is a function that, for each concrete database state, picks out a view in our
sense.

3.1.1 Definition [Lenses]: A lens | comprises a partial function [/ from U to U, called the get function
of [, and a partial function I\, from U x U to U, called the put function.

The intuition behind the notations [and I\, is that the get part of a lens “lifts” an abstract view out of
a concrete one, while the put part “pushes down” a new abstract view into an existing concrete view. We
often say “put a into ¢ [using []” instead of “apply the put function [of [] to (a,c).”

3.1.2 Definition [Well-behaved lenses|: Let [be a lens and let C and A be subsets of &. We say that [
is a well behaved lens from C to A, written [€ C = A, iff it maps arguments in C' to results in A and vice
versa

IL(C)CA (GET)
NAxC)CC (

and its get and put functions obey the following laws:

INNU/ ¢, c)Cec forall ce C (GETPUT)
IL/"(IN\\(a, ¢)) C a for all (a,c) € Ax C (PUTGET)

We call C the source and A the target in C = A. Note that a given [may be a well-behaved lens from C to
A for many different Cs and As; in particular, every [is trivially a well-behaved lens from) to . Conversely,
the everywhere-undefined lens belongs to C' = A for every C and A.

Intuitively, the GETPUT law states that, if we get some abstract view a from a concrete view ¢ and immedi-
ately put a (with no modifications) back into ¢, we must get back exactly ¢ (if both operations are defined).
PUTGET, on the other hand, demands that the put function must capture all of the information contained in
the abstract view: if putting a view a into a concrete view c yields a view ¢/, then the abstract view obtained
from ¢’ is exactly a.

An example of a lens satisfying PUTGET but not GETPUT is the following. Suppose C = string X int
and A = string, and define ! by:

1/ "(s,n) = s
l\(slv (Svn)) = (3170)

Then I\, (I, (s,1), (s,1)) = (s,0) # (s,1). Intuitively, the law fails because the put function has “side
effects”: it modifies information from the concrete view that is not reflected in the abstract view.

An example of a lens satisfying GETPUT but not PUTGET is the following. Let C = string and
A = string x int, and define [by :

/s = (s,0)
IN((8,n),s) = &

PUTGET fails here because some information contained in the abstract view does not get propagated to the
new concrete view. For example, I 7 (I, ((s',1), s)) =15 = (s,0) # (s',1).

The GETPUT and PUTGET laws reflect fundamental expectations about the behavior of lenses; removing
either law significantly weakens the semantic foundation. We may also optionally consider a third law, called
PurPuT:

IN (@, 1IN (a,) I\ (d,c) foralla,a’ € AandceC.

This law states that the effect of a sequence of two puts is (modulo undefinedness) just the effect of the
second: the first gets completely overwritten. We say that a well-behaved lens that also satisfies PuTPuT
is very well behaved. Both well-behaved and very well behaved lenses correspond to well-known classes of
“update translators” from the classical database literature (see Section 10).

The PUuTPUT law intuitively states that a series of changes to an abstract view may be applied either
incrementally or all at once, resulting in the same final concrete view. This is a natural constraint, and the

foundational development in this section is valid for both well-behaved and very well behaved variants of
lenses. However, when we come to defining our lens combinators for tree transformations in Section 5, we
will not require PUTPUT because one of our most important lens combinators, map, fails to satisfy it for
reasons that seem to us pragmatically unavoidable (see Section 5.4).

For now, a very simple example of a lens that is well behaved but not very well behaved can be constructed
as follows. Consider the following lens, where C' = string x int and A = string. The second component
of each concrete view intuitively represents a version number.

1/ "(s,n) = s

, (s,n) ifs=¢
l\(S, (Svn)> (S,TL—|—1) 1f8758/
The get function of I projects away the version number and yields just the “data part.” The put function
overwrites the data part, checks whether the new data part is the same as the old one, and, if not, incre-
ments the version number. This lens satisfies both GETPUT and PUTGET but not PuTPuT, as we have

l\(S, l\(slv (Can))) = (87n+2) # (87n+1) = l\(S, (Cvn))'

A final important property that lenses may satisfy (on a given domain) is totality.

3.1.3 Definition [Totality]: A lens ! € C = A is said to be total, written [€ C < A, if C C dom(l)
and A x C' C dom(IN).

Note that well-behavedness is trivial in the absence of totality: for any function [/ from C to A, we can
obtain a well-behaved lens by taking I\, to be undefined on all inputs (or—very slightly less trivially—to be
defined only on inputs of the form (I "¢, c)).

This is consistent with the pragmatic intuition that we always want our lenses to be defined on the
whole of the domains where we intend to use them: the get direction should be defined for any structure
in the concrete set, and the put direction should be capable of putting back any possible updated version
from the abstract set. (Since we intend to use lenses to build synchronizers, the updated structures here
will be the results of synchronization. But a fundamental property of the core synchronization algorithm in
Harmony is that, if all of the updates between synchronizations occur in just one of the replicas, then the
effect of synchronization will be to propagate all these changes to the other replica. This implies that the
put function in the lens associated with the other replica must be prepared to accept any value from the
abstract domain.?) However, totality of lenses—Tlike totality of ordinary recursive functions or termination
of while loops—is more difficult to reason about than simple well-behavedness, requiring invention of global
termination measures, in contrast to the purely local reasoning used to show well-behavedness. This is why
we formulate it as a separate condition rather than building it into the definition of well-behavedness. We
expect that, in practice, programmers (or, someday, a mechanical type checker) will always prove that their
lenses are well behaved—i.e., that they may diverge but will never terminate and yield wrong results—
but that totality will be dealt with in a more rough and ready way (as it is in most real-world functional
programming) by a combination of intuition, informal proofs, and testing.

Note, too, that totality is trivial if we do not care about the size of the source and target sets: in
particular, every lens is total if we take the source and target to be empty. It becomes interesting only when
we have larger domains in mind.

3.2 Basic Properties

We now explore some simple but useful consequences of the lens laws.

3.2.1 Definition: Let f be a partial function from A x C' to C and P C A x C. We say that f is injective
on P if it is injective (in the standard sense) in the first component of arguments drawn from P—i.e., if,

3In other settings, different notions of totality may be appropriate. For example, Hu, Mu, and Takeichi [21] have argued
that, in the context of interactive editors, a reasonable definition of totality is that I\ (a, ¢) should be defined whenever a
differs by at most one edit operation from ["c.

for all views a, o/, and ¢ with (a,¢) € P and (da/,c) € P, if f(a,c) | and f(a’,¢) |, then a # o’ implies
fla,e) # f(d',0).

3.2.2 Lemma: If [€ C = A, then I\ is injective on {(a,c) | (a,c) € AxC A 1/ (I (a,) |}.

Proof: Let P = {(a,c) | (a,¢) € AxC A 1/ (I\(a,) |}, and choose (a,c) € P and (d’,c) € P
with a’ # a. Suppose, for a contradiction, that I\ (a, ¢) =1\, (¢, ¢). Then, by the definition of P and rule
PUTGET, we have a =11\ (a, ¢) =11\, (d, ¢) = a’; hence a = d’, a contradiction. O

The main application of this lemma is the following corollary, which provides an easy way to show that a
total lens is not well behaved. We used it many times, while designing our combinators, to quickly generate
and test candidates.

3.2.3 Corollary: If | € C <= A, then [\, is injective on A x C.

An important special case arises when the put function of a lens is completely insensitive to its concrete
argument.

3.2.4 Definition: A lens [is said to be oblivious if I\ (a, ¢) =1\, (a, ¢) for all a,c,¢’ € U.

Oblivious lenses have some special properties that make them simpler to reason about than lenses in
general. For example:

3.2.5 Lemma: If [is oblivious and I € C; = A; and [€ Cy = Ag, then [€ (C; UCs) = (A1 U Ay).
Proof: Straightforward. O
3.2.6 Lemma: If [is oblivious and [€ C' <= A, then [" is a bijection from C to A.

Proof: If C = (), then, because [is total, A is also empty and [~ is trivially bijective. If C is non-
empty, then we can choose an arbitrary ¢ € C' and define the inverse of I/ as f = Aa. [\ (a, ¢). The
fact that (1) o f = id follows directly from PUTGET. The fact that f o (I,") = id follows because
f7)y=IN("¢,¢)=I\. ("¢,) (by obliviousness) = ¢ (by GETPUT). O

Conversely, every bijection between C and A induces a well-behaved oblivious lens from C to A—that
is, the set of bijections between subsets of U forms a subcategory of the category of lenses. Many of the
combinators defined below actually live in this simpler subcategory, as does much of the related work surveyed
in Section 10.

3.3 Recursion

Since our lens framework will be instantiated for the universe of trees, and since trees in many interesting
application domains may have unbounded depth (e.g., a bookmark item can be either a link or a folder
containing a list of bookmark items), we will need to define lenses by recursion. Our next task in this
foundational section is to set up the necessary structure for interpreting such definitions.

The development follows familiar lines. We introduce an information ordering on lenses and show that
the set of lenses equipped with this ordering is a complete partial order (cpo). We then apply standard
tools from domain theory to interpret a variety of common syntactic forms from programming languages—in
particular, functional abstraction and application (“higher-order lenses”) and lenses defined by single or
mutual recursion.

We say that a lens I’ is more informative than a lens [, written I < I’, if both the get and put functions of
I’ have domains that are at least as large as those of [and if their results agree on their common domains:

3.3.1 Definition: [< !’ iff dom(l) C dom(l’ /"), dom(I\,) C dom(I"\\), "¢ =1 ¢ for all ¢ € dom(l),
and I\ (a, c¢) =1'"\, (a, c) for all (a,c) € dom(I\).

3.3.2 Lemma: < is a partial order on lenses.
Proof: Straightforward from the definitions. O

A cpo is a partially ordered set in which every increasing chain of elements has a least upper bound in
the set. If lp <1y <... <1, < ... is an increasing chain, we write | |, ., I» (often shortened as | |, I,,) for its
least upper bound. A cpo with bottom is a cpo with an element | that is smaller than every other element.

In our setting, L is the lens whose get and put functions are everywhere undefined.

3.3.3 Lemma: Let [p <3 <... <1, <...be an increasing chain of lenses. The lens [defined by

IN(a, o) =1;\\(a, c) ifl;\, (a,c)] for some i
l/'ce=1; ¢ if I; /" ¢ | for some i

and undefined elsewhere is a least upper bound for the chain.

Proof: We first check that [is a lens, i.e., that both I\, and [~ are functions. This is easy since, by
definition of the ordering on lenses, we have [; \,(a, ¢) =v = Vj >1i. [;\,(a, ¢) = v, and the same for
1,/. Moreover, dom(l,) = |J, dom(l; /) and dom(I\,) = |J, dom(l;\).

We now show that [is a least upper bound. First, it is clearly an upper bound. To show it is least, let I’
be another upper bound. Then, for all ¢, we have dom(l; /") C dom(I’ ") and dom(I;\,) C dom(I"\); hence
dom(l,") C dom(!’) and dom(I™,) C dom(I"\). Moreover, if ¢ € dom(l,), then there is some i such that
l;,/'c | and | "¢ =1; /'c; thus (as I’ is an upper bound), we have I’ /¢ = l; /¢ = | /c¢. The same property
holds for the put function, so I < I’ and [is indeed a least upper bound. O

3.3.4 Corollary: Let lp <3 < ... <1, < ... be an increasing chain of lenses. For every a,c € U, we have:
L (U,ln) /" c=v <= Fi. l;/c=v.
2. (Untn) \(a,c)=v <= Fi. [;\,(a,c)=w.

3.3.5 Lemma: Let g < I3 < ... <[, < ... be an increasing chain of lenses, and let Cy C C; C ... and
Ap € Ay C ... be increasing chains of subsets of /. Then:

1. Well-behavedness commutes with limits: (Vi ew. [; € C; = A;)) = (I, ln) € (U; Ci) = (U; 4i)-
2. Totality commutes with limits: (Vi e w. [; € C; <= 4;) = (I, In) € (U, Ci) <= (U, 4i)-

Proof: Let!=|],1l,, let C ={J,C;, and let A =, 4;.

We rely on the following property (which we call x4): if [/ ¢ is defined for some ¢ € C, then there is some
i such that ¢ € C; and [/"¢ = [; /' ¢. To see this, let ¢ € C; then there is some j such that Vk > j. c € Cj.
Moreover, by Corollary 3.3.4, there exist some j’ such that [, ¢ =1; /c. Let ¢ be the max of j and j'; then
we have (by definition of <) l; /" c¢=1; /" c=1,/cand c € C;.

Similarly, we have the property x,: if I\ (a, ¢) is defined for some a € A and ¢ € C, then there is some
i such that a € A;, ¢ € Cy, and 1\ (a, ¢) = I; \,(a, ¢). To see this, let a € A and ¢ € C; then there are
some j and j' such that Vk > j. a € A and Vk > j'. ¢ € Cy. Moreover, by Corollary 3.3.4, there exists some
j"” such that I\ (a, ¢) = l;» \,(a, ¢). Let ¢ be the max of j, 5/, and j”; then we have (by definition of <)
LiN(a,) =1lin\ (a, c) =1\ (a, ¢), with a € A; and c € C,.

We can now show that [satisfies the typing conditions (GET and PuUT) of well-behaved lenses. Choose
ce C. If [/cis defined, then by %, there is some ¢ such that c € C; and I “c=1; /c. Asl; isin A; = C;,
we have l; /"¢ € A; C A. Conversely, let (a,c) € A x C; then if I\ (a, ¢) is defined, then by x, there is some
i such that (a,c) € A; x C; and I\ (a, ¢) =1; \,(a, ¢). Asl; € A; = C;, we have [; \(a, ¢) € C; C C.

We next show that [satisfies GETPUT and PUTGET. Using %4 and x,, we calculate as follows:

GETPUT: Supposec € C. If I\, (I ¢, ¢) = L, then we are done. Otherwise there is some i such that ¢ € C;
and l; /"¢ =1/"c=a € A; C A. Hence there is some j such that a € A; and [;\,(a, ¢) = . Let
k be the max of ¢ and j, so we have a € Ay and ¢ € C). By definition of <, we have I ¢ = a and
Ik \\(a, ¢) =¢. As GETPUT holds for lj, we have ¢’ = ¢, hence GETPUT holds for [.

PUuTGET: Suppose a € A and ¢ € C. If [I\ (a, ¢) = L, then we are done. Otherwise there is some i
such that a € 4;, c € C;, and [; \ (a, ¢) =1\, (a, ¢) = ¢ € C; C C. Hence there is some j such that
d eCjand ;¢ =d'. Let k be the max of i and j, so we have a € A, and ¢ € Cj. By definition of
<, we have [;; \| (¢, ¢) = ¢ and I /' ¢ = a’. As PUTGET holds for I, we have a’ = a, hence PUTGET
holds for .

Finally, we show that [is total if all the I; are. If ¢ € C, then there is some ¢ such that ¢ € C;, hence
l; /" cis defined, hence [" ¢ is defined. If a € A and ¢ € C, then there is some i such that a € A; and ¢ € C},
hence 1; \, (a, ¢) is defined, thus I\ (a, ¢) is defined. O

3.3.6 Theorem: Let £ be the set of well-behaved lenses from C to A. Then (£, <) is a cpo with bottom.

Proof: First, the lens that is undefined everywhere is well behaved (it trivially satisfies all equations) and
is obviously the smallest lens. We write this lens 1;. Second, if l[p <13 < ... <, < ... is an increasing
chain of well-behaved lenses, then by Lemma 3.3.5, it has a least upper bound that is well behaved. O

When defining lenses, we will make heavy use of the following standard theorem from domain theory (e.g.,
[46]). Recall that a function f between two cpos is continuous if it is monotonic and if, for all increasing
chains lp < I3 < ... < I, < ..., we have f(|], 1) = L, f(ln). A fixed point of f is a function fiz(f)
satistying fiz(f) = f(fix(f))-

3.3.7 Theorem [Fixed-Point Theorem]: Let f be a continuous function from D to D, where D is a cpo
with bottom. Define

fix(f) =] | (L)

Then fiz(f) is a fixed point of f.

Theorem 3.3.6 tells us that we can apply Theorem 3.3.7 to continuous functions from lenses to lenses—i.e.,
it justifies defining lenses by recursion. The following corollary packages up this argument in a convenient
form; we will appeal to it many times in later sections to show that recursive derived forms are well behaved
and total.

3.3.8 Corollary: Suppose f is a continuous function from lenses to lenses.
1. If | € C = A implies f(I) € C = A for all [, then fiz(f) € C = A.

2. Suppose) = Cy € C; € ... and) = Ay C A; C ... are increasing chains of subsets of . If
l € Cy <= A; implies f(l) € Cijy1 <= A;q; for all ¢ and [, then fiz(f) € (U, Ci) <= (U, 4i)-

Proof:

1. First recall that f9(1;) = 1; € C = A for any C and A. From this, a simple induction on i (using the
given implication at each step) yields f(1;) € C = A. By 3.3.5(1), (LI, f'(L,)) € C = A. By 3.3.7,
fix(f) e C = A.

2. First note that, since Co = Ag = 0, we have fO(1;) = 1; € Cy <= Ay. From this, a simple
induction on i (using the given implication at each step) yields f*(L;) € C; <= A;. By 3.3.5(2),
U; f1(L) € (U; Ci) <= (U; Ai)- By 3.3.7, fiz(f) € (U; Ci) <= (U; A2)- 0

We can now apply standard domain theory to interpret a variety of constructs for defining continuous lens
combinators. We say that an expression e is continuous in the variable z if the function Az.e is continuous. An
expression is said to be continuous in its variables, or simply continuous, if it is continuous in every variable
separately. Examples of continuous expressions are variables, constants, tuples (of continuous expressions),
projections (from continuous expressions), applications of continuous functions to continuous arguments,
lambda abstractions (whose bodies are continuous), let bindings (of continuous expressions in continuous
bodies), case constructions (of continuous expressions), and the fixed point operator itself. Tupling and
projection let us define mutually recursive functions: if we want to define f as F(f,g) and g as G(f,g),
where both F' and G are continuous, we define (f, g) = fiz(A(z,y).(F(z,y), G(z,y))).

When proving the totality of recursive lenses, we sometimes need to use a more powerful induction scheme
in which a lens is proved, simultaneously, to be total on a whole collection of different types (any of which
can be used in the induction step). This is supported by a generalization of the proof technique in 3.3.8(2).

We specify a total type by a pair (C, A) of subsets of U, and say that a lens [has this type, written
le(C,A) iff]l € C <= A. We use the variable 7 for total types and T for sets of total types. We write
(C,A) C(C',A) ff C CC" and A C A’ and write (C, A) U (C', A") for (CUC',; AU A’).

3.3.9 Definition: The increasing chain 79 C 71 C ... is an increasing instance of the sequence Tg, Ty, ...
iff for all © we have 7; € T;.

Note that Ty, Ty,... is an arbitrary sequence of total types, here—there is no requirement that the
sequence be increasing. This is the trick that makes this proof technique work: we start with a sequence
of sets of total types Tg, Ty, ... that, a priori, have nothing to do with each other; we then show that some
continuous function f on lenses gets us from each T; to T;11, in the sense that f takes any lens [that belongs
to all of the total types in T; to a lens f(I) that belongs to all of the total types in T;41. Finally, we identify
an increasing chain of particular total types 79 € 7 C ... whose limit is the total type that we desire to
show for the fixed point of f and such that each 7; belongs to T;, and hence is a type for fi(1;).

Here is the generalization of Lemma 3.3.5(2) to the case where lenses may be given multiple types.

3.3.10 Lemma: Let Iy < [; < ... <1, < ... be an increasing chain of lenses, and let Ty, Ty,... be a
sequence of sets of total types, such that for all 7, € T; we have l; € 7;. Then for any increasing instance
70 C 71 C...of Ty, Ty,..., we have | |, 1, € U, 7.

Proof: Let 7 = J, 7i; then, by definition, 70 € 71 C ... and 7 = |J,; 7;. By hypothesis, we have l; € 7; for
all 7;, hence by Lemma 3.3.5 we have | |, I, € 7. O

Similarly, we generalize Corollary 3.3.8(2) to increasing instances of sequences of sets of total types.

3.3.11 Corollary: Suppose f is a continuous function from lenses to lenses and Ty, Ty, ... is a sequence of
sets of total types with To = {(0,0)}. If the following property is satisfied for all [and 4,

(VreT;,. ler) = (Vr€Tip1. f(1) er),
then fiz(f) € (U, 7 for all increasing instances 79,71, ... of To, Ty,

Proof: First note that, since To = {(0,0)}, we have f9(1;) = L, € 7 for all 7 € Ty. From this, a simple
induction on i (using the given implication at each step) yields fi(L;) € 7 for all 7 € T;. By 3.3.10, for any
increasing instance 19,71, ... of To, Ty, ..., we have | |, f*(L) € U, 7. By 3.3.7, fiz(f) € U, 7. O

To support totality proofs for mutually recursive lens definitions (e.g., our list filter example in
Section 7), we need to generalize the above argument yet one step further, to tuples of total types (and,
accordingly, tuples of sets of total types, etc.). To avoid too much notation, we show just the special case
where the tuples are pairs.

3.3.12 Definition: The increasing chain (79,7)) € (71,71) C ... of pairs of total types is an increasing
instance of the sequence (To, T(), (T1,T}), ... iff for all ¢ we have 7; € T; and 7/ € T;.

10

3.3.13 Lemma: Let (lo,l)) < (Il1,l1) < ... be an increasing chain of pairs of lenses, and let
(To, TG), (T1,T%),... be a sequence of pairs of sets of total types, such that for all 7, € T; we have
l; € 7, and for all 7/ € T} we have I € 7/. Then for any increasing instance (79, 7)) € (71,74) C ... of
(To, TG), (Tq,TY),..., we have | |, I, € U, 7 and ||, 1}, € U, 7/

Proof: Immediate consequence of Lemma 3.3.10 (just apply 3.3.10 to the first components of all the pairs
and then again to the second components). 0

3.3.14 Corollary: Suppose f is a continuous function from pairs of lenses to pairs of lenses and that
(To, TG), (Tq,T}),... is a sequence of pairs of sets of total types with To = T = {(0,0)}. If the following
two implications hold for all I, I’, and i:

1. from (Vr € T;. l€7) and (V7' € T}. I’ € 7') it follows that (Vr € T;11. m(f(1,1")) € 7)
2. from (V7 € Tiy1. 1 €7)and (V7' € T;. I € 7') it follows that (V7' € T} ;. m(f(l,I')) € 7')
then fiz(f) € (U, 7., 7/) for all increasing instances (79, 7)) C (71, 71) C ... of (To, Tp), (T1,T9),

Proof: We first define an auxiliary continuous function g from pairs of lenses to pairs of lenses such that
fix(f) = fiz(g), then show that g*(1,;, L;) has every pair of total types (7;,7/) in T; x T/, and conclude by
Lemma 3.3.13.

Let fi =miof and fo =m0 f. As f is continuous, both f; and fo are continuous. Let g be the function
from pairs of lenses to pairs of lenses defined as g = A (I1,12).(f1(l1,l2), f2(f1(l1,12),12)). The function g is
continuous from pairs of lenses to pairs of lenses.

We first show that fiz(f) = fiz(g). Let (I1,l2) be a fixed point of f, then we have I; = fi(l1,1l3) and
la = fa(ly,12). We calculate as follows:

g(l1,12) = (fi(l, l2), f2(f1(l1,12),12))
= (I1, f2(l1,12))
= (I1,12)

Hence (I1,12) is a fixed point of g. Conversely, let (I1,12) be a fixed point of g. Then we have g(l1,12) = (I1,12);
that iS, fl(ll,lg) = ll and f2(f1 (ll,lg),ZQ) = ZQ, hence f2(ll,12) = ZQ. Thus (ll,lg) is a fixed pOth of f As a
pair of lenses is a fixed point of f iff it is a fixed point of g, the smallest fixed point of f is the smallest fixed
point of g, hence fix(f) = fiz(g).

We show that g*(L;, L;) has every pair of total types (7;,7/) in T; x T} for all i, by induction on i. The
case where i = 0 is immediate: g°(L;, 1;) = L; € (70, 7) since 7o = 7§ = (0, 0). We now prove the induction
case, showing that g"**(Ly, L;) € (Tiy1,7/4) for all (ri41,7/, 1) € Tit1 X Tig1.

Let 7541 € Ti41. By the induction hypothesis, we have g*(1;, L;) € (7;,7/) for all (r,7]) € T; x T;.
Hence, by definition of g and by the first implication hypothesis, it follows that

m (g™ (L, L)) = falg' (Lo, L) = m(f (9" (Ley L)) € Tigr.

Let 7/,, € T}, ,. By the previous argument, we have f; (¢(Ly, 1y)) € Tigq for all 7,41 € T;1 1. By the
induction hypothesis we have m2(g*(L;, L;)) € 7/ for all 7/ € T.. Hence, by definition of g and by the second
implication hypothesis, it follows that

ma(g ™ (Le, L)) = fa(filg' (Lo, L)), ma(g" (Lo, L)) = ma(f (frlg' (Lo, L1)), m2(g" (Lo, L2)))) € 7y

Combining these two arguments, we thus have ¢"*1 (1, 1;) € (7i11, 7iy1) forall (741, 7/,1) € Toy1 xTi .

Let (70,74) C (11,7) C ... be an increasing instance of (T, T(), (T1,T}),.... In what follows, we write
I; for w1 (g% (L, 1)) and I} for m2(g* (L, Ly)).

By Lemma 3.3.13, we have | |;l; € U, 7 and ||, 1, € U, 7/

By continuity of pairing, we conclude that (| |, l;,| |; ;) = fix(g) = fix(f) € (U, 7, U, 77)- O

11

3.4 Dealing with Creation

In practice, there will be cases where we need to apply a put function, but where no old concrete view is
available (as we saw with Jo’s URL in Section 2). We deal with these cases by enriching the universe U of
views with a special placeholder €2, pronounced “missing,” which we assume is not already in &/. When
S CU, we write Sq for SU{Q},

Intuitively, I\ (a, Q) means “create a new concrete view from the information in the abstract view a.”
By convention, 2 is only used in an interesting way when it is the second argument to the put function: in
all of the lenses defined below, we maintain the invariants that (1) I,7Q = Q, (2) I\, (2, ¢) = Q for any
¢,)1,/ c# Qfor any ¢ # Q, and (4) I\ (a, ¢) # Q for any a # Q and any ¢ (including). We write
C £ A for the set of well-behaved lenses from Cq to Ag obeying these conventions, and C' <2 A for the
set of total lenses obeying these conventions. For brevity in the lens definitions below, we always assume
that ¢ # Q when defining [/ ¢ and that a # Q when defining I\ (a, ¢), since the results in these cases are
uniquely determined by these conventions. (There are other, formally equivalent, ways of handling missing
concrete views. The advantages of this one are discussed in Section 5.4.)

A useful consequence of these conventions is that a lens [€ C' < A also has type C = A.

3.4.1 Lemma: For any lens [and sets of views C' and A:
l.LIleC2A = leC=A.

2.leC<s A — le(C < A

Proof: Letl e (C 2 A.

1. We must prove that for all c€ C, 1 "c€ A. Asl "¢ € Ag, and since ¢ # {2, by convention we have
1/ ¢ # Q. Similarly, let a,cin A x C, then I\ (a, ¢) € C.

2. By convention, Cq C dom(l") implies C C dom(l "), and A x Cq C dom(l\,) implies A x C C
dom(l\), as required. |

4 Generic Lenses

With these semantic foundations in hand, we are ready to move on to syntax. We begin in this section
with several generic lens combinators (we will usually say just lenses from now on), whose definitions are
independent of the particular choice of universe U. Each definition is accompanied by a type declaration
asserting its well-behavedness under certain conditions (e.g., “the identity lens belongs to C <= C for any C”).

Most of the lens definitions in this and following sections are parameterized on one or more arguments.
These may be of various types: views (e.g., const), other lenses (e.g., composition), predicates on views (e.g.,
the conditional lenses in Section 6), or—in some of the lenses for trees in Section 5—edge labels, predicates
on labels, etc.

We prove that every lens we define is well behaved (i.e., that the type declaration accompanying its
definition is a theorem) and total, and that every lens that takes other lenses as parameters is continuous
in these parameters. Indeed, nearly all of the lenses are very well behaved (if their lens arguments are),
the only exceptions being map and flatten; we do not prove very well behavedness, however, since we are
mainly interested just in the well-behaved case.

Identity

The simplest lens is the identity. It copies the concrete view in the get direction and the abstract view in
the put direction.

12

id/¢c = ¢
id\ (a,) =

YOCU. ide(C < C

Having defined id, we must now prove that it is well behaved and total—i.e., that its type declaration is a
theorem. Since we will need similar arguments for every lens we define, some shorthand is useful. By our
conventions on the treatment of €2, the GET condition in Definition 3.1.2 need only be checked for C' (not
Cq) and PUT need only be checked for A x Cq. Similarly, GETPUT need only be checked for ¢ € C, and
PUTGET for a € A and ¢ € Cq.

4.1 Lemma [Well-behavedness]: YCCU. id € C = C.

Proof:

GET: id"c=ceC.

Pur: id\ (a,¢)=a€C.

GETPUT: id\,(id "¢, ¢) =id\, (¢, ¢) =c.

PUuTGET: id "id\ (a, ¢) =1ida = a. O

4.2 Lemma [Totality]: YCCU. id € C <= C.
Proof: Immediate: both the get and put directions of id are total functions. O

For each lens definition, the totality lemma will be almost identical to the well-behavedness lemma, just
replacing = by <2 . In the case of id, we could just as well combine the two into a single lemma, since
well-behavedness is part of the definition of totality. However, when we come to lens definitions that are
parameterized on other lenses (like composition, just below), the totality of the compound lens will depend
on the totality (not just well-behavedness) of its argument lenses; if all we know is that the arguments are
well behaved, then we cannot use the combined lemma to establish the well-behavedness of the compound
lens. Since we expect this situation will be common in practice—programmers will always want to check
that their lenses are well-behaved, since the reasoning involved is simple and local, but may not want to
go to the trouble of setting up the more intricate global reasoning needed to prove that their recursive lens
definitions are total—we prefer to state the two lemmas separately.

Composition

The lens composition combinator [/; k places two lenses | and k in sequence.

(k) c = k/(1/7¢c)
(k)N (a,) = IN(k\(a, 1/ ¢), c)
VA,B,CCU.Yle C 2 B.YVke B2 A, LkeC2A
VA, B,CCU. Ve C <= B.Vke B<2 A, LkeC<5 A

The get direction applies the get function of [to yield a first abstract view, on which the get function of & is
applied. In the put direction, the two put functions are applied in turn: first, the put function of k is used
to put a into the concrete view that the get of k was applied to, i.e., [/ ¢; the result of this put is then put
into ¢ using the put function of {. (If the concrete view c is 2, then, I ¢ will also be by our conventions
on the treatment of Q, so the effect of (I;k)\ (a, Q) will be to use k to put a into Q and then [to put the
result into .) Note that we record two different type declarations for composition: one for the case where
the parameter lenses [and k are only known to be well behaved, and another for the case where they are
also known to be total.

13

To aid in checking well-behavedness, we will sometimes annotate uses of the composition operator with
a suitable “cut type,” writing [;5 k instead of just [; k. We will maintain the invariant that, whenever we
are interested in checking the well-behavedness of a composite lens [;5 k, the source and target types C
and A will be determined by the context; the annotation B allows us to propagate this invariant to [and k.
We sometimes annotate C' and A explicitly by writing € C' | 2 A. (This infix notation—where [is written
between its source and target types, instead of the more conventional I € C' £ A—looks strange in-line, but
it works well for multi-line displays. In particular, we use it heavily in the bookmark lenses in Section 8.)

4.3 Lemma [Well-behavedness]: VA, B,CCU. VI € C 2 B.Vke B2 A. ;ke C 2 A.
Proof:
GET: If k1" c= (l;k),cis defined, then [/¢ € B by GET for [, so (I;k) /¢ € A by GET for k.

Pur: IfiIN (k\ (a,1,"¢), ¢) = (l;k)\ (a, ¢) is defined, then I "¢ € Bo by GET for | and our convention
on treatment of Q by get functions, so k\ (a, [/ ¢) € B by PUT for k, so I\, (k\,(a, I "¢), ¢) € C by PuT
for [.

GETPUT: Assume that (I;k),"c is defined. Then:

k)N (k) e,)
= (k)N (k71 e, 0 by definition (of the underlined expression)
- l\(k\ (k1 /7¢ 1/ ¢),) by definition
C INWU/ ¢ GeTPuT for k
L c GETPUT for {

PUTGET: Assume that (I;k) \, (a, ¢) is defined. Then:

(I:8)/ (K)\. (g, ©)

(L;k) /"IN (k\.(a, 1 ¢), ¢) by definition

kU7 (BN (a, 1 ¢), ¢) by definition

k/ kN (a,1 " c) PuTrGeET for [

a PurGeET for k O

4.4 Lemma [Totality]: VA, B,CCU. VI € C <= B.Vk€ B<= A. L;ke C <= A.

Proof: Let ¢ € C; then [¢ is defined (by totality of I) and is in B, hence k1" c = (I;k),/ ¢ is defined
(by totality of k). Conversely, let a € A and ¢ € Cq; then ["¢ is defined and is in Bg. Thus, &£\, (a, [/ ¢)
is defined and is in B, and so I\, (k\(a, [, ¢), ¢) = (l; k) \\ (a, ¢) is defined. O

1

Besides well-behavedness and totality, we must also show that lens composition is continuous in its argu-
ments. This will justify using composition in recursive lens definitions: in order for a recursive lens defined
as fix(Al. ly;12) (where l; and ls may both mention [) to be well formed, we need to apply Theorem 3.3.7,
which requires that the function Al. l1;l3 be continuous in [. According to the following lemma, this will
be the case whenever [y and ls are continuous in [. We will prove an analogous lemma for each of our lens
combinators that takes other lenses as parameters, so that the continuity of every lens expression will follow
from the continuity of its immediate constituents.

4.5 Lemma [Continuity]: Let F' and G be continuous functions from lenses to lenses. Then the function
Al (F(1); G(1)) is continuous.

Proof: We first argue that Al. (F(I); G(I)) is monotone. Let [and I’ be two lenses with | < I’. We must
show that F(I); G(I) < F(I'); G(I'). For the get direction, let ¢ € U, and assume that (F(1);G(l)), "¢ is
defined. We have:
(F(1);G1)) e
= GO/ F(l)/c
GW)/ F(l')/ ¢ by F(l) < F(l'), since F(l), /¢ is defined

")/ F(l'),/c by G(l) < G(I)

= (FI);G1) e

14

For the put direction, let (a, c) € U xUg, assume that (F(1); G(1)) \\ (a, ¢) is defined, and calculate as follows:

(F(1); G(1)) \(a, ¢)

= F()N(G() N\ (a, (1) c), c)

= FON(GO) N\ (a, F(I') /c), ¢) by F(I) < F(I')

= F)\(GI) N (0, F() /). ¢) by G() < G(I)

= FU)N(GW) (o, F(') /). c) by F(1) < F(!)

= (PG (a, o).
Thus Al. (F(1); G(1)) is monotone. We must now prove that it is continuous.

Let [p <13 <... <1, < ... be an increasing chain of well-behaved lenses. Let [= |_|1 l;. We have, for
celU,
(F();G()/c=v

—= GU)/F(l)/c=v by definition of ;

= G/ F, i)/ c=v by definition of [

= G/, Fli) c=v by continuity of F'

— Jn.GO)/ F;,) c=v by Corollary 3.3.4 (GET)

<~ Ju.G\U;L)/ " F(l) " c=v by definition of I

<~ Ji1.(U;Gl:)) /" F(li,) /¢ =v by continuity of G

<~ Jis,i1.G(li,) /" F(l;;)/"c=v by Corollary 3.3.4 (GET)

. B letting ¢ = max (i1, i2)

= Ji.G(li)/F(li)/c=v monotonicity Of}:‘ ;nd G

— Ji.(F(;);G;)) c=wv by definition of ;

= (U;(Fl);Gl:) c=v by Corollary 3.3.4 (GET)
and

(F(1); G() N\ (a, ¢) = v

— FUONGONI(a, F(I)/¢),c)=wv by definition of ;

—= FUONGON(a, F(U; 1)/ ¢),c)=v by definition of !

—= FO)N(G()\(a, (U; F(ls)) c)yc) = by continuity of F'

— Ji. FON(GO)\(a, F(l;,)),/¢),c) =0 by Corollary 3.3.4 (GET)

= . FON(GU, L)\ (a, F(l;,),/¢),c)=v by definition of !

= Ji.FON (U, Gl)) N\ (a, F(l;,) " ¢), c)=v by continuity of G

= Fig,i1.F()\(Gliy) \(a, F(l;y), " ¢),c) =v by Corollary 3.3.4 (PuT)

= Fig,i1. F(; 1i) \(G(li,) \\(a, F(l;,),/¢), ¢)=v by definition of

= i, i1.(L; F (i) \(G(li,) \\ (a, F(l;,) /" ¢), c) =v by continuity of F'

<~ dig,io,i1.F(li;) \(G(li,) \ (a, F(l;;),/¢),c) =v by Corollary 3.3.4 (PuT)

. lotting i — L

= FRNGN @) /0 0= mooronicng of F an G

— Ji.(F);G;) \(a, c) =v by definition of ;

= (U;(Fl);Gli) \(a, ¢)=v by Corollary 3.3.4 (PuT).
Hence the lenses | |;(F'(1;); G(l;)) and F(l); G(I) are equal. O
Constant

Another simple combinator is the constant lens, const v d, which transforms any view into the view v in
the get direction. In the put direction, const simply restores the old concrete view if one is available; if the
concrete view is (2, it returns a default view d.

15

(constvd), "¢ = v
(comst v d)\ (a,¢c) = ¢ ifec#£Q
d ife=0Q

YOCU. Yvell. VdeC. const v d € C <= {v}

Note that the type declaration demands that the put direction should only be applied to the abstract
argument v.

We can define a similar lens, const v, that is identical to the standard version except that the put
function is undefined when the concrete view is 2. This lens has type C <= {v} (note that this type does
not mention 2). Later (in Section 6) we will see how to use conditional combinators to wrap lenses like
const v to produce a lens whose put function is extended to handle missing concrete views.

4.6 Lemma [Well-behavedness]: YCCU. Yveld. YdeC. const v d € C = {v}.

Proof:
GET: (const v d)/c=v e {v}.

Put: (const v d)\ (v, ¢) € {c,d} C C.
GETPUT: (const v d)\,((const v d) "¢, ¢) = (const v d) \, (v, ¢) = c.

PUuTGET: If ¢ # Q, then (const v d), ((const v d)\, (v, ¢)) = (const v d), ¢ = v. Otherwise,
(const v d), /" ((const v d) \, (v, Q)) = (const v d) /d = v. O

4.7 Lemma [Totality]: YOCU. Yveld. YdeC. const v d € C <= {v}.
Proof: Immediate: both the get and put directions of (const v d) are total functions for every v and d. O

We will define a few more generic lenses in Section 6; now, though, let us turn to lens combinators that
work on tree-structured data, so that we can ground our definitions in specific examples.

5 Lenses for Trees

To keep our lens definitions as straightforward as possible, we work with an extremely simple form of trees:
unordered, edge-labeled trees with no repeated labels. This does not give us—primitively—all the structure
we need for some applications; in particular, we will need to deal with ordered data such as lists and XML
documents via an encoding (shown in Section 8) instead of primitively. Experience has shown that the
reduction in the complexity of the lens definitions that we obtain in this way far outweighs the increase in
complexity of lens programs due to manipulating ordered data in encoded form.

5.1 Notation

From this point forward, we will choose the universe U to be the set 7 of finite, unordered, edge-labeled
trees, with labels drawn from some infinite set A/ of names—e.g., character strings—and with the children of
a given node all labeled with distinct names. Trees of this form are sometimes called feature trees (e.g., [34]).
The variables a, ¢, d, and t range over 7; by convention, we use a for trees that are thought of as abstract
and c or d for concrete trees.

A tree is essentially a finite partial function from names to other trees. It will be more convenient, though,
to choose a slightly different definition: we will consider a tree ¢t € 7 to be a total function from N to 7g
that yields €2 on all but a finite number of names. We write dom(t) for the domain of t—i.e., the set of the
names for which it returns something other than Q—and ¢(n) for the subtree associated to name n in ¢, or
Q if n & dom().

Tree values are written using hollow curly braces. The empty tree is written {}. (Note that {},
the tree with no children, is different from 2.) We often describe trees by comprehension, writing

16

{]n — F(n)|ne€ N[}, where F' is some function from A to 7g and N C A is some set of names. When ¢
and t’ have disjoint domains, we write ¢ - ¢’ or {]t t/ [} (the latter especially in multi-line displays) for the tree
mapping n to t(n) for n € dom(¢), to t'(n) for n € dom(t’), and to Q otherwise.

When p € N is a set of names, we write p for N'\p, the complement of p. We write ¢|, for the
restriction of ¢ to children with names from p—i.e., the tree {{n t(n)|n € pndom(t)}—and t\, for
{n— t(n) | n € dom(t)\p}}. When p is just a singleton set {n}, we drop the set braces and write just
t|,, and t\,, instead of t[(,} and t\ .

To shorten some of the lens definitions, we adopt the conventions that dom(f2) = (), and that Q|, = Q
for any p.

For writing down types,* we extend these tree notations “pointwise” to sets of trees. If T C 7 and
n € N, then {{n — T|} denotes the set of singleton trees {{n —t} |t € T}. If T C T and N C N, then
{N — T|} denotes the set of trees {t | dom(t) = N and Vn € N. t(n) € T} and ﬂN s TI} denotes the set of
trees {t | dom(t) C N and ¥n € N. t(n) € To}. We write T7 - T for {t1 - t2 | t1 € T3, t2 € T2} and T'(n) for
{t(n) |t € T}\{Q}. If T C T, then dom(T) = {dom(t) | ¢t € T'}. Note that dom(T’) is a set of sets of names,
while dom(t) is a set of names.

A wvalue is a tree of the special form {]k — {[]}[}, often written just k. For instance, the phone number
{333-4444 — {}}} in the example of Section 2 is a value.

5.2 Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transformations on trees of very simple
shapes. We will see in Section 5.3 how to combine these with a powerful “forking” operator to perform related
operations on more general sorts of trees.

Hoist

The lens hoist n is used to “shorten” a tree by removing an edge at the top. In the get direction, it expects
a tree that has exactly one child, named n. It returns this child, removing the edge n. In the put direction,
the value of the old concrete tree is ignored and a new concrete tree is created, with a single edge n pointing
to the given abstract tree. (In Section 5.3, we will meet a derived form, hoist_nonunique, that works on
bushier trees.)

(hoistn), "¢ = t if c={n — t}
(hoist n)\,(a,c) = {n—al

VCCT.VneN. hoistne {]n — C[} <L ¢

5.2.1 Lemma [Well-behavedness]: YCCT. YneN. hoist n € {n— C|} & C.

Proof:

GET: (hoistn)/ {n—c}f=ceC

Put: (hoist n)\,(a, ¢) = {n—a} € {n— C|}

GETPUT: (hoist n)\, (((hoist n),/ {n — t}), {n— t}) = (hoist n) \,(t, {n—t}) = {n—t]}.
PUTGET: (hoist n)/ ((hoist n)\,(a, ¢)) = (hoist n) /" {n— af} = a. O
5.2.2 Lemma [Totality]: VOCT. VneN. hoist n € {n— C} <= C.

Proof: Straightforward: the put direction is a total function, and the get direction is clearly defined for
every tree in the source type {]n — C[}. 0

4Note that, although we are defining a syntax for lens expressions, the types used to classify these expressions are semantic—
they are just sets of lenses or views. We are not (yet!-—see Section 11) proposing an algebra of types or an algorithm for
mechanically checking membership of lens expressions in type expressions.

17

7 ~
pa pa
(GY) (I2.7)
pc pc
~ 7

Figure 1: The get direction of xfork

Plunge

Conversely, the plunge lens is used to “deepen” a tree by adding an edge at the top. In the get direction, a
new tree is created, with a single edge n pointing to the given concrete tree. In the put direction, the value
of the old concrete tree is ignored and the abstract tree is required to have exactly one subtree, labeled n,
which becomes the result of the plunge.

(plunge n),/ ¢ = {nw cf}
(plunge n) \ (a,c) = t if a = {n — tf}

YOCT. VneN. plunge n € C <= ﬂn — C[}

5.2.3 Lemma [Well-behavedness]: YCCT. VneN. plunge n € C = {n — C}}.

Proof:
GET: (plunge n) /¢ = {n— cf} € {n— CJ}.

Pur: (plunge n)\, ({]n — t[} ,¢)=teC.
GETPUT: (plunge n)\ ((plunge n),c, ¢) = (plunge n) \, ({n — cf}, ¢) = c.
PUTGET: (plunge n)/ ((plunge n)\, ({n — t[}, ¢)) = (plunge n) /'t = {n > t}. O

5.2.4 Lemma [Totality]: VCCT. VneN. plunge n € C <= {n— C}.

Proof: Straightforward: the get direction is a total function, and the put direction is defined for every pair
consisting of a tree in the target type {]n — CI} and any concrete tree whatsoever (or). O

5.3 Forking

The lens combinator xfork applies different lenses to different parts of a tree: it splits the tree into two
parts according to the names of its immediate children, applies a different lens to each, and concatenates the
results. Formally, xfork takes as arguments two sets of names and two lenses. The get direction of xfork pc
pa i Iz can be visualized as in Figure 1 (the concrete tree is at the bottom). The triangles labeled pc denote
trees whose immediate child edges have labels in pc; dotted arrows represent splitting or concatenating trees.
The result of applying 11/ to ¢|pc (the tree formed by dropping the immediate children of ¢ whose names
are not in pc) must be a tree whose top-level labels are in the set pa, and, similarly the result of applying
la/" to ¢\pe must be in pa. That is, the lenses 1 and ls are allowed to change the sets of names in the trees
they are given, but each must map from its own part of pc to its own part of pa. Conversely, in the put
direction, {; must map from pa to pc and ls from pa to pe. Here is the full definition:

18

(xforkpe pa li I2)/ ¢ = (li,/¢clpe) - (l2,/ C\pe)
(xfork pe pa li o)\ (a, ¢) = (l1\u(alpa; lpe)) - (24 (a\pas \pe))

Vpe, paCN . VC1CT | pe. VAI1CT |pa.
YO CT \po YALCT \ pa.
Vi, € 4 2 Aq1. Vi € Cy ELN As.

xfork pcpaly Iy € (O - Co) 2= (A1 - Ay)
Vpe, paCN . VC1CT |pe. VALICT |pa.
YOLCT \po YALCT \ pa.
Vi, € C4 é Al. Vip € Oy é AQ.

xfork pc pa 11y € (Cl . CQ) é (Al . Ag)

We rely here on our convention that 9|, = € to avoid explicitly splitting out the € case in the put direction.

5.3.1 Lemma [Well-behavedness|: Vpc, paCN. YC1CT |pe. YAICT |pg. VO CT \pe. VA2CT \po. Vi €
o EEN Aq. Vi € Cq EEN As. xfork pcpaly Iy € (Ol . 02) SEN (A1 . AQ)

Proof:
GET: If c € C; - Cy, then ¢|p. € Cq and ¢\, € Ca. Hence 11,/ ¢|pe € A1 and Iz, ¢\pe € A2, and so we have
(xfork pc pa ly l2) /¢ € Ay - As.

Put: Similarly, 11\, (a|pa, ¢lpc) € C1 and I3\ (a\pq, c\pc) € C2, hence (xfork pe pa li I2) \ (a, ¢) € C -
Cs.

GETPUT: Suppose that (xfork pc pa Iy l2) /¢ is defined. Then I3,/ ¢|pc - l2,/ ¢\pc is defined and

(I clpe - 12,/ ¢\pe)|pa = 11,/ Clpe
(ll/ C|pc : 12/‘ C\pc)\pa = 12/ C\pc-

Thus,

L\ ((ll/clpc) l2/c\p0)|pa= C|p0) =l (11/C|p07 ClpC) C Clpc
by GETPUT for [;. Similarly,

la N\ ((I1,/ clpe - 12,/ \pe)\pas €\pe) E €\pe

by GETPUT for l5. Assembling these pieces, we have

(xfork pe pa ly l2) \, ((xfork pc pa l; l2) /¢, c)
(xfork pc pa li 12) \, (l1,/ ¢lpe - 1o,/ c\pe, ©)
= (ll N ((ll/ C|pc Ao/ C\pc)|;Da7 C|p6)) : (12 AN ((ll/c|pc : ZQ/C\pC)\pav C\pC))

Clpe * \pe

= C.

M1

PUTGET: Suppose that (xfork pc pa Iy l2) \ (a, ¢) is defined. Then i1\ (a|pa, lpc) - l2 \\ (@\pa, C\pc) 18
defined, with

(ll N (a|pa= C|p0) “la ™\ (a\pav C\pC))|pc =h\ (a|pa7 C|p0)

and

(ll N (@lpas lpe) = l2\ (a\pa, C\pC))\pc = la \\ (a\pas \pe)-
By PuTGeT for [y,

I/ (N (alpav ClpC) “la ™\ (a\pav C\pC))lpC) = ll/(ll N (a|pa= C|p0)) C a|pa

19

and by PUTGET for [o,
la,/ (11 N\ (@lpas Clpe) = 12\ (@\pas \pe))\pe) = l2,/(l2 \ (@\pa, \pe)) E @\pa

Assembling these pieces, we have

(xfork pe pa ly l2) /' ((xfork pc pa 1y I12) \ (a, ¢))

(xfork pe pa ly l2) /" (I \ (alpa, lpe) - 12\ (@\pa, \pe))

(ll/ (li\ (a|pav C|p0) “la N\ (a\pav C\pC))|pC) : (12/ (li\ (a|paa C|p6) “la ™\ (a\paa C\pC))\pC)
alpa * @\pa

a.

1

5.3.2 Lemma [Totality]: Vpc,paCN. VO1CT |pe. VAICT |po. VCo2CT \pe. YVA2CT \po. VI € O <=
Aq.Vip € Cy é As. xfork pc pa li1ly € (Cl . Cg) é (Al . Ag)

Proof: Suppose ¢ € C; - Cy. Then we have c|p. € C1 and ¢\, € C3. By the totality of l; and [, we know
that Iy " ¢|pe is defined and is in Ay and Iy ¢\ is defined and is in Ay. As these two views have disjoint
domains, I1,/ ¢|pc - l2,/ €\pe = (xfork pc pa 11 1) /¢ is defined.

Let a € Ay - A and C € (Cy - C3)q. We have:

o alp, € As;
o ¢y € C1U{N};
o a\pg € Ag;
o ¢\, € C2U{Q}.
Hence:
o I3\, (a|pas €|pec) = 1 is defined and in C4, and
o Io ™\, (a\pa, C\pc) = ¢2 is defined and in Cs.
As ¢ and ¢z have disjoint domains, ¢; - ca = (xfork pe pa Iy l2) \, (a, ¢) is defined. O

5.3.3 Lemma [Continuity]: Let F' and G be continuous functions from lenses to lenses. Then the function
Al. xfork pe pa F(1) G(I) is continuous.

Proof: Begin with monotonicity. Let ! and I’ be two lenses with | < I’ We must show that
xfork pc pa F(I) G(I) < xfork pc pa F(I') G(I'). Choose ¢ € T such that xfork pc pa F(l) G(I) /¢ is
defined. Then

(xfork pc pa F(I) G(1)),/

(F(1)/ clpe) - (G(1) C\pC)

= (P) (G 7che) e FO) < FIE) and GO) < GO
(xfork pc pa F(I') G(I")) /

Now choose (a,c) € T x Tq with xfork pc pa F (1) G(I) \\(a, ¢) is defined. We have:

(xfork pe pa F(1) G(1))\(a, ¢)

(F(1) \i(alpa, clpe)) - (G(1) \ (a\pa, C\pe))

= (PN (alyer che)) - (G (@ chpe)) sinee F(1) < F(I') and G(1) < G(¥)
= (xfork pcpa F(I') G(I'))\\ (a, ¢).

Thus Al. xfork pc pa F(I) G(1) is monotone. We next prove it is continuous.

20

Let lp <1y < ... <1, < ... be an increasing chain of well-behaved lenses, and let I =| |, l;. We have:

(xfork pc pa F(1) G())/c=1t

— (F()/clpe) - (G),/c\pe) =t by definition
= (F(U; L) clpe) - (G(U; 1)/ E\pe) =1 by definition
= ((lU; F(ly)/clpe) - (U; G(13)),/ €\pe) =t by continuity of F' and G
<= iy, 00.(F(li,) " clpe) - (G(liy) /" c\pe) =t by Corollary 3.3.4 (GET) twice
= Fi(Fl) elpe) - (Gl)./ pe) = by { i;nrliigﬁz}g)ofzr and G
< Ji.(xfork pcpa F(l;) G(l;))c=t by definition
< (4, xfork pc pa F(l;) G(l;))/" c=1 by corollary 3.3.4 (GET)
and
(xfork pc pa F(1) G(1)) \ (a, ¢) =
= (F()\ (alpav ClpC)) (G(1) (a\paa C\pC)) =t by definition
= (F(U; L)\ (@lpa clpe)) - (G, 1)\ (a\pa, E\pe)) =1 by definition
— ((l_ll ()) (a|pa= C|p0)) ((I_lz G(l)) (a\paa C\pC)) by continuity of F' and G
= iy, i0.(F(l,) \(alpa; clpe)) - (Gliy) \(@\pa, \pe)) = t by Corollary 3.3.4 (PuT) twice
= F(F L)\ (alpa, clpe)) - (GL) N (@\pa, E\pe)) = ¢ by { ;jn“;iﬁff;;z;)of Foand G
< Ji.(xfork pc pa F(l;) G(l;)) \\(a, ¢) = by definition
< (I, xfork pc pa F(l;) G(l;)) \(a, ¢) = by corollary 3.3.4 (PuT).

We have now defined enough basic lenses to implement several useful derived forms for manipulating trees.
In many uses of xfork, the sets of names specifying where to split the concrete tree and where to split
the abstract tree are identical. We define the simpler fork as:

forkplils = xforkpplyls

VpgN VCl, Al ngp VCQ, AQQT\Z,

Vi, € C4 é Al. Viy € CQ A2
forkplilo € (C1 - Co) = (A1 - Ad)

Vpg./\/ VC’l,Algﬂp. VOQ,AQQT\Z).

Vi, € C4 é Al. Vip, € Oy <:> A2
forkplily € (C1 - Cy) <= (41 - As)

We may now define a lens that discards all of the children of a tree whose names do not belong to some
set p:

filterpd = forkp id (const {} d)

YOCT. YpCN. Yd € O\,
filterpd € (C|, - C\,) <= C|,

In the get direction, this lens takes a concrete tree, keeps the part of the tree whose children have names in
p (using id), and throws away the rest of the tree (using const {} d). The tree d is used when putting an
abstract tree into a missing concrete tree, providing a default for information that does not appear in the
abstract tree but is required in the concrete tree. The type of filter follows directly from the types of the
three primitive lenses: const {} d, with type C\, <= {{}}, the lens id, with type C|, <= C|,, and fork
(with the observation that C|, = C|, - {}.) Using the version of const that does not require a default tree,
we can build a variant of filter that does not require a default (and whose put function is undefined if the
concrete tree is). Let filter p = fork p id (const {}). Then we have filter p € (C|, - C\,) <= C|,.
Another way to thin a tree is to explicitly specify a child that should be removed if it exists:

21

prune nd = fork {n} (const {} {n+— df}) id

VCCT. VneN. VdeC(n).
prune n d € (C|, - O\,) <= C\,,

This lens is similar to filter, except that (1) the name given is the child to be removed, and (2) the default
tree is the one to go under n if the concrete tree is 2. Just like filter, we can define a variant of prune
that does not require a default view as prune n = fork {n} (const {}) id, with type (C|,, - C\,) < C\n.

Conversely, we can grow a tree in the get direction by explicitly adding a child, which is dropped in the
put direction. The type annotation disallows changes in the subtree below this child.

addnt = xfork {} {n} (constt¢ {}; plunge n) (id)

VneN.VCCT\,.VteT.
addntecC <& {]n'—w{t}[}c

The next derived lens focuses attention on a single child n:

focusnd = (filter {n} d); (hoist n)

VneN.VYCCT\,VdeC.YDCT. focusnde (C- {n— D}) <= D

In the get direction, focus filters away all other children, then removes the edge n and yields n’s subtree.
As usual, the default tree is only used in the case of creation, where it is the default for children that have
been filtered away. Again the type of focus follows from the types of the lenses from which it is defined,
observing that filter {n} d € (C - {n — D}) <% {n — D} and that hoist n € {n — D} <= D. We
can also define a version of focus that does not require a default tree as focus n = filter {n}; (hoist n),
with type focus n € (C- {n— DJ}) <= D.

The hoist primitive defined in Section 5.2 requires that the name being hoisted be the unique child of the
concrete tree. It is often useful to relax this requirement, hoisting one child out of many. This generalized
version of hoist is annotated with the set p of possible names of the grandchildren that will become children
after the hoist, which must be disjoint from the names of the existing children.

hoist nonuniquenp = xfork {n} p (hoist n) id

YneN. Vpg./v. VDQT\{n}Up. VCQT|Z,.
hoist nonunique n p € ({n+— C|} - D) <= (C - D)

Our next derived lens renames a single child.

rename mn = xfork {m} {n} (hoist m; plunge n) id

renamemne(ﬂmHCI}-D)é (ﬂnHC[}D)

In the get direction, rename splits the concrete tree in two. The first tree has a single child m (which is
guaranteed to exist by the type annotation) and is hoisted up, removing the edge named m, and then plunged
under n. The rest of the original tree is passed through the id lens. Similarly, the put direction splits the
abstract view into a tree with a single child n, and the rest of the tree. The tree under n is put back using
the lens (hoist m; plunge m), which first removes the edge named n and then plunges the resulting tree
under m. Note that the type annotation on rename demands that the concrete view have a child named m
and that the astract view has a child named n. In Section 6 we will see how to wrap this lens in a conditional
to obtain a lens with a more flexible type.

22

5.4 Mapping

So far, all of our lens combinators do things near the root of the trees they are given. Of course, we also want
to be able to perform transformations in the interior of trees. The map combinator is our fundamental means
of doing this. When combined with recursion (and sometimes conditionals), it also allows us to iterate over
structures of arbitrary depth.

The map combinator is parameterized on a single lens [. In the get direction, map applies [to each
subtree of the root and combines the results together into a new tree. (Later in the section, we will define
a more general combinator, called wmap, that applies a different lens to each subtree. Defining map first
lightens the notational burden in the explanations of several fine points about the behavior and typing of
both combinators.) For example, the lens map ! has the following behavior in the get direction when applied
to a tree with three children:

ny — tl ny — l/ tl
g +— to becomes ng — 1, "ty
ng — t3 ng—1,/t3

The put direction of map is more interesting. In the simple case where a and ¢ have equal domains, its
behavior is straightforward: it uses [\, to combine concrete and abstract subtrees with identical names and
assembles the results into a new concrete tree:

1D—>t1 1D—>t/1 1!—)1\(t1,t/1)
(map 1)\, 2 = tol o, A2 =ty o | = Q2 = 1N\ (t2, t3)
3 3 nz — 5 3= N\ (t3, t5)

In general, however, the abstract tree in the put direction need not have the same domain as the concrete tree
(i.e., the edits that produced the new abstract view may have involved adding and deleting children); the
behavior of map in this case is a little more involved. First, note that the domain of the result is determined
by the domain of the abstract argument to put. If (map)\ (a, c¢) is defined, then, by rule PUTGET, we
should have (map 1),/ ((map 1) \\ (@, ¢)) C a; thus we necessarily have dom((map)\, (a, ¢)) = dom(a) (if the
put is defined). This means we can simply drop children that occur in dom(c) but not dom(a). Children
bearing names that occur both in dom(a) and dom(c) are dealt with as described above. This leaves the
children that only appear in dom(a). These need to be passed through ! so that they can be included in
the result; to do this, we need some concrete argument to pass to [\,. There is no corresponding child
in ¢, so instead these abstract trees are put into the missing tree 2—indeed, this case is precisely why we
introduced 2! Formally, the behavior of map is defined as follows. (It relies on the convention that c(n) = Q
if n € dom(c); the type declaration also involves some new notation, explained below.)

(map l) "¢ = {]n — 1/ c(n)|ne dom(c)[}
(map 1)\ (a, ¢) = {]n — I\, (a(n), c(n)) |n € dom(a)[}

VO, ACT with C = C°, A= A°, and dom(C) = dom(A).
VI € (Npen - Cn) 2 A(n)).

mapl e C 2 A
VO, ACT with C = C°, A= A°, and dom(C) = dom(A).
VI € (Npen - C(n) <= A(n)).

mapl € C <= A

Because of the way that it takes tree apart, transforms the pieces, and reassembles them, the typing of
map is a little subtle. For example, in the get direction, map does not modify the names of the immediate
children of the concrete tree and in the put direction, the names of the abstract tree are left unchanged; we
might therefore expect a simple typing rule stating that, if I € (,cp C(n) = A(n))—i.e., if I is a well-
behaved lens from the concrete subtree type C(n) to the abstract subtree type A(n) for each child n—then

23

map [€ C' 2 A. Unfortunately, for arbitrary C' and A, the map lens is not guaranteed to be well-behaved at
this type. In particular, if dom(C), the set of domains of trees in C, is not equal to dom(A), then the put
function can produce a tree that is not in C, as the following example shows. Consider the sets of trees

C={{x—n}, {y—a}}

A= CU{ﬂX’—?m y»—>n[}}
and observe that with trees

a = {x —m, y»—»n[}
c= x»—»m[}

we have map id "\ (a, ¢) = a, a tree that is not in C. This shows that the type of map must include the
requirement that dom(C') = dom(A). (Recall that for any type T the set dom(T') is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies between the names of
children and the trees that may appear under those names. Again, one might naively expect that, if [has
type C(n) = A(m) for each name m, then map [would have type C = A. Consider, however, the set

A={{zx—m, y—p}, {x—n, y—q}},

in which the value m only appears under x when p appears under y, and the set

C={{x—my—p} {x—mny—aq} {x—n y—p} {x—n y—aq}},

where both m and n appear with both p and q. When we consider just the projections of C' and A at specific
names, we obtain the same sets of subtrees: C'(x) = A(x) = {{m}, {n}} and C(y) = A(y) = {{p}, {a}}, and
the lens id has type C(x) = A(x) and C(y) = A(y) (and C(z) =) & () = A(z) for all other names z).
But it is clearly not the case that map id € C < A. To avoid this error (but still give a type for map that
is precise enough to derive interesting types for lenses defined in terms of map), we require that the source
and target sets in the type of map be closed under the “shuffling” of their children. Formally, if T is a set of
trees, then the set of shufflings of T', denoted T©, is

9= |J {n—T(®)|ne D}
Dedom(T)

where {n +— T'(n) | n € D} is the set of trees with domain D whose children under n are taken from the set
T(n). We say that T is shuffle closed iff T = T©. For instance, in the example above, A = C© = C.

In the situations where map is used, shuflle closure is typically very easy to check. For example, any set
of trees whose elements each have singleton domains is shuffle closed. Also, for every set of trees T, the
encoding introduced in Section 7 of lists with elements in 7" is shuffle closed, which justifies using map (with
recursion) to implement operations on lists.

Another point to note about map is that it does not obey the PuTPuT law. Consider a lens [and
(a,c) € dom(I™) such that I\ (a, ¢) # 1\, (a,). We have

(map 1)\, ({n = a}}, (map 1)\, ({}, {n+ cf})))
= (mapl!)\, (ﬂn = a[} ‘{H}’)
{]n — I\ (a, Q)[}
{]n»—> I\ (a, c)l}
(map)\ ({n = alp, fo—cf).

Intuitively, there is a difference between, on the one hand, modifying a child n and, on the other, removing
it and then adding it back: in the first case, any information in the concrete view that is “projected away”
in the abstract view will be carried along to the new concrete view; in the second, such information will be
replaced with default values. This difference seems pragmatically reasonable, so we prefer to keep map and
lose PUTPUT.

N

24

A final point worth emphasizing is the relation between the map lens combinator and the missing tree .
The put function of every other lens combinator only results in a put into the missing tree if the combinator
itself is called on €. In the case of map [, calling its put function on some a and ¢ where ¢ is not the
missing tree may result in the application of the put of [to 2 if a has some children that are not in c¢. In
an earlier version of map, we dealt with missing children by providing a default concrete child tree, which
would be used when no actual concrete tree was available. However, we discovered that, in practice, it is
often difficult to find a single default concrete tree that fits all possible abstract trees, particularly because
of xfork (where different lenses are applied to different parts of the tree) and recursion (where the depth
of a tree is unknown). We tried parameterizing this default concrete tree by the abstract tree and the lens,
but noticed that most primitive lenses ignore the concrete tree when defining the put function, as enough
information is available in the abstract tree. The natural choice for a concrete tree parameterized by a and
I was thus [\ (a, Q), for some special tree 2. The only lens for which the put function needs to be defined
on () is const, as it is the only lens that discards information. This led us to the present design, where only
the const lens (and other lenses defined from it, such as focus) expects a default tree d. This approach is
much more local than the others we tried, since one only needs to provide a default tree at the exact point
where information is discarded.

We now define the general form of map, parameterized on a total function from names to lenses rather
than on a single lens.

(wmap m) /¢ = {n— m(n),/c(n)|n e dom(c)]}
(wmap m) \,(a, ¢) = {]n — m(n)\, (a(n), ¢(n)) |n € dom(a)[}

VO, ACT with C = C°, A= A°, and dom(C) = dom(A).
Vm € (IlneN. C(n) = A(n)).

wmapm € C = A
VO, ACT with C = C°, A= A°, and dom(C) = dom(A).
Vm € (IlneN. C(n) <= A(n)).

wmapm € C <= A

In the type annotation, we use the dependent type notation m € IIn. C(n) = A(n) to mean that m is a total
function mapping each name n to a well-behaved lens from C(n) to A(n). Although m is a total function,
we will often describe it by giving its behavior on a finite set of names and adopting the convention that it
maps every other name to id. For example, the lens wmap {« — plunge a} maps plunge a to trees under z
and id to the subtrees of every other child.

5.4.1 Lemma [Well-behavedness]: VC, ACT with C = C°, A= A°, and dom(C) = dom(4). VYm €
(IIneN. C(n) = A(n)). wmapm € C 2 A.

Proof:
GET: Suppose ¢ € C and m(n), " ¢(n) is defined for each n € dom(c). Then, by the (dependent) type of m,
we have m(n), " ¢(n) € A(n) for each n. Since dom(A) = dom(C'), there exists a non-empty subset of A whose
clements all have domain D = dom(c). Also, the tree {n — m(n) " c(n) | n € dom(c)|} is an element of the
set {]n — A(n) |n € D[}, which is itself a subset of A since A is shuffle closed. Hence, (wmap m), "¢ € A.
Pur: Leta € A and ¢ € C. For all n € dom(a), we have m(n)\ (a(n), c¢(n)) € C(n) (with c(n)
possibly being €2). Hence, by a similar argument as above, since dom(A) = dom(C) and C' = C°, we have
(wvmap m) \| (a, c) € C.
GETPUT: Assume that (wmap m) " c is defined. Then

(wmap m) \ ((wmap m),"c, c)

= (umap m)\, ({n — m(n) /c(n) | n € dom(c)}, c)

Hn — m(n)\, (m(n) /c(n), c(n)) | n € dom(c)|}

c.

I

n— c(n) | n € dom(c)| by GETPUT for each m(n)

25

PuTGET: Assume that (wmap m)\ (a, ¢) is defined. Then
(

(wmap m)”((vmap m) ™\ (a, c))
= (mmap m),/” {{n—m(n)\ (a(n), c(n)) | n € dom(a)]}
= Hn = m(n), /(I \ (a(n), ¢(n))) | n € dom(a)}
C {n—a(n)|n e dom(a)f by PUTGET for m(n) on each child
= a. O

5.4.2 Lemma [Totality]: VC, ACT with C = C°, A= A°, and dom(C) = dom(A). Ym €
(IneN. C(n) <= A(n)). wmapm € C <= A.

Proof: Suppose ¢ € C and m(n) is a total function for each n. Then for any n € dom(c), we have
¢(n) € C(n); hence, m(n),c(n) is defined for each n, i.e., (wmap m),"c is defined. Conversely, suppose
a € A and ¢ € Cq. For any n in dom(a), we have a(n) € A(n) and ¢(n) € C(n)q; hence I\ (a(n), c¢(n)) is
defined. Thus, (wmap m) \ (a, ¢) is defined. O

5.4.3 Lemma [Continuity]: For each name n, let F,, be a continuous function from lenses to lenses. Then
the function M. wmap (An. F, (1)) is continuous.

Proof: To show monotonicity, let [and I’ be lenses with I < I’. ' We must show that wmap (An. F,(1)) <
wmap (An. F,(I')). Let ¢ € T, and suppose that (wvmap (An. F,(1))),/ ¢ is defined. We have

(wmap (An. Fr,(1))), ¢
= {]n — F,(1) /" c(n)|ne dom(c)[}
{n— E,("),/ ¢(n) | n € dom(c)} since I <1’ and each F, is monotone
= (wmap (An. F,(I))) /" c.

Conversely, suppose that (a,c) € T x Tg and that (wmap (An. F,(1))) \, (a, ¢) is defined. Then

(wmap (An. Fi (1)) \ (@, ¢)
= {n— F.()\(a(n), c(n)) | n € dom(a) |}

= {n— F.(I')\.(a(n), c¢(n)) | n € dom(a)[} since I <’ and each F, is monotone
= (wmap (An. F, () \ (@,).

Thus A. wmap (An. F,, (1)) is monotone. We now show that it is continuous.

Let lo <13 < ... <1, < ... be an increasing chain of lenses and [= | |, l;. Let ¢ € 7. For notational
convenience, we assume some total ordering on the names of the children of ¢ and write £(¢) and 1(c) for
the first and last names of ¢, respectively. We have

t = (wmap (An. F, (1)), ¢
— t={n— F,(l)/c(n)|n e dom(c)]}
— t={ne F.(;l;)/ c(n) | n € dom(c)|
— t={nw (U;Fa(li)) c(n) | n€dom(c)} by continuity of each F,

— ﬂif(c), .. il(c)
t={n— (F.(l;,))/ c(n) | n € dom(c)} by 3.3.4 for GET, |dom(c)| times
<~ Ji.t = {n— (F.(l;), " ¢(n) | n € dom()[} by monotonicity of each F;,
with ¢ = max(if(c), o 77:1(0))
<= Ji. t = (wmap (M. F,(1;))) ¢
< t=(;(wmap (An. F,(;)))) "¢ by 3.3.4 for GET.

26

Conversely, let (a,c) € T x Tg. We assume an ordering on the names of the children of a, and write £(a)
and 1(a) for the first and last names of a, respectively. We have

t = (smap (An. Fy (1)) \ (a,)

= t={n— F)\(a(n), c(n)) | n € dom(a)]}

= t={ne Fufl)\ (an), c(m) | n € dom(a)}

— t={n (U, Fally)) \ (a(n), ¢(n)) | n € dom(a)} by continuity of each F,
— Hif(a), ey il(a)'

by 3.3.4 for Pur,
|dom(a)| times
by monotonicity of each F),

t= {]n — (Fn(l;,)) \(a(n), ¢(n)) | n € dom(a)l}

= Ji.t = {n (F.(l;) \ (a(n), c(n)) | n € dom(a)|

<= Fi. t = (wmap (A\n. F,,(1;))) \. (a, ¢)
— t=(;(wmap (An. F,(1;)))) \(a, c) by 3.3.4 for PuUT.

with i = maX(if(a), ... 7i1(a))

Note the use here of the fact that all trees have finite domain. This is not just a technicality: if trees are
allowed to have infinitely many children, continuity fails in general. O

Having defined wmap, we can easily define map as a derived form:

map! = wmap (AzeN.])

VO, ACT with C = C°, A= A°, and dom(C) = dom(A).
VI € (Npen - Cn) = A(n)).

mapl e C 2 A
VO, ACT with C = C°, A= A°, and dom(C) = dom(A).

VI € (Npen - C(n) <= A(n)).
mapl € C <= A

5.5 Copying and Merging

We next consider two lenses that duplicate information in one direction and re-integrate (by performing
equality checks) in the other.

Copy

A view of some underlying data structure may sometimes require that two distinct subtrees maintain a
relationship, such as equality. For example, under the subtree representing a manager, Alice, an employee-
manager database may list the name and ID number of every employee in Alice’s group. If Bob is managed
by Alice, then Bob’s employee record will also list his name and ID number (as well as other information
including a pointer to Alice, as his manager). If Bob’s name changes at a later date, then we expect that it
will be updated (identically) under both his record and under Alice’s record. If the concrete representation
contains his name in only a single location, we need to duplicate the information in the get direction. To do
this we need a lens that copies a subtree, and then allows us to transform the copy into the shape that we
want.

In the get direction, (copy m n) takes a tree, ¢, that has no child labeled n. If ¢(m) exists, then (copy m n)
duplicates ¢(m) by setting both a(m) and a(n) equal to ¢(m). In the put direction, copy simply discards
a(n). The type of copy ensures that no information is lost, because a(m) = a(n).

27

(copymmn) ¢ = c- {n c(m)]
(copy mn)\,(a,c) = a\,

Ym,neN. VCQT\{m_’n}. VDCT.
copy mn &
(C- {m— Dal}) <& (C - {{md, n—df} | de Dq})

5.5.1 Lemma [Well-behavedness]: Vm, neN.VCCT \ (. VDCT. copymn € (C - {m Dql) =
(C-{{]m»—»d, n»—»d[} | d € Dq}).

Proof:

GET: Immediate. (copy m n), ¢ unconditionally copies c(m) to a(n) (even when ¢(m) = Q), guaranteeing
that a(m) = a(n). Because ¢(m) € Dgq, and both a(m) and a(n) = ¢(m), we have (copy m n) "¢ € (C -
{ﬂm|—> d, n— d[} | de DQ}).

Pur: Immediate: restricting n from the target set yields the source set.

GETPUT: Suppose (copy m n)\, ((copy m n)," ¢, c) is defined. Then (copy m n)\, ((copy m n), "¢, ¢) =
(c- n—cm))\n=c.

PUuTGET: Suppose (copy m n),/ ((copy m n)\ (a, ¢)) is defined. Then, since a € C

{{m—d, n—d} | d € Dq}, we can write a as ¢ - {m—d, n—d} for some d € Dq.
Then (copy m 1), ((copy m)\ (a, ¢)) = (copy m n)/ ((copy m)\, (¢ Jm — d, n s d}), ¢)) =
(copy mn),/ (¢ - {m —d})=¢ - {m—d, n—d} =a. O

5.5.2 Lemma [Totality]: Vm,neN. YOCT \(yny. YDCT. copymn e (C- {m— Do) <= (C -
{ﬂde, n'—>d[} |d€ DQ}).

Proof: The get direction of copy will be defined as long as the input c¢ lacks the name n; this is guaranteed
by its type. The put direction is a total function. O

Readers may note that copy with the type given here is not very useful. The PUTGET law imposes strict
constraints on the lenses that subsequently operate on a(m) and a(n). In particular, let a; and as denote
the results of applying l; /" and I3 /" to a(m) and a(n), respectively. Suppose we guarantee that all updates
made to a; and ag are “consistent” with each other — that any information maintained in common by a; and
as will be updated in an identical manner. Behaviorally, this is all we desire. However, in the put direction
our type annotations require us to ensure I \ (@}, a(m)) = l2\, (a}, a(n)). But this is impossible to ensure
unless I; and [5 preserve exactly the same information. For example, consider a case where c is a record in an
address book. Applying I /* transforms ¢ to an abstract view in which only names and phone numbers are
recorded, and [; transforms a copy of ¢ to an abstract view that includes, in one form or another, the entire
contents of c. Now suppose we edit the address in as. The put direction of I will push the new address back
in to a(n). However, the put direction of I; can only try to restore the address from the old value stored in
c(m). So unless I3 and Iy preserve exactly the same set of information, there is no way to satisfy the type
requirement that a(m) = a(n). However, if [; and ly preserve exactly the same information, no more, no
less, then there are very few useful or interesting lens that can be applied after the copy.

An alternative is to remove the constraint that a(m) = a(n). However, a more permissive type for copy
raises problems with respect to totality and well-behavedness. If we remove the equality constraint, then the
put direction of copy must be defined even when a(m) and a(n) are unequal. If copy removes a(n) in the
put direction, then there is no way to restore the information in a(n) in the get direction, and consequently
PUTGET will not hold.

In our use of lenses to synchronize tree-structured data we have not experienced a need for copy. This
is not surprising, because if a concrete representation demands that some invariant hold within the data
structure, we assume that (a) each application will locally maintain the invariants in its own representation,
and (b) the function of Harmony is simply to propagate changes from one well-formed replica to another.

28

We can assume that the synchronizer will always be presented with abstract views in which the duplicated
information is consistent, and so will only ever create such views. Moreover, if one field in a concrete
representation is derivable from another (or a set of other fields), then we need not expose both fields in
the abstract view. Instead, we can merge the fields (see below). Any change to the merged field is thus
guaranteed to preserve the invariants of the concrete representation when the change to the single field in
the abstract view is pushed back down to all the derived fields in the concrete view. In our setting, merge,
the inverse of copy, makes far more sense than copy. Fortunately, because of the asymmetry of get and put,
the problematic interaction with PUTGET does not arise when merging two equal subtrees in a concrete
view, as we show in the next subsection.

By contrast, some have argued for the need for more powerful forms of copy in settings such as editing
a user-friendly view of a structured document [21, 32]. For example, consider editing a WYSIWYG view
of a document in which the table of contents is automatically generated from the section headings in the
text. One might feel that adding a new section should add an entry to the table of contents, and similarly
that adding an entry to the table of contents should create an empty section in the text with an appropriate
section title. Such functionality is not consistent with our PUTGET law: both adding a section heading and
adding an entry in the table of contents will result in the same concrete document after a put; such a put
function is not injective and cannot participate in a lens in our sense. In contexts where such functionality
is a primary goal, system designers may be willing to weaken the promises they make to programmers by
guaranteeing weaker properties than PUTGET. For example, Mu et al [32] only require their bidirectional
transformations to obey a PUTGETPUT law. PUTGETPUT is weaker than PUTGET in two ways. First, they
do not require I (IN\(a,c)) to equal a. Rather, they require that if ¢ = I\((a,c), and o’ = [('), then
a’ should “contain the same information as a,” in the sense that I\ (a’,¢’) = ¢/. Second, they allow get to
be undefined over parts of the range of put — PUTGETPUT is only required to hold when it is defined, but
no requirements are made on how broadly get must be defined. (Given that their setting is interactive, it is
reasonable to say, as they do, that if get of a put is undefined, then the system can signal the user that the
modification to a was illegal and must be withdrawn). Hu et al [21] support copy functionality in a different
way. They weaken both PUTGET and GETPUT by only requiring PUTGET to hold when a is already { 7(c),
and by only requiring GETPUT to hold when ¢ is I\ (a, ¢') for some a and ¢’

Merge

It sometimes happens that a concrete representation requires equality between two distinct subtrees within
a view. A merge lens is one way to preserve this invariant when the abstract view is updated. In the get
direction, the merge lens takes a tree with two (equal) branches and deletes one of them. In the put direction,
merge copies the updated value of the remaining branch to both branches in the concrete view.

There is some freedom in the type of merge. We can either give it a precise type that captures the
equality constraint in the concrete view; the lens is well-behaved and total at that type. Alternatively, we
can give it a more permissive type (which we do) by ignoring the equality constraint — if the two original
branches are unequal, merge is still defined and well-behavedness is preserved. This is possible because the
old concrete view is an argument to the put function, and can be tested to see whether the two branches were
equal or not in c¢. If not, then the value in a does not overwrite the value in the deleted branch, allowing
merge to obey PUTGET.

(merge mn), ¢ = c\,

. — .f =
oo m)\ () = {00 i e
VYm, neN. VCQT\{myn}. VDCT.
merge m n €

(C {]m}—)DQ, nHDgl[%) < (C ﬂmHDQ[%)

Note that merge, unlike copy, can be usefully given a more permissive type that removes the equality

29

constraint on the type of merge’s concrete view. We can define the behavior (merge m n), "¢ even when
the subtrees under m and n are unequal, so that merge is still total. Even though get may discard the
subtree under n, we can restore it in the put direction, even if it were unequal to ¢(m). We can preserve
well-behavedness in this case, because the old value of ¢ is passed back in the put direction.

5.5.3 Lemma [Well-behavedness]: Vm,neN. YCCT \y, 3. VDCT. merge m n € (c
ﬂm = DQ, n +— DQI}) é (C . {Im = DQ[}).

Proof:
GET: Immediate: (C - {]m — Dq, n+— Dg[})\n =C- ﬂm — DQI}.

Put: By the form of the definition of the put direction of merge, there are two cases to consider: First,
if ¢(m) = ¢(n) (i.e., either both m and n are missing or both are present and their subtrees are equal, or ¢
itself is), then (merge m n)\,(a, ¢) = a - {{n > a(m)]}. But this belongs to C - {m — Dq, n+— Dql,
since a € C' - {]m — DQI} and a(m) € Dq. Second, if ¢(m) # ¢(n) (i.e., either one of m and n is missing
and the other is not, or both are present but they lead to different subtrees), then (merge m n)\ (a, ¢) =
a - {]m»—> c(n)[} But this again belongs to C - {]m»—> Dq, n— DQI}, since a € C - {]m'—> DQI} and
c(n) € Dq.

GETPUT: Suppose (merge m n)\ ((merge m n) "¢, c) is defined. There are again two cases to consider. If
c(m) = c(n), then (merge m n)\, ((merge m n) ¢, ¢) = (c\n) - {n > (\n)(m)} = (c\n) - {n— cn)|} =
c. On the other hand, if ¢(m) # c¢(n), then (merge m n)\, ((merge m n) /¢, ¢) = (c\n) - {n— c(n)} =c.
PUTGET: Suppose (merge m n),” ((merge m n)\ (a, ¢)) is defined. There are again two cases to consider.
If ¢(m) = ¢(n), then (merge m n),/” ((merge m n)\,(a, ¢)) = (a - {n — a(m)})\n = a, since n ¢ dom(a).
On the other hand, if ¢(m) # c(n), then (merge m n),/ ((merge m n) \,(a, ¢)) = (a - {n — c(n)})\n = a. O

5.5.4 Lemma [Totality]: Vm,neN. VYCCT\(y,,3. VDCT. merge m n € (C
ﬂm = DQ, n — DQI}) é (C . {]m — DQ[}).

Proof: The get direction of merge is a total function. In the put direction, the definedness of the - operation
is guaranteed by the fact that a € (C - {]m — DQ[}) CT\(n}- O

6 Conditionals

Conditional lens combinators, which can be used to selectively apply one lens or another to a view, are
necessary for writing many interesting derived lenses. Whereas xfork and its variants split their input trees
into two parts, send each part through a separate lens, and recombine the results, a conditional lens performs
some test and sends the whole trees through one or the other of its sub-lenses.

The requirement that makes conditionals tricky is totality: we want to be able to take a concrete view,
put it through our conditional lens to obtain some abstract view, and then take any other abstract view
of suitable type and push it back down. But this will only work if either (1) we somehow ensure that the
abstract view is guaranteed to be sent to the same sub-lens on the way down as we took on the way up, or else
(2) the two sub-lenses are constrained to behave coherently. Since we want reasoning about well-behavedness
and totality to be compositional in the absence of recursion (i.e., we want the well-behavedness and totality
of composite lenses to follow just from the well-behavedness and totality of their sub-lenses, not from special
facts about the behavior of the sub-lenses), (2) is unacceptable.

Interestingly, once we adopt the first approach, we can give a complete characterization of all possible
conditional lenses: we argue that every binary conditional operator that yields well-behaved and total lenses
is an instance of the general cond combinator presented below. Since this general cond is a little complex,
however, we start by discussing two particularly useful special cases.

30

Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate B on views and two lenses, {; and l2. In the get
direction, it tests the concrete view, ¢, and applies the get of [; if ¢ satisfies the predicate and [l otherwise.
In the put direction, ccond again examines the concrete view and applies the put of [y if it satisfies the
predicate and Iy otherwise. This is arguably the simplest possible way to define a conditional: it fixes all
of its decisions in the get direction, so the only constraint on /; and ls is that they have the same target.
(However, if we are interested in using ccond to define total lenses, this is actually a rather strong condition.)

B li,/'c ifceCy
(ccond Cy Iy lp) /¢ = {12/c ifeg Cy

(ccond C1 Iy la) \((a, c) = { g E EZ: 3 i z ; gi

VC,C1, ACU. VI, € CNCy 2 A Vi, € C\Cl 2 A, ccond C1 1 I, € C 24
VO,Cy, ACU. VI € CNCy <= AVl € C\C) <= A, ccond C1 1 b € C <= A

One subtlety in the definition is worth noting: we arbitrarily choose to put Q using ly (because Q ¢ Cy for
any C; C U). We could equally well arrange the definition so as to send 2 through l;. In fact, I; need
not be well-behaved (or even defined) on €; we can construct a well-behaved, total lens using ccond when
lhelCnCy <:>Aand1260\01 é A.

Abstract Conditional

A quite different way of defining a conditional lens is to make it ignore its concrete argument in the put
direction, basing its decision whether to use I1\, or I3\, entirely on its abstract argument. This obliviousness
to the concrete argument removes the need for any side conditions relating the behavior of I; and lo—
everything works fine if we put using the opposite lens from the one that we used to get—as long as, when we
immediately put the result of get, we use the same lens that we used for the get. Requiring that the sources
and targets of 1 and l2 be disjoint guarantees this.

/¢ ifce Cy
ZQ/C if0€01
Ii\\(a,¢) ifa€e Ay and ce Cy
i\ (a, Q) ifae Ay and c ¢ Cy
(a, c
(

(acond C1 Ay 11 l2),/ ¢ = {

(acond C1 Ay Iy I2) \(a, c) la\.(a,c) ifa¢g Ay and c ¢ Cy

la\(a, Q) ifad A; and c € C;

VC,A,C1, A1 CU.

Vi, € CNCy é AﬂAl. Viy € (O\Cl) é (A\Al)
acond C; A1 i lbeC2 A

VC,A,C1, A1 CU.

Vi, € CNCy <é> AﬂAl. Viy € (O\Cl) é (A\Al)
acond C; A; 1l e C <= A

In Section 5.3, we defined the lens rename m n, whose type demands that each concrete tree have a child
named m and that every abstract tree have a child named n. Using this conditional, we can write a more
permissive lens that renames a child if it is present and otherwise behaves like the identity.

rename_if present mn = acond ({m — T} - T\(mny) ({n— T|} - T\(m.n}) (rename m n) id

Vn,m € N.VCCT. VD, EQ(T\{m)n})
rename_if_present m n €

({m— CJ} - DUE <& ({n— C|} - D)UE

31

General Conditional

The general conditional, cond, is essentially obtained by combining the behaviors of ccond and acond. The
concrete conditional requires that the targets of the two lenses be identical, while the abstract conditional
requires that they be disjoint. More generally, we can let them overlap arbitrarily, behaving like ccond in the
region where they do overlap (i.e., for arguments (a,c) to put where a is in the intersection of the targets)
and like acond in the regions where the abstract argument to put belongs to just one of the targets. To this
we can add one additional observation: that the use of € in the definition of acond is actually arbitrary. All
that is required is that, when we use the put of l1, the concrete argument should come from (Ci)gq, so that
l; is guaranteed to do something good with it. These considerations lead us to the following definition.

lh,/c ifceCy

lo/c ifcéCy

1 \\(a, ¢) ifa e AiNAs and c € C4
la\\(a,) ifa € AjNAy and ¢ ¢ Cy
1\ (a, ¢) if a € A1\ Ay and c € (C1)q
ll\(a, fgl(c)) ifa e Al\Ag and ¢ Q/ (Cl)Q
Ia\\ (a, ¢) ifa€ A3\A; and c ¢ (4
ZQ\‘(CL, f12(0)> ifa e AQ\Al and c € C;

(cond C1 Ay Ay for fzlil2)/'c = {

(cond Oy Ay Az for fiz li I2) \\(a, c) =

vC,Cq,A1, A CU.
Vi, € (CﬂCl) 2 Aj.
Viy € (C\Ol) é AQ.
szl S (O\Cl) — (Cﬂcl)g.
Vfi2 € (CﬂCl) — (C\Cl)g
cond Cy A1 As fo1 fioli o €C 2 (A1UA2)
VO, Cy, Ay, Ay CU.
Vi, € (CﬂCl) FELN A
Vi, € (C\Cl) é} As.
szl S (O\Cl) — (Cﬂcl)g.
Vf12 S (OﬂOl) — (C\Ol)g.
cond C7 A1 As le f12 il el <£> (A1UA2)

When a is in the targets of both I; and la, cond\, chooses between them based solely on ¢ (as does ccond,
whose targets always overlap). If a lies uniquely in the range of either I3 or ls, then cond’s choice of lens
for put is predetermined (as with acond, whose targets are disjoint). Once I\ is chosen to be either [\
or I2\, then if the old value of ¢ is not in ran(I\)q, then we apply a “fixup function,” fa1 or fia, to ¢ to
choose a new value from ran(I\|)q. Q2 is one possible result of the fixup functions, but it is sometimes useful
to compute a more interesting one; we will see an example in Section 7.

Somewhat surprisingly, all this generality can actually be quite useful in practice! We will see an example
depending on the full power of cond in the next section.

6.1 Lemma [Well-behavedness|: VO, Oy, A1, Ay CU. VI, € (CNCy) 2= Ay, Vip € (C\Cy) 2 Ay. Vo €
(C\Cl) — (CﬂCl)Q. Vflg S (CﬂCl) — (C\Cl)Q cond C7 A1 A, f21 f12 il eC SEN (AlUAg).

Proof:

GET: Suppose ¢ € C and [¢ is defined, where, for brevity here and in the other proofs for cond, we
write [for (cond Cl Al A2 f21 f12 ll lg) If c € Cl, then Z/C = ll/C S A1 g A1UA2 by the type of ll.
Otherwise, ["c=1s,"c€ Ay C A1 U As by the type of Is.

Put: Suppose (a,c¢) € (A1UA2) x Cq and 1\ (a, ¢) is defined. There are six cases to consider, one for each
clause in the definition, and the result in each case is immediate from the typing of [or l2, as the case may
be. Note, in particular, that the range of fo; falls within the source of /1 in the fourth clause, and similarly
for f12 and I in the sixth clause.

32

GETPUT: Suppose ¢ € C and I\ (I "¢, ¢) is defined. If ¢ € Cy, then [¢ = l; /¢, which, by the type of
I1, belongs to A1. So I\, (l1 ¢, ¢) =11\, (1, ¢, ¢) by either the first or the third clause in the definition of
I\.- This, in turn, is equal to ¢ by GETPUT for /;. On the other hand, if ¢ & Cy, then | /¢ = I3 / ¢, which,
by the type of I3, belongs to As. So I\, (l2, ¢, ¢) =12\, (l2, ¢, ¢) by either the second or the fourth clause
in the definition of I\,. This is equal to ¢ by GETPUT for [5.

PUTGET: Suppose (a,c) € (A1UAs) x Cq and 1,/ (I, (a, ¢)) is defined. There are again six cases to
consider:

1. If a € A1NAg and ¢ € Cq, then I,/ (I, (a, ¢)) =1,/ (I1 \u(a, ¢)). But I1 \ (a, ¢) € C1 by the type of
li,801,/7 (i \\(a, ¢)) =11 /(1 \\(a, ¢)) = a by PUTGET for [;.

2. If a € AjNAg and ¢ & C1, then I (I (a, ¢)) =1,/ (l2 \\ (a, ¢)). But l2\| (a, ¢) € Cy by the type of
la, 801,/ (Ia\\(a, ¢)) =12/ (Il \\(a, ¢)) = a by PUTGET for [5.

3. If a € A1\As and ¢ € (Ch)q, then I,/ (I (a, ¢)) =1,/ (1 \\(a, ¢)). But I1 \\(a, ¢) € Cy by the type
of l1, 017 (l1 \\(a, ¢)) =11 /(I1 \\(a, ¢)) = a by PUTGET for ;.

4. If a € A1\ Az and ¢ & (C1)q, then 1" (1, (a, ¢)) =1,/ (l1 \\(a, f21(c))). But I1 \ (a, f21(c)) € C1 by
the types of fo1 and I1, so I (I1 \.(a, fa1(c))) =11,/ (li \.(a, f21(c))) = a by PUTGET for [;.

5. If a € A3\Ay and ¢ & C, then I,/ (I, (a, ¢)) =1, (I2\\(a, ¢)). But la\,(a, ¢) € Cy by the type of
la,s0 1,7 (Ia\\(a, ¢)) =12, (Ia\\(a, ¢)) = a by PUTGET for ls.

6. If a € A3\Ay and c € Cy, then I/ (I \\(a, ¢)) =1,/ (I2\\(a, fi2(c))). But l2\\ (a, fi2(c)) € Cs by the
types of fi2 and Iz, so 1/ (l2\(a, fi2(c))) =2,/ (I2\ (a, fi2(c))) = a by PUTGET for l». O

6.2 Lemma [Totality]: VO,Cy, Ay, Ay C U. VI; € (CNCy) <= Ay Vi € (C\C1) <= Ay, Vfy €
(C\Cl) — (CﬂCl)Q. Vfis € (CﬂCl) — (C\Cl)Q cond Cy Ay As fo1 fioli o €C <5 (AlUAQ).

Proof: Straightforward: each clause in the definitions of [and [\, directly invokes the corresponding
part of either [or I, from whose type the definedness of the result then follows. 0

6.3 Lemma [Continuity]: Let F} and F, be continuous functions from lenses to lenses. Then the function
Al. cond Ol A1 A2 f21 f12 Fl(l) FQ(Z) is continuous.

Proof: Details omitted—the argument is similar to other continuity proofs above. O

Before we introduced cond, we argued that it captured all the power of ccond and acond, and (because of
the fixup functions f12 and fa1), more besides. We now argue that this is the maximum generality possible—
i.e., that any well-behaved and total lens combinator that behaves like a binary conditional can be obtained
as a special case of cond.

Of course, the argument hinges on what we mean when we say “I behaves like a conditional.” We would
like to capture the intuition that [should, in each direction, “test its input(s) and decide whether to behave
like I or l3.” 1In the get direction, there is little choice about how to say this: since there is just one
argument, the test just amounts to testing membership in a set (predicate) Cy. In the put direction, there
is some apparent flexibility, since the test might investigate both arguments. However, the requirements of
well-behavedness (and the feeling that a conditional lens should be “parametric” in l; and I, in the sense
that the choice between {1 and s should not be made by investigating their behavior) actually eliminate most
of this flexibility. If, for example, the abstract input a falls in if a € A;NA,, then the choice of whether to
apply I3\, or I3\ is fully determined by c: if ¢ € C4, then it may be that a = l; " ¢; in this case, using I\,
guarantees that [\ (a, ¢) = ¢, as required by GETPUT, whereas l2\, gives us no such guarantee; conversely,
if ¢ € C\C1, we must use .

Similarly if @ € A;\As, then we have no choice but to use l1, since l3’s type does not promise that
applying it to an argument of this type will yield a result in C;. Similarly, if a € A3\ A, then we must use
lo. However, here we do have a little genuine freedom: if a € A1\ Az while ¢ € C\C1, then, by the type of lo,

33

there is no danger that a =l /" ¢. In order to apply 1, we need some element of (C1)q to use as the concrete
argument, but it does not matter which one we pick; and conversely for ;. The fixup functions fo; and
f12 cover all possible (deterministic) ways of making this choice based on the given c. (It is possible to be
slightly more general by making f2; and fi2 take both a and ¢ as arguments, but pragmatically there seems
little point in doing this, since either I3\, or I3\ is going to be called on their result, and these functions
can just as well take a into account.)

Special Types for Conditional Lenses

In this section, we record some additional types that our conditional lenses inhabit, which we need for our
proof that list_filter, defined in Section 7, is total. This material can be skimmed on a first reading.

The first theorem presents an alternate total type for cond where the target sets in the types of [y, l2
and the entire cond lens are intersected with an arbitrary set, A. Recall that the standard type for ccond
takes two lenses with type C N C, <= A; and C \ 4 <L A,y (as well as conversion functions f2; and f12)
and produces a lens with type C' <2 A; U Ay. This type is usually the type that we want. However, in
some situations (when reasoning about totality), we need to show a fized instance of cond has many different
types. The abtract components of some of these types may be smaller than (A; U As), where A; and A,
appear literally in the syntaz of the ccond instance. The new type presented here allows us to simplify some
of these cases by only considering the lens type that is intersected with the abstract type we want, reducing
the proof burden.

6.4 Theorem: The cond lens has the following types:

1. VC,C{,A, A, Ay C U. VI, € (CﬂCl) EEN (AﬂAl) Vi, € (C\Cl) 2 (AQAQ) Vo € (C\Cl) —
(CﬂCl)Q- vflg S (CﬂCl) — (C\Cl)g cond C7 A1 Ay f21 f12 il eC REN (Aﬂ(AlUAg)).

2. VC, Ol,A,Al,AQ CU.Vvi; € (OﬂOl) <£> (AﬂAl) Vi € (C\Ol) <£> (AQAQ) Vf21 S (O\Cl> —
(CﬂCl)Q- Vfie € (CﬂCl) — (C\Cl)g cond Cy A1 As fo1 fioli lo €C < (Aﬂ(AlUAg)).

Proof: We prove (1) by showing that the cond lens is well-behaved at C < (AN (A; U Az)), and then
prove (2) by showing that that the lens is also total if both I; and I3 are total.

GET: Suppose ¢ € C and ["¢ is defined. (Again, for brevity, we write [for (cond C; Ay Az fo1 f12 11 12)).
Ifce Cy,thenl/ "c=1,/"ce€ (AN A;) C (AN (A1UAs)) by the type of 3. Otherwise, [¢ =13,/ ¢ €
(A n Ag) - (A n (Al U Ag)) by the type of I5.

PuTt: Suppose (a,c) € (AN (A1UAz)) x Cq and 1\ (a, ¢) is defined. There are six cases to consider, one
for each clause in the definition, and the result in each case is immediate from the typing of [or I3, as the
case may be. Note, in particular, that the range of fs; falls within the source of I; in the fourth clause, and
similarly for fi5 and ls in the sixth clause.

GETPUT: Suppose ¢ € C and I\ ("¢, ¢) is defined. If ¢ € Cy, then | ¢ = l; / ¢, which, by the type of I1,
belongs to (ANA;). So I\, (1, ¢, ¢) =11\, (l1,/ ¢, ¢) by either the first or the third clause in the definition
of I\,. This, in turn, is equal to ¢ by GETPUT for [;. On the other hand, if ¢ &€ C1, then [¢ = 15, c,
which, by the type of l2, belongs to (AN As). So I\, (2, ¢, ¢) =12\ (2, ¢, ¢) by either the second or the
fourth clause in the definition of I\,. This is equal to ¢ by GETPUT for I5.

PUTGET Suppose (a,c) € (AN (A1UA3)) x Cq and 1/ (I (a, ¢)) is defined. There are again six cases to
consider:

1. Ifa € (AN (A1NA2)) and ¢ € Cy, then I/ (I, (a, ¢)) =17 (l1 \\(a, ¢)). But l; \,(a, ¢) € C; by the
type of 11, so 1/ (I1 \\(a, ¢)) =11,/ (I1 \\ (a, ¢)) = a by PUTGET for ;.

2. Ifa € (AN (A1NAz)) and ¢ & Cy, then I/ (I, (a, ¢)) =1,/ (I2\\(a, ¢)). But I\, (a, ¢) € C by the
type of la, so 1/ (I2\\(a, ¢)) =l / (I \, (a, ¢)) = a by PUTGET for [5.

3. If a € (AN (A1\A42)) and ¢ € (Ch)q, then I (I\,(a, ¢)) =1,/ (11 \\(a, ¢)). But I1 \\(a, ¢) € C; by
the type of Iy, so I/ (I1 \\(a, ¢)) =11 /" (l1 \\ (a, ¢)) = a by PUTGET for [;.

34

4. If a € (AN (A\A2)) and ¢ & (Ci)a, then I /"(IN\.(a,¢c) = 1/7(l1\(a, fa1(a,c))).
But I3 \.(a, fa1(a,c)) € C; by the types of fa1 and I, so L/ (l1\ (a, fa1(a,c))) =
I,/ (li \\(a, fa1(a,c))) = a by PUTGET for [;.

5. If a € (AN (A2\A1)) and ¢ &€ Cy, then I/ (I \\(a, ¢)) =1, (Ia\\ (a, ¢)). But l2\,(a, ¢) € Cz by the
type of l2, so I/ (la\\(a, ¢)) = la /" (Ia\\ (a, ¢)) = a by PUTGET for Is.

6. Ifa € (AN(A2\A41)) and ¢ € C1, thenl,” (I \,(a, ¢)) =1, (la \\(a, fi2(a,c))). Butly\, (a, fi12(a,c)) €
Cy by the types of fi2 and Iz, so I/ (l2 \\(a, fi2(a,c))) = lo,/ (la\\(a, fi2(a,c))) = a by PUTGET
for I5. O

Hence, [€ C 2 AN (A; U Ay). Next we prove that [is total at that type if [; and Iy are total, by showing
that its get and put functions are totally defined on their domains.

We first show that the get function is totally defined on C. Pick c€ C. If c€ C;y then ["c=1; " c. As
I1 €CNCL <5 AN Ay, it follows that I; /¢ is defined. Similarly, if ¢ € (C'\ C}), then [/¢ =1y c. As
lo € C\Cy <% AN Ay, it follows that Iy /¢ is defined. Hence, I,/ is a total function.

Second, we prove that the put function is totally defined on (A N (A; U As)) x Cq. There are six cases,
corresponding to the six cases in the definition of the put function:

1. Ifa € (AN (A1NA2)) and ¢ € Cy, then I\ (a, ¢) = 11\, (a, ¢) is defined as I\, is total on (AN A;) x
(Cﬂcl)g.

2. Ifa e (AN (A1NA2)) and ¢ € Cy, then I\ (a, ¢) =12\, (a, ¢) is defined as I3\, is total on (AN Az) x
(C\Cl)g.

3. If a € (AN (A1\42)) and ¢ € (C1)q, then I\ (a, ¢) = l1\,(a, ¢) is defined as i1\, is total on
(A ﬂAl) X (Cﬂ Ol)Q.

4. If a € (AN (A1\A42)) and ¢ ¢ (C1)q, then I\ (a, ¢) = l1 \,(a, f21(c)) is defined as fa1 is a totally
defined function with type: (C'\ C1) — (C N Ch)q and 11\ is total on (AN A7) x (CNCh)a.

5. If a € (AN (A2\A41)) and ¢ &€ Cy, then then I\ (a, ¢) = la\/(a, ¢) is defined as I3\, is total on
(A n Ag) X (C \ Cl)Q.

6. If a € (AN (A2\A1)) and ¢ € C1, then I\ (a, ¢) = l2 \,(a, fi2(c)) is defined as fi2 is a totally defined
function with type: (CNCy) — (C\ Cy)q and I3\ is total on (AN Ag) x (C'\ C1)q.

Hence, 1\ is a total function.
We conclude that (cond C1 Ay As fo1 fi2 s lg) €C <& (A n (Al @] Ag))

The next two theorems record types for conditional lenses in special cases where the conditional always
selects one lens or the other (in both directions). In these situations, we can use a more flexible typing rule
that makes no assumptions about the branch that is never used. The first describes ccond instances where
the second branch is always taken.

6.5 Theorem [Always-False ccond]: VC,Cy, ACU. with CNCy = (). Vls € C\Cy <= A. ccond Oy [y Iy €
C <L A

Proof: First we argue that (ccond C; l; l3) = l2 by showing that their respective get and put functions
are identical. For any ¢ € C, we must have ¢ ¢ (C; N C) (because it is empty) and so ¢ € (C'\ C1). Hence,
(ccond Cy U1 1s) /¢ =13,/ ¢. Similarly, for any (a,c) in A x Cq, we must have ¢ € (C' N C1). By definition,
(ccond Cy 1 12) \\(a, ¢) =12\ (a, ¢).

Since (ccond Cy l; l3) = lo, the well-behavedness and totality of the ccond lens follow from the well-

behavedness and totality of l. In particular, since [; is never used, we do not need any assumptions about
it. O

35

Note that there is no corresponding always-true rule for ccond. Even if C'\ C; = 0, in the put direction,
the € tree still gets sent through lo. However, for the generic conditional, cond, we can prove an always-true
rule.

6.6 Theorem [Always-True cond]: VC,Cy, Ay, Ay CU. with CNCy # O and C\Cy =). VI, € CNCy <=
Aq. cond Cy Ay Ay f21 f12 lhil el é Ay

Proof: First we argue that (cond C1 Ay Ay fo1 fi2 11 l2) = I3 by showing that their respective get and put
functions are identical. For any ¢ € C since (CNC1) # 0 and (C\C7) = 0 we must have ¢ € (CNCy). Thus,
by definition, (cond Cy A1 As fo1 fi2 11 l2) /¢ =11/ ¢. Similarly, for any (a,c) in A; x Cq, either ¢ = Q
or ¢ € (CNCh); hence, by definition, (cond C1 A1 As fo1 fi2 11 l2) \\(a, ¢) =11 \\(a, ¢).

Since (cond C1 A1 As fo1 fi2 U1 l2) = l1, the well-behavedness and totality of the cond lens follow from
the well-behavedness and totality of ;. In particular, since lo and the conversion functions fo; and fi5 are
never used, we do not need any assumptions about them. O

7 Derived Lenses for Lists

XML and many other concrete data formats make heavy use of ordered lists. We describe in this section
how we can represent lists as trees, using a standard cons cell encoding, and introduce some derived lenses to
manipulate them. We begin with some very simple lenses for projecting the head and tail of a list encoded as
a cons cell. We then define some recursive lenses implementing more complex operations on lists: mapping,
reversal, and filtering. The simplest of these lenses, list_map, uses wmap and recursion to apply a lens to
every element of a list. The next lens reverses the order of elements in a list. We conclude with a quite
intricate derived form, list_filter, that uses the general conditional, cond, to filter lists according to some
predicate.

Other list-processing derived forms that we have implemented (but do not show here) include a “grouping”
lens that, in the get direction, takes a list whose elements alternate between elements of D and elements of
FE and returns a list of pairs of Ds and Es—e.g., it maps [d1 el d2 e2 d3 e3] to [[dl el] [d2 e2] [d3 e3]].

Encoding

7.1 Definition: A tree ¢ is said to be a list iff either it is empty (no children) or it has exactly two children,
one named *h and another named *t, with ¢(*t) also a list. In the following, we use the lighter notation
[t1...t,] for the tree:

*hl—)tl
*h — to

e oo [frm)

In types, we write [] for the set {{]}} containing only the empty list, C :: D for the set {]*h — C, *t — D[}
of “cons cell trees” whose head belongs to C' and whose tail belongs to D, and [C] for the set of lists with
elements in C—i.e., the smallest set of trees satisfying [C] = [1 U (C :: [C]). We sometimes refine this
notation to describe lists of specific lengths, writing [D®7] for lists of Ds whose length is at least i and
at most j. The interleaving of a list of type [B*] and a list of type [C™™], taking elements from the
first list and elements from the second in an arbitrary fashion but maintaining the relative order of each, is
written [B*J]&[C™ "].

Head and Tail Projections

Our first two list lenses extract the head or tail of a list (or, more generally, any cons cell).

36

hdd = focus *h {*t— df}

YO,DCT.VYdeD. hdde (C: D) <% C

tld = focus *t ﬂ*th[}

YC,DCT.VdeC. tlde (C:D)«% D

The lens hd expects a default tree, which it uses in the put direction as the tail of the created tree when
the concrete tree is missing. In the get direction, hd returns the tree under *h. The lens t1 works anal-
ogously. Note that the types of these lenses apply to both homogeneous lists (the type of hd implies
YOCT. Vde[C]. hd d € [C] <& () as well as cons cells whose head and tail have arbitrary types; both
possibilities are used in the type of the bookmark lens in Section 8. The types of hd and t1 follow straight-
forwardly from the type of focus.

Our next lens, hoist_hd, takes a list and “flattens” its first cell using hoist nonunique. It is annotated
with a set of names p specifying the possible domain of the tree at the head of the list. We will need this
operation for one step of the HTML processing in the example in Section 8.

hoist.hd p = hoist_nonunique *h p; hoist nonunique *t p

VpC(N\{*t}). VOC(T|,). VYDC(T\,). hoisthdpe (C:: D) <= (C - D)

Observe that, by assumption, the concrete view has type C :: D where C' € T, and D € T\,. Then
hoist nonunique *hpe C :: D 2 C - {]*t — D[}

and also
hoist_nonunique *t p € C - {]*t — D[} 2C-D

yielding the desired result for the composition.

List Map

The 1list map lens iterates over a list, applying a lens [to every element of the list:

listmap! = wmap {*h— [, *t+— listmapl}

VO, ACT.Vie C 2 A. 1listmaple [C] 2 [A]
VO, ACT.Vie C <% A, 1listmaple [C] <5 [A]

The get direction of this lens applies [to the subtree under *h and recurses on the subtree under *t. The
put direction uses [\, to put back corresponding pairs of elements from the abstract and concrete lists. The
result has the same length as the abstract list; if the concrete list is longer, the extra tail is thrown away. If
it is shorter, each extra element of the abstract list is put into .

It is worth noting how the recursive calls in 1list map terminate. In the get direction, the wmap lens
simply applies [to the head and 1list map [to the tail until it reaches a tree with no children. Similarly, in
the put direction, the lens is applied at each level of the abstract tree, using the corresponding part of the
concrete tree, if it is present, and €2 otherwise. In either case, the recursive calls continue until the entire
tree has been traversed.

Because 1ist map is defined recursively, proving it is well behaved requires (just) a little more work than
has been needed for the derived lenses we have seen above: we need to show that it has a particular type
assuming that the recursive use of 1ist_map has the same type. This is nothing very surprising: exactly the
same reasoning process is used in typing recursive functional programs. But, since this is the first time we
meet a recursive lens, we give the argument in some detail.

37

Recall that the type of wmap requires that both sets of trees in its type be shuffle closed. Before proving
that 1ist map is well-behaved and total, we prove a lemma stating that cons cell and list types are shuffle
closed.

7.2 Lemma: VS, TCT.(S = T)= (S ::T)°.

Proof: We calculate (S :: T)© directly. From the definition of cons cells, the set dom(S :: T') of possible
domains of trees in (S :: T) is {{*h, *t}}. We then calculate (S :: T)° as:

(S:T)° = Ubedom(s:1) {n— (S:T)(n)|neD|
{*h— S, *t — T}
= SuT. O

7.3 Lemma: VT'CT.[T] = [T1°.

Proof: We calculate [T1° directly. From the definition of lists, the set dom([T]) of domains of trees in
[T1 is {0, {*h, *t}}. We then calculate [T]1° as:

[T]O = UDedom([T]) {]n = [T] (TL) | n e D[%
= {JU{*h—T, *t— [T1}
= [T7. O

7.4 Lemma [Well-behavedness]: VO, ACT. VI € C & A. listmapl € [C] = [4].

Proof: Note that 1ist_map [is the fixed point of the function: f = Ak. wmap {*h — [, *t — k}. We use
Corollary 3.3.8 (1), which states that if, assuming that k € [C] 2 [A], we can prove f(k) € [C] & [A],
then fiz(f) € [C] 2 [A].

We assume that k € [C] & [A] and show that f(k) has type [C] = [A] directly, using the type of
wmap. We write m for the total function from names to lenses described by {*h +— [, *h — k}; i.e., m maps
*h to I, *t to k, and every other name to id. We first show that m € (IlneN. C(n) & A(n)):

m(*h) =1 € [C1(*h) <2 [A](*h)
i'e'7 m(*h) =l ¢ C é A
by the type of ;

m(xt) =k € [C7(xt) 2 [A](*t)

ie., m(xt) =k € [C]= [A]
by assumption;
m(n) =id € [Cl(n) =2 [Al(n) Vn & {*h, *t}
ie., m(n)=id € 0=10

vacuously.

Hence, m has the correct type. The type of wmap also requires that both [C] and [A] be shuffle closed and
that dom([C1) = dom([Al). The first condition follows from Lemma 7.3; the second condition is immediate
as both dom([C]) and dom([A]) are the set {{*h, *t}, 0}.

Using the type of wmap, we conclude that f(k) € [C] <= [A] and by Corollary 3.3.8, that fiz(f) =
listmap [€ [C] & [A]. O

The proof of totality for 1ist map is more interesting. We use Corollary 3.3.8 (2), noting again that
listmap [is the fixed point of the function f defined above. The corollary requires that we: (1) identify
two chains of types,) = Co CC; C ... and) = A9 C A; C ..., and (2) from k € C; <= A;, prove that
f(k) € Ciy1 <= Aj4q for all i. We can then conclude that fiz(f) € |, C; <= |, 4.

7.5 Lemma [Totality]: VC,ACT.VI € C <= A. listmaplc [C] <= [Al.

38

Proof: We pick these two chains of types:

Co =4y = @.
Ciy1 = [CO"Z.]
Ay = [A%1]

Next, we show that f(I) € C;1q <2 A;;1. The case i = 0 is immediate because C; = A; = [] and
listmap !/ € []1 <= []. For the case i > 0, we calculate the type of f(I) directly from the type of wmap. As
above, we write m for the function that maps *h to [, *t to k and every other n to id. From the assumption
that k € C; <% A;, we have

m(xh) =1 € [C%™F1](xh) <= [A%+1](xh)
ie, m(xh)=10 € C <= A

by ¢ > 0 and the type of [;

m(xt) =k € [COH1](xt) <= [A%H1](xt)
ie, m(xt)=k € [CO1] <& [A%1]

by assumption; and

m(n)=id € [C%1]1(n) <= [A%"F!]1(n) Vn & {*h, *t}
ie, m(n)=id € D < 0

vacuously.

As above, both [C?T1] and [A%#T1] are shuffle closed and they have equal domains. Using the type of
wmap, we conclude that f(k) € [C% 1] <& [A"+1] and hence

listmapl! € U, G <= U4
ie, listmapl € (Ul [C*]) <= (Dull, [4A%)
ie., listmap! € [C] <& [4],
which finishes the proof. O

Reverse

Our next lens reverses the elements of a list.?

The algorithm we use to implement list reversal is a quadratic-time algorithm—we reverse the tail of the
list and then use an auxilary lens to append the old head to the end of the reversed tail. Before presenting
the list_reverse lens, we describe this auxiliary lens, called snoc. The get direction of snoc m transforms a
bush consisting of a child m adjoined to a list (either the empty view or children *h and *t) into a non-empty
list where the tree under m is the last element.

snocm = acond {m— D} (D:: [)
(add *t {}; rename m *h)
(xfork {m *t} {*t}
(hoist nonunique *t {*h *t};
snoc m;
plunge *t)

(id))
VDCT. snocm€ ({m~ D]} - [D]) <% [D'~]

5Malo Denielou has recently suggested a different way of implementing reverse that is arguably somewhat more intuitive,
but we have not yet pushed through the full proof that it is total (though it appears to be).

39

In the get direction, snoc has two cases. If the tree has a single child m then snoc m builds a singleton list
by renaming the m to *h and adding an empty tail. Otherwise, it moves the child m under the tail tag, *t,
and recurses, leaving the head in place.

The put direction tests whether the abstract view is a singleton list. If it is a singleton, then the lens
renames the head of the list to m and uses the put of the add lens to strip away the empty tail. Otherwise,
it uses the put of xfork to split the abstract and concrete views into children under *t and *h. The head is
then put back using id; the tail is passed through the composition in reverse: (1) plunge *t, which hoists
up the tail and yields a list, (2) a recursive call, which removes the last element of the list from the first step
and places it under the child named m, and finally (3) hoist_nonunique *t *h *t, which plunges *h and *t
under *t, leaving m at the top level of the tree.

7.6 Lemma [Well-behavedness|: VDC7. snocm € (ﬂm = D[} - [D]) & [D*+].

Proof: First, note that snoc m is the fixed point of the function:

f = Al. acond ﬂm — D[} (D :: [)
(add *t {}; rename m *h)
(xfork {m *t} {*t}
(hoist_nonunique *t {*h *t};
L
plunge *t)

(id))

In the rest of the proof, we use the following abbreviations:

C = {]m — D[} - [D]
A = [D'¥]

Cl = {]m (g D[}

A = D=1

The structure of the proof is the same as for the well-behavedness proof for list_map. We assume that
1 € C 2 A and prove that f(I) € C 2 A. Using Corollary 3.3.8 (1), we conclude that fiz(f) = snoc m €
C2 A

We calculate the type of f(I), working top down. The outermost lens is an acond instance; we must
prove that the first branch has this type:

(add *t {};

rename m *h) € cnc, 2 AnA
ie, (add *t {};

rename m *h) € ﬂmHD[} 2 D[]

which follows from the types of add and rename.

Similarly, we must show that the second branch has this type:

xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; [; plunge *t)
(id) € C\Cp = A\A
ie., xfork {m *t} {*t}
(hoistnonunique *t {*h *t}; [; plunge *t)
(id) € {m—D}.-[D"*] & [D*+].

40

To prove this type for the second branch we show that the two arms of the xfork have these types,

k1 = (hoist nonunique *t {*h *t};
l;
plunge *t) € {mw— D, *t— DI} & {*t— [D'“1}
ie, ki = € {mw— D, *t — [D1]}
hoist nonunique *t {*h *t}; : {m— D} - [D]
l . [Dl..w]
plunge *t 2 {*t— D]}

which follows from the types of hoist nonunique, /, plunge and the composition operator;

and ky = id € {*h—~ D} 2 {*n— D}
immediately, by the type of id,

and note that

{]m'_)Da *t — [D] g T|{m,*t}
{*t— [D"“1} C Tl
*hi= Dlf C T\, 4t}
*h — D - T*t
{mw~ D} - [D**1 = ({m~ D, *t— [DI}) - ({*h— D[})
(D] = ({*t— [D"*1]}) - ({*nh— D}).

We use all of these facts, and the type of xfork, to prove:
xfork {m *t} {*t} k1 k2 € {m — D]} - [D"*] & [D*>*“].

We conclude that the acond instance (i.e., f(I)) has type C < A, and so, by Corollary 3.3.8 (1), that
fiz(f) = snoc m has the same type. a

7.7 Lemma [Totality]: YDC7. snoc m € ({m — D[- [D]) <= [D'~].

Proof: To prove that snoc m is total, we use Corollary 3.3.8 (2). Let

Co=Ay=10 _
Ciy1 = {m — D} - [D*]
Ai+1 — [Dl..iJrl]

be two chains of types. Again, we note that snoc m is the fixed point of the same function f described in
the well-behavedness proof. In the rest of this proof, we use the following abbreviations:

c, = {]mHD[}
A1 = D:=[]

We prove, by induction on i, that if [€ C; <= A; then f(I) € Cijyq <= Ajyq. Let C = Ciyy =
({m— D} - [D*1) and A = A;1; = [D**']. To show that f(I) € C <% A, we must show that the
acond instance also has that type.

We first prove that the each branch has the correct type. The first branch is straightforward:

(add *t {}; rename m *h) € CNC; <& AnA,
ie., (add *t {}; rename m *h) € {m— D} <& (D: 1)
which follows from the type of add, rename and composition;

41

The second branch must have type:

xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; [; plunge *t)
(id) € C\Cp <= A\A
, xfork {m *t} {*t}
(hoistnonunique *t {*h *t}; [; plunge *t)
(id) € (ﬂﬁmHDl} . [DO”i])\ﬂmi—)D[}
<= [DY TN\ (D [D)

i.e.

There are two cases.
Case i = 0 We calculate that the second branch must have concrete and abstract type components:
({m— D} - D>\ {m— D} = 0
(D1I\(D:: 1) = 0,
which vacuously holds.
Case i > 0: We calculate that the second branch must have concrete and abstract type components:
({m— D} - [D*1)\ {m — D} = {m— D} [D*]
(DM I\ (D= [1) = [D*1]
To show that the second branch has this type, we must prove that each arm of the xfork lens has the correct
type:

k1 = (hoistnonunique *t {*h *t};
l;
plunge *t) € ﬂm — D, ¥t — [Do..z‘q][} PRI ﬂ*t — [Dl”i][}
i.e., kl = c {]m — D, *t — [DO..ifl] I}
hoist nonunique *t {*h *t}; . {mw~— D} [D*1]
l : (D]
plunge *t <& {*t— D]

which follows from the types of hoist nonunique, | (using the induction hypothesis),
plunge, and the composition operator;

ky = 1id € {#*p— D} <& {*h— D}
immediately, by the type of id,

and observe that

{]m — D, *xt — [D%] C Tlm,#t}
f*c— D} C Tl

*h — D c T\{m,*t}
xh — D g T*t

m+— D} . [D'7] ({m — D, xt — [D*11}) . ({*h+— D)

We use all of these facts to prove that xfork has the following type:
xfork {m *t} {*t} k1 ks € {m — D]} - [D""] <& [D*>"H]

Then by the type of acond, we have f(I) € C <% A, which finishes the case and the inductive proof. Using
Corollary 3.3.8 (2), we conclude that

fix(f) = snocm € UG <= U, A
i.e., snocm € (Z)UUZ.{]m»—»D[} L [DY] pul; [Dl-i+1]
ie., snmocm € {]m — D[} - [D] <5 [D'v]
as required. 0

42

7.8 Lemma: To prove that 1list_reverse is total, we will use the following precise total type for snoc m:
Vi. snoc m € (ﬂm — D[} - [DO1]) <& [D1-iH1].

Proof: The proof is by induction on i. As above, we use the following abbreviations in the proof:

Cc, = {]mHD[}
A1 = D []

For the base case, i = 0, we must show that snoc m € C <= A where C = {]m — D[} - [1 and
A = [D'1]. The outermost lens is an acond instance so we must first prove that the each branch has the
correct type. The type of the first branch is straightforward:

(add *t {}; rename m *h) € CNC, <& AnA
ie., (add *t {}; rename m *h) € {m— D} <= (D:=10)
by the type of add, rename and composition.

The second branch must have type:

xfork {m *t} {*t}
(hoistnonunique *t {*h *t}; [; plunge *t)
(id) € C\Op <= A\A
ie, xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; [; plunge *t)
(id) € 00 ,

which it does, vacuously.

Otherwise, i > 0 and we must show that snoc m € C' <% A where C = {m — D[} - [D°] and
A = [D*1]. As above, we must show that the acond instance has this type by showing that each of its
branches has the correct type. The proof that the first branch has the correct type is identical to the case
above. We calculate that the second branch must have concrete and abstract type components:

({m+— D} - (D>)\ {m+— D} = {m+— D} D'
[Dl..iJrl] \(D . []) — [DQ..iJrl]

To show that the second branch has this type, we must prove that each arm of the xfork lens has the correct
type:

k1 = (hoist nonunique *t {*h *t};
L
plunge *t) € {mw— D, *t— D1} <& {*t— [DV]]
ie., ki = S {]m — D, %t — [DO"ifl]ﬂ
hoist nonunique *t {*h *t}; : {m — D} - [D*~1]
snoc m : (D]
plunge *t < {*t— D]

which follows from the types of hoist nonunique, snoc m (using the induction hy-
pothesis to show it has type {m — D[} - [D*~1] <% [D'-]), plunge, and the
composition operator;

ky = 1id € {#*p— D} <& {*h— D}
immediately, by the type of id,

43

and observe that

{]m — D, xt — [D%] C Tlim,#t}
{*t = D1} C Tlu
*h — D g T\{m,*t}
*h — D - *t
{]m N D[} - [D¥] = ({mw— D, ¥t — [D%71] [}) . ({]*h — D|})
[D>*1] = ({*t— [D™i1})- ({*n+— D}).

We use all of these facts to prove that xfork has the following type:
xfork {m *t} {*t} k1 kz € {m — D[} - [D"'] <& [D>"T]
Then by the type of acond, we have snoc m € C <= A, which finishes the case and the inductive proof. [

Using snoc, we can write list_reverse as follows:

list_reverse = acond [] []
(id)
(rename *h x;
hoist nonunique *t {*h *t};
fork {*h *t} (list_reverse) id;
snoc x)

VDCT. list_reverse € [D] <% [D]

The get direction has two cases, corresponding to the two arms of the conditional. The first arm maps the
empty list to the empty list via id. The second lens, selected when the concrete tree is not empty, is the
composition of the following sequence: (1) a lens that renames the head of the list to x, (2) one that hoists
the tail up one level yielding a list, (3) a recursive call, and (4) snoc x, which moves the child under = to
the end of the (now reversed) tail.

The put direction also has two cases. Again, the first arm of the conditional maps the empty list to the
empty list. The other composite lens runs the sequence described above in reverse, to obtain a concrete tree
equivalent to the reversed abstract tree as follows. First, the put of snoc x takes the (non-empty) abstract
list and produces a tree where the last element of the list is removed and placed under x. Next, this abstract
view, consisting of a child x and a list is put back through the fork lens, which reverses the list part of the
tree and leaves the child named x unchanged. Third, the put of hoist nonunique *t {*h, *t} plunges the
head and tail under *t. Finally, the child named x is renamed to *h, yielding a well-formed list.

The algorithm for computing the reversal of a list used here runs in quadratic time. Interestingly, we
have not been able to code the familiar, linear-time algorithm as a derived lens (of course, we could introduce
a primitive lens for reversing lists that uses the efficient implementation internally, but it is more interesting
to try to write the efficient version using our lens combinators plus recursion). One difficulty arises if we use
an accumulator to store the result: the put function of such a transformation would be non-injective and so
could not satisfy PUTGET. To see this, consider putting the tree containing [c] under the accumulator child
and [b a] as the rest of the list. This will yield the same result, [a b c], as putting back a tree containing
[1 under the accumulator child and [a b c] as the rest of the list.

7.9 Lemma [Well-behavedness]: YDC7. list reverse € [D] < [D].

44

Proof: First, note that 1ist_reverse is the fixed point of the function:

f = Al.acond [1 []
(1)
(rename *h x;
hoist nonunique *t {*h *t};
fork {*h *t} [id;
snoc x)

In the rest of the proof, we use the following type abbreviations:

C = A = I[D]
cCi = A = 1[I

In outline, the proof proceeds as follows. We assume that [€ C' <2 A and prove that f(I) € C & A. Using
Corollary 3.3.8 (1), we conclude that fiz(f) = 1ist_reverse € C' = A.

We calculate the type of f(I), working top down. The outermost lens is an acond instance; we must
prove that the first branch has the correct type:

id € CnCy 2 AN Aq
, id € 0 = 0
which follows from the type of id;

i.e.

and that the second branch has the correct type:

rename *h Xx;

hoist nonunique *t {*h *t};

fork {*h *t} [id;

snoc x e C\Cp 2 A\4A
i.e., rename *h x;

hoist nonunique *t {*h *t};

fork {*h *t} [id;

snoc x € [Dtv] & [DYw]

To prove this type for the second branch we show:

ki = € [D!+]
rename *h x; : x— D, xt — [D] [}
hoist nonunique *t {*h, *t}; : x— D| - [D]
fork {*h *t} [id; : X — DE - [D]
snoc x 2 [DY+].

(Note that the second to last step follows from the hypothesis about the type of I.) We conclude that
f(l) € C 2 A and by Corollary 3.3.8 (1), that 1ist_reverse has the same type, [D] < [D]. O

7.10 Lemma [Totality]: VDC7. list reverse € [D] <= [D].

Proof: The proof, in outline, is as follows. We first note that list_reverse is the fixed point of the
function f, defined in the well-behavedness proof above. We then prove for all 4, that f(I) € Ci 1 <2 Aiy
assuming that | € C; <= A;. By Corollary 3.3.8 (2), we conclude that fiz(f) € U, C; <= U, 4.

Define two chains of types:

CO = Ao = @)
Cit1 = Aijy1 = [D*1].

also used as abbreviations for the types in the acond lens:

Ol - Al - [] .

45

We will show that | € C; <= A; implies f() € Cisa <% A;41 by induction on i. Let C = Cjyq =
[D%] and A = A; 41 = [D**]. To show that f(I) € C <= A, we must show that the outermost acond
lens has that type.

By the type of acond, we must prove that both branches have the correct type. The type of the first
branch is easy to calculate and verify:

id € CnCy FELY AN A

ie., id € 0 <= 0
by the type of id.

Showing that the second branch has the correct type, calculated as:

rename *h x;
hoist nonunique *t {*h, *t};
fork {*h, *t} [id;

snoc x € C\C1 <= A\A,
requires a little more work. There are two cases. If i = 0 then
c\C, = 0O\QO =90
A\A, = 0O\N0O =0
and the second branch has type () <% () vacuously. Otherwise i > 0 and
c\C, = [DO“Z:] \[= [Dl“zz]
A\A, = [D%1\00 = [D"1]

Thus, we must show that the second branch has this type.

rename *h Xx;
hoist nonunique *t {*h, *t};
fork {*h, *t}lid;

sSnoc x c (D] PRI [D]
ie., k = c (D]

rename *h Xx; : x— D, *t — [DO..i—l][%

hoist nonunique *t {*h, *t}; : x — D\ . [DOi—1]

fork {*h, *t} [id; : x — D[\ . [D0-i-1]

Snoc x PRI [D]

(The last step follows from Lemma 7.8.) This finishes the case and the inductive proof. Using Corollary 3.3.8
(2), we conclude that

fiz(f) = 1list reverse € U, ¢ <= U4
ie., listreverse € QUlJ,[D%] <= (QulJ, D]
ie., list_reverse ¢ [D] <= [D]
as required. O
Filter

Our most interesting derived lens, list_filter, is parameterized on two sets of views, D and E, which we
assume to be disjoint and non-empty. In the get direction, it takes a list whose elements belong to either
D or E and projects away those that belong to E, leaving an abstract list containing only Ds; in the put
direction, it restores the projected-away Es from the concrete list. Unlike 1ist_reverse, the put function for
list_filter depends on both the abstract and concrete views. Its definition utilizes our most complex lens
combinators—wmap and two forms of conditionals—and mutual recursion, yielding a lens that is well-behaved
and total on lists of arbitrary length.

46

In the get direction, the desired behavior of 1list_filter D E (for brevity, let us call it) is clear. In
the put direction, things are more interesting. To begin with, the lens laws impose some key constraints on
the behavior of I\,. The GETPUT law forces the put function to restore each of the filtered elements when
the abstract list is put into the original concrete list. For example (letting d and e be elements of D and E)
we must have I\ ([d], [e d]) = [e d]. The PUTGET law forces the put function to include every element
of the abstract list in the resulting concrete list and to only take Es (not Ds) from the concrete list.

In the general case, where the abstract list a is different from the filtered concrete list ["¢, there is
some freedom in how I\, behaves. First, it may selectively restore only some of the elements of F from the
concrete list (or indeed, even less intuitively, it might add some new elements of E that it somehow makes
up). Second, it may interleave the restored E's with the Ds from the abstract list in any order, as long as
the order of the Ds is preserved from a. From these possibilities, the behavior that seems most natural to
us is to overwrite elements of D in ¢ with elements of D from a, element-wise, until either ¢ or a runs out
of elements of D. If ¢ runs out first, then I\, appends the rest of the elements of a at the end. If a runs out
first, then I\, keeps any remaining F's that may be left at the end of ¢ (discarding any remaining Ds in ¢,
as it must to satisfy PUTGET). For example, [\ ([1, [d e]) yields [e], not [1, and I\, ([d], [e]) is [e d],
not [d e].

These choices lead us to the following specification for a single step, in the put direction, of a recursively
defined lens implementing [. If the abstract list a and concrete list ¢ are both cons cells whose heads are in D,
then it yields the head of a and recurses on both tails. If ¢ begins with an E (i.e., ¢ has type F :: [D]1&[E]),
then it restores the head of ¢ and recurses on a and the tail of ¢. If a is empty and ¢ begins with a D (¢ has
type D :: [D]& [E]), then it restores all the remaining Es from ¢ and returns. Translating this into the lens
combinators defined above leads (modulo a little new notation and a few additional technicalities, explained
below) to the definition below of list_filter and a helper lens, inner_filter, by mutual recursion. The
singly recursive variant with inner filter inlined has the same behavior as the version presented here.
We split out inner filter so that we can give it a more precise type, facilitating reasoning about well-
behavedness and totality: in the get direction it maps lists containing at least one D to D :: [D]; the
corresponding types for list_filter include empty lists.

list_filter D F =
cond [E] [1 [DY¥] fitry (\c. c@QLanyp])
(const [1 [1)
(inner_filter D E)

inner filter D F =
ccond (E :: ([DY*1&[FE]))
(t1 anyg; inner filter D E)
(wmap {*t — list_filter D E})

VD,ECT. with DNE =0 and D # () and E # (.
list_filter D FE € [D1&[E] <& [D] and
inner filter D F € [DV“]1&[F] <& [DYv]

The “choice operator” anyp, denotes an arbitrary element of a non-empty set D.% The function fitry, is used
by the cond to strip out any Ds from the tail of ¢ remaining when the a argument becomes empty; this is the
usual list-filtering function, which for present purposes we simply assume has been defined as a primitive.
(In our implementation, we actually use 1ist_filter ” here; but for expository purposes we prefer to avoid
this extra bit of recursiveness.) Finally, the function Ac. ¢c@ [anyp] appends some arbitrary element of D to
the right-hand end of a list ¢. It is used by cond for the case where a non-empty a is being put into a list
¢ that does not contain any Ds; by adding a dummy d at the end of ¢, it produces a concrete list that can

6We are dealing with countable sets of finite trees here, so this construct poses no metaphysical conundrums; alternatively,
but less readibly, we can pass list_filter an extra argument d € D.

47

validly be passed to inner_filter, which expects at least one D in its concrete argument marking the point
where the head of a should be placed.

To illustrate how all this works, let us step through two examples in detail. In both, the concrete type is
[D1&[E] and the abstract type is [D] where D = {d} and E = {e}. For the first example, let the abstract
tree a = [d], and the concrete tree ¢ = [e d e]. At each step, we underline the next term to be reduced.

(list_filter D E)\ (q, ¢)

= (imnner_filter D E)\ (q, ¢)
by the definition of cond, as a = [d] € D :: [D] and c € ([D1&[E])\ [E]
= (t1 anyg; inner filter D E)\ (a, ¢)
by the definition of ccond, as c= [e d e] € E :: ([D**1&[E])
= (t1 anyg) \, ((inner_filter D E)\, (a, (t1 anyg),” c), c)
by the definition of composition
= (tl anyg)\ ((inner_filter D E)\ (a, [de]), c)
reducing (t1 anyg), ¢
= (t1 anyg)\ ((wmap {*t — list_filter D E})\ (a, [d el), c)
by the definition of ccond, as @ = [d] ¢ E :: ([D**]1&[E])
= (tlanyg)\ (d = ((List_filter D E)\,([1, [el)), c)
by the definition of wmap plus id\,(d, d) =4
= (e1angp) \ (a3 ((const O [)\.(1, Le)),)
by the definition of cond, as [] € [] and [e] € [F]
= (t1 anyg) \\(d:: [el, ¢)
by the definition of const
= [edel
by the definition of t1

The second example illustrates how the “fixup functions” supplied to the cond lens are used. Let a = []
and c = [d e].

(list_filter D E)\ (a, ¢)

(const 0)\, (1, Qe fitrp) [d e])

by the definition of cond, as a = [] but ¢ ¢ [F]
(const [1 [1)\,([1, [el)

by the definition of fitrg
= [el]

by definition of const

We now argue that 1ist_filter is well behaved and total. As before, the well-behavedness proof is
straightforward: we simply decide on types for recursive uses of both list_filter and inner_filter and
then show that, under this assumption, the bodies of both lenses have these same types.

7.11 Lemma [Well-behavedness]: VD, ECT. with DNE =0 and D # 0 and E # (. list filter D F €
[D1&[E] 2 [D] and inner_filter D E € [D'“]&[E] & [D'«].

Proof: We use corollary 3.3.8 (1), assuming

list_filter D E € [DI&[E] 2 [D]
inner_filter D E € [DV“]&[E] £ [D'¥]

and deriving the expected types for list_filter and inner_filter from their recursive definitions.

48

We first derive the type for list_filter D E. The outermost combinator is a cond lens with concrete
predicate C; = [E] and abstract predicates A; = [1 and A, = [D'*]. We must show that

const [J[1] € CNCy 2 A
const [1 [1 € ([DI&[EI)NILE] 2 (]
ie., const [1 [€ [E]l=21[]

and

inner filter DE € C\Cp = A,
inner filter D E € ([D1&[F1)\ [E]l & [D'¥]
ie., innerfilter DE € [DV“]&[E] 2 [D'+].

The first fact follows from the type of const; the second is immediate by hypothesis. Next we prove that
the functions fltry and (Ac. c@ Lanyp]) have the correct types:

fitry € (ID“*1&[E1) — ([E])q
Ac. c@lanyp] € ([E]) — ([D¥*1&[E])q

Both are immediate. Hence, using the type of cond, we conclude that 1ist_filter D E € ([D]&[E]) =
([JU [DY*“])—ie., list filter D E € ([D1&[FE]) & [D]—as required.

Next we derive the type for inner filter D FE, working top down. The outermost lens is a ccond
combinator. We must show that each branch has the correct type.

(t1 anyg; inner filter D E) € ([DY“1&[FE1)N(E :: ([DY*1&[F1)) & [D'¥]
ie, (tl anyg; inner filter D E) € (E: ([DY¥“1&[E])) = [D'+]

wmap {*t — list filter D E} € ([D“*1&[E])\ (E :: ([DY"“]1&[E])) = [D'+]
i.e., wmap {*t+ list filter D E} € D ([D]&[E])= [D!'¥]

The first fact follows from the type of tl with any; € E, the composition operator, and the hy-
pothesis about the type of inner filter. The second follows from the type of wmap, the observa-
tion that dom(D :: ([D]1&[E])) = dom([D!“]1), our hypothesis about the type of list_filter, and
Lemma 7.2, which states that cons cell types are shuffle closed. Using the type of ccond, we conclude that
inner_filter € [D™“]&[E] & [D'“] as required. O

The totality proof for list_filter, on the other hand, is somewhat challenging, involving detailed
reasoning about the behavior of particular subterms under particular conditions. This is not too surprising,
given the well-known difficulties of reasoning about totality of ordinary recursive functional programs. We
do not imagine that, in practice, detailed proofs of totality will be undertaken for very many lenses—most
lens programmers will probably be satisfied with the assurance of (easier) proofs of well-behavedness plus
informal reasoning about totality, just as most working functional programmers are reasonably happy with
typechecking plus informal totality arguments for their functions. Still, it is interesting to work through a
few non-trivial totality proofs in detail, to see what sorts of reasoning techniques are required.

7.12 Lemma [Totality]: VD, ECT. with DNE = () and D # () and E # §. listfilter D E €
[D1&[FE] <= [D] and inner_filter D E € [D'*]1&[F] <= [D'“].

Proof: To start, note that the pair (inner filter D FE, list_filter D F) is the fixed point of the
following function from pairs of lenses to pairs of lenses:

f = XLU).(ccond E :: ([D¥*I&[E])
(61 an; 1)
(map {*t — I'})
cond [E] [1 [D'] fitry (\c. cQLanyp])
(const [1 [1)
)

49

Note that the order of inner filter and 1ist_filter is swapped here with respect to the original definition.
We need to take them in this order because the totality of 1list_filter at each stage of the induction is
going to depend on the totality of inner filter at the same stage (plus the totality of list_filter at the
previous stage), while the totality of inner filter will depend only on the totality of inner filter and
list_filter at the previous stage.

In outline, the proof goes as follows. We start by choosing a sequence of pairs of total type sets
(To, Ty), (T1, Ty),.... (Note that each T; and T} here is a set of total types and a total type is itself a
pair (C, A).) Next, we prove a key property of f: that, when we apply it to a pair of lenses possessing all
the types in some (T;, Tj), the result is a pair of lenses possessing all the types in (T;y1,T; ;). To match the
form of Corollary 3.3.14, we do this in two steps: first, we assume that [has every total type in T; and I’ has
every total type in T} and prove that 71 (f(I,1’)) has every total type in T;y1; second, we assume that [has
every total type in T;+1 and !’ has every total type in T} and prove that m2(f(l,1’)) has every total type in
T;, 1. Next we choose an increasing instance of the sequence—i.e., a chain (79, 75) C (11, 77) C (72,73) C .
where each 7; € T; and 7] € T}. We argue that the limit of this increasing instance, (U, 7i,J; 77), is the pair
of total types we want—i.e.,

(([DY“1&[FE], [D'*]), ([D1&[E], [D1)).

We conclude by 3.3.14 that the fixed point of f—i.e., the pair (inner filter D E,list_filter D F)—has
this type, finishing the proof. We now proceed to the details.
We first define the sequence of pairs of total type sets:

To = {(0,0)}
T, = {(©.0)}
Tisn = {([DV*1&[E%Y], [DY*]) |2z +y =i}
T,,, = {([D**1&[E%¥], [D%*])|x+y=i}

To make the construction of this sequence clear, let us calculate its first few elements explicitly:

T: = {(0,0)}

T, = {(00,0)}

T, = {((D'-11,[D"1])}

T, = {([D11, (D), (LE T, 1))}

TS — {([Dl”2], I:Dl..2:|)7 ([Dl”l]&[Eo”l], [Dllj)}

Ty = {([D*1,[D*]), ([D"1I& BT, [D*1), (LE°21. 1)}

In the proof, we use some abbreviations to lighten the presentation. We abbreviate the type argument
to the ccond lens appearing in the first component of the body of F' as follows:

Cy = E :: ([D"“]&[E])

Similarly, we abbreviate the type arguments to the cond in the second component:

c; = [E]
A = 0
Ay = [D%*]

In each case of the inductive proof below, we will define C' and A to be the source and target of the type we
are trying to establish for the given lens.

We now prove, by induction on i, the facts about f needed to apply Corollary 3.3.14: first, that if [has
every total type in T; and !’ has every total type in T}, then w1 (f(I,1")) has every total type in T;y1; and
second, that if I has every total type in T;1; and I’ has every total type in T}, then m2(f(l,1’)) has every
total type in T, ;.

For the base case (i = 0), we must first show that w1 (f(I,1’)) has every total type in the singleton
set Ty = {(0,0)}. This is immediate, since every lens is total at this type. Second, we must show that

50

ma(f(1,1")) has every total type in the singleton set T} = {([1,[1)}. We let C = [1 and A = [] and show
that mo(f(I,1')) € C <= A. Recall that the second component of f(I,1') is defined as

cond [F] [1 [D'“] fitry (Ac. c@QLanyp])
(const [1 [1)
l.

Observe that, as (CNC7) = ([1 N [E]) = [] is not empty but (C\ C]) = ([1\ [E]1) =0, by Theorem 6.6
we can use the always-true rule for cond. Thus, to show that the whole conditional has type C <= A}

which is what we want, since A} = A = []) it suffices to show that the first branch, const [] [] has type
1 Yy
CNOp <= Al

const [] [1 € CNop <= A
ie, const [1[] € [ONI[E] <= [
ie, const[][] € 0 <= 0,
which follows from the type of const.
For the induction step (i > 0), we first prove that 71 (f(l,1")) has every total type in T;;1, assuming that
[has every total type in T; and I’ has every total type in T;. Pick an arbitrary total type 7 from T;;1. We
break the argument into three sub-cases.
Case z > 0 and y > 0: Here 7 has the form (C, A) with C = ([D'*1&[E%¥]) and A = [D'*]. Recall
that the first component of f(I,1’) is

ccond (E :: ([D'“1&[E]))
(t1 anyg; 1)
(smap {5t - I'}).

The typing rule for ccond requires that we prove that the branches have the following types:

(t1 anyg; 1) € cCnec, <= A
ie., (tl anyg; 1) € ([DV"1&[E*¥])N(E :: ([DV*1&[F])) <= [D'“]
ie,asy >0, (t1 anyg;) € E: ([DY*]&[E%Y~1]) <= [D!*]
which follows from type of t1 and the induction hypothesis;
wmap {*t — '} € C\C; <= A
ie., wmap {*xt—1'} € ([D“?1&[E%¥])\ (E: ([D*“1&[F])) <= [D'*]
ie,asx >0, wmap {*t—10'} € D ([D%*~11&[E%Y]) <= [DY<]

which follows from type of wmap—by Lemma 7.2, both D :: ([D°-*=11& [E°¥]) and
[D**],ie., D :: [D%*71] are shuffle closed; also dom(D :: ([D%-*~1]& [E®%¥])) =
dom([D'*])—and the induction hypothesis.

Using the type of ccond, we conclude that m(f(I,1')) € C <% A, finishing the case.
Case x = 0: Recall that the set T,y is {([D*1&[E%¥], [D*]) | 2 +y = i}. The only element 7 in
this set with « = 0 is the empty total type:

(LD & [E*¥], [D*])
(0& LE*-+1,0)
(0.0).

Immediately, the lens 71 (f(1,1')) has type § <= 0, finishing the case.
Case y = 0 and z > 0: By construction, 7 is (C, A) with C = [D'*] and A = [D**]. To verify the
type of the ccond, we first observe that C N C; = [D'*1 N (E :: ([D**1&[E])) = 0, so the ccond always

51

selects the second branch in both the get and put directions. By Theorem 6.5, it suffices to show that the
second branch has type C'\ C1 <= A (or just C <= A since C'\ C1 = O):

wmap {*t — '} € C < A
ie,, wmap {*t—10'} € [Dl*] <& [D'?]
ie,asx >0, wmap {*t—1'} € D:u([D%*71]) <& [D"]
which follows from type of wmap (with the observation that D :: [D%-*~1] = [D!*]
and Lemma 7.2, which states that cons cell types are shuffle closed) and the induction

hypothesis.

Using the always-false type of ccond, we conclude that 71 (f(l,1")) € C <% A, finishing the case.

We now turn to the second half of the induction step. We must prove that mo(f(I,1’)) has every total
type in Tj ;, assuming that [has every total type in T;;1 and I’ has every total type in T;. Pick an arbitrary
type 7’ from Tj ;. This time we break the argument into two sub-cases.

Case x > 0: Here 7/ has the form (C, A) with C = [D**]&[E®¥] and A = [D"*]. The outer lens in
m2(f(1,1')) is a cond. By Theorem 6.4, to show that this lens has the desired type, we must show that the
branches have the following types:

const [] [1 € CNO, <& AnA)
ie, const [1[] € ([D"*1&[E*Y])NI[E] <= [D**1NnI[]
ie., const [1[] € [E0¥] <[]

which follows from the type of const, as the default tree, [1, is in [E%¥], for any ¥;

l € C\C| <= AnA,
ie., 1 € ([D%=*1&[E%¥])\ [F] <= [D%*]1n[D*]
ie., 1 € [DV*1&[E% Y] <& [D'*]

which follows by the induction hypothesis, as ([D'*1& [E%¥], [D'*]) € T;41.

Next, we must verify that the conversion functions have the correct types:

fitr e C\C] — (CNC)a
ie., flirg € [DY*1&[E%Y] — (LE%Y])q
Ac. c@Qlanyp]l € cnCy — (C\Ca
ie, A cQlanyp] € [E%Y] — ([DM*1&[E%¥])q

Both of these facts are immediate. Finally, we calculate the target type:

AN (4} U AY)

= [D%*1n (00U ID"])
[DO*]

- A

By Theorem 6.4, we conclude that m2(f(1,1")) € C <= A, finishing the case.

Case x = 0: Here 7/ must be (C, A) with C = [E°*¥] and A = []. As CNC} is not empty and (C'\ C}) is
empty, by Theorem 6.6, we may use the always-true rule for cond. Using this rule, to show that the instance
of cond has type C' <= A} (which is what we want since A; = A = [1) it suffices to show that const [1 []
has type C N Cj <= A}; ie., that it has type [E%¥] <% [], as we verified above. We conclude that
ma(f(1,1')) € C <= A, which finishes the case.

To apply Corollary 3.3.11 and finish the totality proof, we must show that

([D**“1&[E], [D*]), ([D1&[E], [D1))

52

is the limit of an increasing instance of elements of (T, T'). Let (19, 7)) C (11,71) C ... be defined as

T0 = (0,@) € TO
= (0,0) e To
Ti:i-l = ([DW(HD/21& [EO-G/27 [DV(HD/D]) e T,y
T = (DTG EO-G/D] [DO-(FD/A]) e Ty,

where i/n is integer division of ¢ by n. To show that the limit is the pair of total types we want, we prove
that each set is contained in the other. First, observe that, for any ¢ € ([D***1&[E]) and a € [D'*], we
can find an 7 such that (c,a) € 7; (lifting € to pairs of sets in the obvious way) by choosing 7 so that i/2 is
greater than the maximum number of elements of D in ¢, the number of elements of E in ¢, and the number
of elements in a. Similarly, for every ¢ € [DI&[E] and a € [D], we can find a 7/ such that (c,a) € 7/ by
choosing a large enough 4. The other inclusion is immediate: every 7; is a subset of ([D'“]1&[FE1, [D'“])
(lifting C to pairs of pairs of sets twice, pointwise), and every 7/ is a subset of ([D1&[E], [D]). O

8 Extended Example: A Bookmark Lens

In this section, we develop an larger and more realistic example of programming with our lens combinators.
The example comes from a demo application of our data synchronization framework, Harmony, in which
bookmark information from diverse browsers, including Internet Explorer, Mozilla, Safari, Camino, and Om-
niWeb, is synchronized by transforming each format from its concrete native representation into a common
abstract form. We show here a slightly simplified form of the Mozilla lens, which handles the HTML-based
bookmark format used by Netscape and its descendants.

The overall path taken by the bookmark data through the Harmony system can be pictured as follows.

html concrete
other
abstract
vie

[__sync /

new

bookmark|(new
view

We first use a generic HTML reader to transform the HTML bookmark file into an isomorphic concrete tree.
This concrete tree is then transformed, using the get direction of the bookmark lens, into an abstract “generic
bookmark tree.” The abstract tree is synchronized with the abstract bookmark tree obtained from some
other bookmark file, yielding a new abstract tree, which is transformed into a new concrete tree by passing
it back through the put direction of the bookmark lens (supplying the original concrete tree as the second
argument). Finally, the new concrete tree is written back out to the filesystem as an HTML file. We now
discuss these transformations in detail.

Abstractly, the type of bookmark data is a name pointing to a value and a contents, which is a list of
items. An item is either a link, with a name and a url, or a folder, which has the same type as bookmark
data. Figure 2 formalizes these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a <dt> element containing an
<a> element whose href attribute gives the link’s url and whose content defines the name. The <a> element
also includes an add_date attribute, which we have chosen not to reflect in the abstract form because it
is not supported by all browsers. A bookmark folder is represented by a <dd> element containing an <h3>

53

ALink, = {name — Val url— Val}
ALink = {link — ALink;}
AFolder; = {name+— Val contents— AContents}
AFolder = {folder — AFolder;}
AContents = [Altem]
Altem = ALink U AFolder
Figure 2: Abstract Bookmark Types
<html>

<head> <title>Bookmarks</title> </head>
<body>

<h3>Bookmarks Folder</h3>

<d1>

<dt> Google </dt>
<dd>
<h3>Conferences Folder</h3>
<d1>
<dt> ICFP </dt>
</d1>
</dd>
</d1>
</body>
</html>

Figure 3: Sample Bookmarks (HTML)

header (giving the folder’s name) followed by a <d1> list containing the sequence of items in the folder. The
whole HTML bookmark file follows the standard <head>/<body> form, where the contents of the <body>
have the format of a bookmark folder, without the enclosing <dd> tag. (HTML experts will note that the use
of the <d1>, <dt>, and <dd> tags here is not actually legal HTML. This is unfortunate, but the conventions

established by early versions of Netscape have become a de-facto standard.)

The generic HTML reader and writer know nothing about the specifics of the bookmark format; they
simply transform between HTML syntax and trees in a mechanical way, mapping an HTML element named

tag, with attributes attrl to attrm and sub-elements subeltl to subeltn,

<tag attrl="vall" ... attrm="valm">
subeltl ... subeltn
</tag>

into a tree of this form:
attrl — vall

attrm — valm

tag— subeltl

*

subeltn

Note that the sub-elements are placed in a list under a distinguished child named *. This preserves their
ordering from the original HTML file. (The ordering of sub-elements is sometimes important—e.g., in the

54

{html -> {* ->
[{head -> {* -> [{title -> {* —>
[{PCDATA -> Bookmarks}]}}1}}
{body -> {* ->
[{h3 -> {* —>
{d1 > {x >
[{dt -> {*x —>
[{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}
{dd -> {*x —>
[{h3 -> {* -> [{PCDATA ->
Conferences Folder}]1}}

[{PCDATA -> Bookmarks Folder}]}}

{a1 > {x >
[{dt -> {* ->
[{a —>
{x -> [{PCDATA -> ICFP}]
add_date —-> 1032528670
href -> www.cs.luc.edu/icfp

FRIFFIFFIFFIFIIBIIY

Figure 4: Sample Bookmarks (concrete tree)

Val = {N}

PCDATA = {PCDATA — Val}

CLink = <dt> CLink; :: [1 </dt>

CLink; = <a add_date href> PCDATA :: []

CFolder = <dd> CContents </dd>

CContents = (CContents; :: CContentsy :: []

CContents;y = <h3> PCDATA :: [1 </h3>

CContentss = <d1> [Cltem] </d1>

Cltem = CLink U CFolder

CBookmarks = <html> CBookmarks; :: CBookmarkss :: [] </html>
CBookmarks; = <head> (<title> PCDATA </title>:: []) </head>
CBookmarkss = <body> CContents </body>

Figure 5: Concrete Bookmark Types

95

{name -> Bookmarks Folder
contents ->
[{1ink -> {name -> Google
url -> www.google.com}}
{folder —>
{name -> Conferences Folder
contents ->
[{link —>
{name -> ICFP
url -> www.cs.luc.edu/icfp}}1}}1}

Figure 6: Sample Bookmarks (abstract tree)

present example, it is important to maintain the ordering of the items within a bookmark folder. Since
the HTML reader and writer are generic, they always record the ordering from the the original HTML in
the tree, leaving it up to whatever lens is applied to the tree to throw away ordering information where it
is not needed.) A leaf of the HTML document—i.e., a “parsed character data” element containing a text
string str—is converted to a tree of the form {PCDATA -> str}. Passing the HTML bookmark file shown
in Figure 3 through the generic reader yields the tree in Figure 4.

Figure 5 shows the type (CBookmarks) of concrete bookmark structures. For readability, the type
relies on a notational shorthand that reflects the structure of the encoding of HTML as trees. We write
<tag attrl...attrn> C </tag> for {tag — {attrl— Val ...attrn— Val * — C}}, where Val is the set
of all values (trees with a single childless child). For elements with no attributes, this degenerates to simply
<tag> C </tag> = {tag— {x — C}}.

The transformation between this concrete tree and the abstract bookmark tree shown in Figure 6 is
implemented by means of the collection of lenses shown in Figure 7. Most of the work of these lenses (in
the get direction) involves stripping out various extraneous structure and then renaming certain branches to
have the desired “field names.” Conversely, the put direction restores the original names and rebuilds the
necessary structure.

It is straightfoward to check, using the type annotations supplied, that bookmarks € CBookmarks =
AFolder,. (We omit the proof of totality, since we have already seen more intricate totality arguments in
Section 7).

In practice, composite lenses are developed incrementally, gradually massaging the trees into the correct
shape. Figure 8 shows the process of developing the 1ink lens by transforming the representation of the
HTML under a <dt> element containing a link into the desired abstract form. At each level, tree branches
are relabeled with rename, undesired structure is removed with prune, hoist, and/or hd, and then work is
continued deeper in the tree via map.

The put direction of the 1ink lens restores original names and structure automatically, by composing
the put directions of the constituent lenses of 1ink in turn. For example, Figure 9 shows an update to the
abstract tree of the link in Figure 8. The concrete tree beneath the update shows the result of applying put
to the updated abstract tree. The put direction of the hoist PCDATA lens, corresponding to moving from
step wviit to step vii in Figure 8, puts the updated string in the abstract tree back into a more concrete tree
by replacing Search-Engine with {{PCDATA -> Search-Enginel}. In the transition from step vi to step v,
the put direction of prune add_date {|$todayl} utilizes the concrete tree to restore the value, add_date ->
1032458036, projected away in the abstract tree. If the concrete tree had been 2—i.e., in the case of a new
bookmark added in the new abstract tree—then the default argument {| $today |} would have been used to
fill in today’s date. (Formally, the whole set of lenses is parameterized on the variable $today, which ranges
over names.)

The get direction of the folder lens separates out the folder name and its contents, stripping out undesired

56

link =
hoist *;
hd [1;
hoist_nonunique a {* add_date href};

rename * name;

rename href url;

prune add_date {$today};

map {name -> (hd [];

hoist PCDATA)}

folder =

hoist *;

hoist_hd {h3};

fork {h3} (id) (hoist_hd {d1});

rename h3 name;

rename dl contents;

€ {*+— Clink; :: [1}

CLink; :: [1
(1Link1

: {*+— PCDATA :: [], add_date — Val,

href — Val}

: {name — PCDATA :: [], add_date — Val,

href — Val}

: {name — PCDATA :: [1, add_date — Val,

url — Val}

: {name — PCDATA :: [1, urlw— Val}
: PCDATA
2 [name +— Val, url+ Val} = ALink,

€ {* — CContents}
: CContents
: {h3— {*+— PCDATA :: [1}, CContentss :: [1}
: {h3— {*— PCDATA : [1},

dl — {* — [Cltem]}}}

: {name — {* — PCDATA :: 11},
dl — {* — [Cltem]}}

: {name — {* — PCDATA :: [1},
contents — {* — [Cltem]]}]

map {name -> (hoist *; : PCDATA :: []
hd [1; : PCDATA
hoist PCDATA)
contents -> (hoist *; [Cltem]
list_map item)}
2 [name +— Val, contents+ [Altem]} = AFolder;

item =
map { dd -> folder, dt -> link };
rename_if_present dd folder;
rename_if_present dt link

bookmarks =
hoist html;
hoist *;

tl {lhead -> {I* —> [{ltitle —> {* —>

[{IPCDATA -> Bookmarks[}] [} }1 [} [};
hd [1;
hoist body;
folder

€ Cltem

: {dd — APFolder;} U {dt — ALink;}
: {folder — AFolder;} U {dt— ALink;}
: 2 AFolder U ALink = Altem

€ CBookmarks
: {* — CBookmarks; :: CBookmarkss :: [1}
: CBookmarks; :: CBookmarkss :: []

: CBookmarkss :: [1]
CBookmarksg
: {* — CContents}

2 AFolder,

Figure 7: Bookmark lenses

o7

Step Lens expression Resulting abstract tree (from ’get’)
= id {x -
[{a -> {* -> [{PCDATA -> Googlel}]
add_date -> 1032458036
href -> www.google.com}}]}}
1: hoist * [{a -> {*x -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]
i3 hoist *; hd {} {a > {*x -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}
w: hoist *; hd {}; {* -> [{PCDATA -> Googlel}]
hoist_nonunique a {* add_date href} add_date -> 1032458036
href -> www.google.com}
v: hoist *; hd {}; {name -> [{PCDATA -> Googlel}]

hoist_nonunique a {* add_date href};
rename * name;

rename href url

add_date -> 1032458036
url -> www.google.com}

vl

hoist *; hd {};
hoist_nonunique
rename * name;

rename href url;
prune add_date {$today}

a {* add_date href};

{name -> [{PCDATA -> Googlel}]
url -> www.google.com}

VL

hoist *; hd {};
hoist_nonunique a {* add_date
rename * name;

rename href url;

prune add_date {$today};

map { name -> (hd {}) }

href};

{name -> {PCDATA -> Google}
url -> www.google.com}

VL

hoist *; hd {};
hoist_nonunique a {* add_date
rename *=name;

rename href url;

prune add_date {$today};

map { name -> (hd {}; hoist PCDATA) }

href};

{name -> Google
url -> www.google.com}

{1ink -> {name -> Google

Figure 8: Building up a link lens incrementally.

url -> www.google.com}}

updated to...

yields (after put)...

{dt -> {*x —>

[{a -> {*x -> [{PCDATA -> Search-Enginel}]
add_date -> 1032458036
href -> www.google.com}}]}}

Figure 9: Update of abstract tree, and resulting concrete tree

o8

{1ink -> {name -> Search-Engine
url -> www.google.com}}

structure where necessary. Note the use of hoist_hd to extract the <h3> and <d1> tags containing the folder
name and contents respectively; although the order of these two tags does not matter to us, it matters to
Morzilla, so we want to ensure that the put direction of the lens puts them to their proper position in case of
creation, which hoist_hd will ensure. Finally, we use map to iterate over the contents.

The item lens processes one element of a folder’s contents; this element might be a link or another folder,
so we want to either apply the 1ink lens or the folder lens. Fortunately, we can distinguish them by whether
they are contained within a <dd> element or a <dt> element; we the map operator to wrap the call to the
correct sublens. Finally, we rename dd to folder and dt to link.

The main lens is bookmarks, which (in the get direction) takes a whole concrete bookmark tree, strips
off the boilerplate header information using a combination of hoist, hd, and t1, and then invokes folder
to deal with the rest. The huge default tree supplied to the t1 lens corresponds to the head tag of the
html document, which is filtered away in the abstract bookmark format. This default tree would be used to
recreate a well-formed head tag if it was missing in the original concrete tree.

9 Lenses for Relational Data

We close our technical development by presenting a few additional lenses that we use in Harmony to deal with
preparing relational data—trees (or portions of trees) consisting of “lists of records”—for synchronization.
These lenses do not constitute a full treatment of view update for relational data, but may be regarded as a
small step in that direction. In particular, the join lens performs a transformation related to the outer join
operation in database query languages.

Flatten

The most critical (and complex) of these lenses is flatten, which takes an ordered list of “keyed records”

like
Phone — 333-4444
Pat —
URL +— http://pat.com
, Phone — 888-9999 I}G
Chris —

URL — http://chris.org

and flattens it into a bush like
Phone — 333-4444
Pat —
URL +— http://pat.com
. Phone — 888-9999
Chris +—
URL — http://chris.org

The importance of this transformation is that it makes the “intended alignment” of the data structurally
obvious, freeing the synchronization algorithm from having to understand that, although the data is presented
in an ordered fashion, order is actually not significant here. Synchronization simply proceeds child-wise—i.e.,
the record under Pat is synchronized with the corresponding record under Pat from the other replica, and
similarly for Chris. If one of the replicas happens to place Chris before Pat in its concrete, ordered form,
exactly the same thing happens.

99

More generally, flatten handles concrete lists in which the same key appears more than once—e.g.,

[Phone > 333-4444]
Pat —
URL +— http://pat.com
. Phone — 888-9999
Chris —
URL — http://chris.org
Phone — 123-4321
Pat —
URL +— http://pattoo.com

—by placing all the records with the same key (in the same order as they appear in the concrete view) in
the list under that key in the abstract view:

Phone — 333-4444
URL — http://pat.com
Pat —
Phone — 123-4321
URL — http://pattoo.com
. Phone — 888-9999
Chris —
URL — http://chris.org

In the put direction, flatten distributes elements of each list from the abstract bush into the concrete
list, maintaining their original concrete positions. If there are more abstract elements than concrete ones,
the extras are simply appended at the end of the resulting concrete list in some arbitrary order, using the
auxiliary function listify:

lustify({}) = [
listify(t) {k = thalf oo {k o tha b o listify(t\r)
where k = anyyomy) and t(k) = [thi, ..., tky]

In the type of flatten, we write AListy (D) for the set of lists of “singleton views” of the form {]k — d[},
where k € K is a key and d € D is the value of that key—i.e., AListx (D) is the smallest set of trees
satisfying AListx (D) = D U ({{k — D} | k € K} :: AListg(D)).

{} ife=11
a’+{]kn—>d:: [][} ifc:{]kHdl}::c’
flatten ‘¢ = and flatten,/ ¢ = a’ with k & dom(a’)

a’+{]k»—>d::s|} ifc:{]kHdl}::c’
and flatten "¢ =a’ + {]k — s[}

listify(a) ifc=1[1ore=0Q
{k—d}ur ife={k—d}:d

and a(k) =d' :: [1

and r = flatten ™\ (a\g, ¢)
{k—d}ur ife={k—d}:c

and a(k) =d' :: s with s # [1]

and r = flatten\, (a\r + {{k — s|}, ¢)
r ifc:ﬂkHdﬂ::c’

and k & dom(a)

and r = flatten ™\ (a, ¢’)

flatten\ (a, ¢)

VKCN.¥DCT. flatten€ AListx (D) <% {|k 2 (pr1]

60

This definition can be simplified if we assume that all the ks in the concrete list are pairwise different—i.e.,
that they are truly keys. In this case, the abstract view need not be a bush of lists: each k can simply point
directly to its associated subtree from the concrete list. In practice, this assumption is often reasonable: the
concrete view is a (linearized) database and the ks are taken from a key field in each record. However, the
type of this “disjoint flatten” becomes more complicated to write down, since it must express the constraint
that, in the concrete list, each k occurs at most once. Since we eventually intend to implement a mechanical
typechecker for our combinators, we prefer to use the more complex definition with the more elementary

type.

An obvious question is whether either variant of flatten can be expressed in terms of more primitive
combinators plus recursion, as we did for the list mapping, reversing, and filtering derived forms in Section 7.
We feel that this ought to be possible, but we have not yet succeeded in doing it.

9.1 Lemma [Well-behavedness]: VKCN.VDC7T. flatten € AListy (D) = {]K s (D] I}

Proof:
GET: Suppose ¢ € AListg (D) and flatten, "¢ is defined. Proceed by induction on the number of list
cells in ¢. If ¢ = [1, then the result is immediate. If ¢ = {]k — d[} :: ¢, then, by induction, flatten, ¢’ €

{]K Zs [DY] [} But then o’ + {{k — d :: (O]} (if flatten,/ ¢ = o’/ with k ¢ dom(a’)) and o’ + {{k — d :: 5[}
(if flatten,/ ¢ = a’ + {{k — s[}) are also in ﬂ[(s (DY) I}, as required.

Put: First, observe that listify(a) € AListg (D). To see this, reason by induction on the size of dom(a).
If dom(a) = 0, then listify(a) = [1 € AListg (D). Otherwise, listify(a) = {k > thy] = -+ = {k — thy| =
listify(t\x) where k = anyyom,) € K and and (k) = [tki,...,tky], from which the result follows by the
induction hypothesis and the definition of AListg (D).

Now, suppose ¢ € (AListg(D))q, a € {]K L (D] [}, and flatten'\ (a, ¢) is defined. If ¢ = Q, then

flatten\ (a, ¢) = listify(a) € AListy (D) by the observation above about lstify. Otherwise, we proceed
by induction on the number of list cells in ¢. If ¢ = [1, then the result again follows by the observation
about listify. If ¢ = ﬂk — d[} :: ¢, then there are three cases to consider:

o If a(k) = d' = [J, then flatten\ (a, c) = {k— d'|} :: r, with r = flatten\ (a\, ¢). By the
induction hypothesis, r € AListg (D), and the result follows immediately, since k € K and d’ € D by
the type of c.

o If a(k) = d = s with s # [1, then flatten\,(a,c) = ﬂk»—>d’|} 27, with r =
flatten\, (a\k + {]k — sl} , c’). Again, the induction hypothesis applies (observing that a\p +
ﬂk — s[} belongs to ﬂK o [D-«] I} because s is assumed to be non-empty), giving us r € AListg (D),

from which the result follows directly.

o If £ ¢ dom(a), then flatten™\ (a, ¢c) = flatten\ (a, ¢/). The induction hypothesis yields r €
AListg (D) and the result follows directly.

GETPUT: Suppose ¢ € AListg (D) and flatten\, (flatten, "¢, ¢) is defined. Proceed by induction on
the number of list cells in ¢. If ¢ = [, then flatten\ (flatten "¢, ¢) = listify({}) = [, as required. If
c= {]k — d[} :: ¢/, then there are two cases to consider:

o if flatten ¢ = da/ with k & dom(d’), then flatten, ¢ =a’ + {]k —d: [] I} and
flatten\ (flatten /¢, ¢) = {k — df} :: flatten\ (d,)
= {k > d}} :: flatten\ (flatten /¢, ¢)
= ﬂk — d[} i c by the induction hypothesis

=cC

61

e if flatten ¢’ =d' + {]k — s[}, then flatten, ¢ =a' + {]k —d s[} and

flatten\ (flatten ¢, ¢) = {]k — d[} ;o flatten\ (a' + {]k — s[} , c’)
= {k — d| :: flatten\ (flatten ¢, ¢)
= ﬂk — d[} awc by the induction hypothesis

=C

PUTGET: Observe, first, that flatten, ” (listify(a)) = a for any a. To see this, reason by induction on
the size of dom(a). If dom(a) = 0, then flatten (listify(a)) = flatten, " [1 = {} = a. Otherwise,
flatten,/ (listify(a)) = flatten/ ({k — thyf} -+ = {k > thy[} = listify(a\r)), where k = ANYom(q) and
t(k) = [tki,...,tky]. The result then follows by the induction hypothesis and n invocations of the definition
of flatten .

Now, suppose ¢ € (AListg(D))q, a € {]K s (D] [}, and flatten, (flatten '\ (a, ¢)) is defined. If
¢ =, then flatten " (flatten\ (a, ¢)) = flatten,” (listify(a)) = a by the observation above. Otherwise,

we proceed by induction on the number of list cells in ¢. If ¢ = [], then the result again follows by the
observation above. If ¢ = ﬂk — d[} :: ¢/, then there are three cases to consider:

oIf a(k) = d = [1, then, by the definition, flatten "(flatten’\ (a,c)) =
flatten/ ({{k — d'[} :: flatten\ (a\, ¢)). Now, since flatten/ (flatten\ (a\k,c)) = a\i
by the induction hypothesis, and since k ¢ dom(a\g), the definition of flatten gives
flatten/ ({k — d'} :: flatten\ (a\k,) = (a\x) + {k — d' :: O]} = a.

o If a(k) = d : s with s # [1, then, by the definition, flatten (flatten\ (a,c)) =
flatten,/ ({k — d'|} :: (flatten\, (a\x + {k — s|}, ¢))). Now, since
flatten " (flatten\ (a\k + {]k — s[} , c’)) = a\r + {]k — s[} by the induction hypothesis,

the definition of flatten,” gives flatten” ({]k — d’[} i (flatten ™\, (a\x + {]k — s[}) =
a\k + {k—d = s} =a.

o If £ ¢ dom(a), then, by the definition, flatten 7 (flatten\ (a, ¢))
flatten " (flatten\ (a, ¢)) = a by the induction hypotheses.

o

9.2 Lemma [Totality]: VKCN. VDCT. flatten € AListg (D) <= ﬂK Vs (D] I}

Proof: For the get direction, suppose ¢ € AListg (D). We must show that flatten "¢ is defined. Proceed
by induction on the number of cells in ¢. If ¢ = [], then flatten "¢ = {}. If ¢ = {]k — d[} ;o ¢, then, by
induction, flatten ¢’ is defined and the definedness of flatten ¢ follows directly.

For the put direction, suppose ¢ € (AListg(D))q and a € ﬂK s (DY ﬂ We must show that
flatten\ (a, ¢) is defined. If ¢ = Q, then flatten\ (a, ¢) = listify(a), which is defined because listify is
defined on all arguments in ﬂK oy (D] I} (as is easily verified by induction on |[dom(a)|). Otherwise, pro-

ceed by induction on the number of list cells in ¢. If ¢ = [], then the result again follows by the definedness
of listify. If ¢ = {]k — d[} :: ¢, then there are three cases to consider:

o If a(k) = d' = [1, then flatten\ (a, c) = {k— d'|} :: r, with r = flatten\ (a\s, ¢). By the
induction hypothesis, r is defined, and the definedness of flatten ™\ (a, ¢) is immediate.

oIf a(k) = d = s with s # [, then flatten\ (a,c) = {k—d} = r, with r =
flatten\ (a\;C + {]k — sﬂ , c’). Again, the induction hypothesis tells us that r is defined, and the
definedness of flatten\ (a, ¢) is immediate.

o If k & dom(a), then flatten™\, (a, ¢) = flatten\ (a, ¢'), and the result is immediate by the induction
hypothesis. 0

62

Pivot

The lens pivot n rearranges the structure at the top of a tree, transforming ﬂ? ~ k|} to {]k — t[} . Intuitively,

the value k (i.e., {]k — {[]}[}) under n represents a key k for the rest of the tree t. The get function of pivot
returns a tree where k points directly to t. The put function performs the reverse transformation, ignoring
the old concrete tree.

We use pivot heavily in Harmony instances where the data being synchronized is relational (sets of
records) but its concrete format is ordered (e.g., XML). We first apply pivot within each record to bring
the key field to the outside. Then we apply flatten to smash the list of keyed records into a bush indexed
by the keys. For example, if the concrete presentation of the data looks like this,

Name — Pat

Phone — 333-4444

URL +— http://pat.com
Name +— Chris

Phone — 888-9999

URL — http://chris.org
Name — Pat

Phone — 123-4321

URL — http://pattoo.com

then applying (map_list (pivot Name)),” yields

[Phone > 333-4444]
Pat —
URL +— http://pat.com
. Phone — 888-9999
Chris —
URL +— http://chris.org
Phone — 123-4321
Pat —
URL +— http://pattoo.com

which, as we saw above, can then be flattened into:

Phone — 333-4444
URL — http://pat.com
Pat —
Phone — 123-4321
URL — http://pattoo.com
. Phone — 888-9999
Chris —
URL — http://chris.org

In the type of pivot, we extend our conventions about values (i.e., the fact that we write k instead
of {k— {}]}) to types. If K C N is a set of names, then {n — K[} means {{n — kf} | k € K}—i.e,

{{ne {k— L} | k€ K}

(pivot n)/¢ = {k t} ifc_ﬂnHk|}
(pivot n)\ (¢, ¢) = ﬂ;‘Hkﬂ ifazj]k»—»t[}

VneN. VKCN.YCC(T\,). pivotne ({n— K|} -C) <= {{k—C|} | ke K}

63

9.3 Lemma [Well-behavedness]: VYneN. VKCN. VCC(T\,). pivot n € ({n— K} - C) &
{{k—C|} | ke K}.

Proof:
n—k

GET: (pivotn)/‘{]t I}:{]k»—»t[}e{ﬂkHC[}|k€K}

(pivot m)\, ({k — t],) = ﬂ”Hkﬂe({]nHKg-C)

GETPUT: Assume that (pivot n),"c is defined, thus ¢ = ﬂ? ~ k|} We have:

(pivot n)\, <(pivot n),/ H?H kﬂ, ﬂ?'_) kﬂ)
(pivot n)\, <{]/€Htﬂ ﬂnHkﬂ>
-

PUTGET: Assume that (pivot n)\ (a, c) is defined, thus a = {k — t[}. We have:

Pu

=

(pivot n) /' ((pivot n) \, ({k — t}, ¢)) = (pivot n),/~ {]n ~ kl} {k—t}. O

9.4 Lemma [Totality]: VneN. VKCN.VCC(T\,). pivotn € ({n— K| - C) <= {{k— C} |k € K}.

Proof: Straightforward from the definition. 0

Join
Our final lens combinator, based on an idea by Daniel Spoonhower [42], is inspired by the full outer join

operator from databases. For example, applying (join addr phone) to a tree

Chris + Paris
addr — < |Kim — Palo Alto
Pat — Philadelphia

Chris~— 111-1111
phone — (|Pat — 222-2222
Lou — 333-3333

containing a collection of addresses and a collection of phone numbers (both keyed by names) yields a tree
Chris addr — Paris

* phone - 111-2222
Kim — {]addr — Palo Alto[}

Pat 1 addr — Philadelphia
phone — 222-2222

Lou — {]phone — 333-3333[}

where the address and phone information is collected under each name. Note that no information is lost in
this transformation: names that are missing from either the addr or phone collection are mapped to views
with just a phone or addr child. In the put direction, join performs the reverse transformation, splitting
the addr and phone information associated with each name into separate collections. (The transformation
is bijective—since no information is lost by get, the put function can ignore its concrete argument.)

64

s m — ¢(m)(

(joinmn) ¢ = {Ikn—> ﬂan(n)(k
- m — {{k — a(k)(m) | k € dom(a)
(joinmm)\ (e, ¢) = ﬂnHﬂﬂkHa(m(n | k € dom(a)gﬂﬂ

K ! T T ?
VKCN.VTCT. joinmn € ﬂ - ﬂ {l KN {Im;—) I}UﬂmHTﬂG

nHﬂK,_,TI} n—T n—T

gg I} | k € dom(c(m)) U dom(c(n))l}

9.5 Lemma [Well-behavedness]: VKCN. VI'C7. joinm n € ﬂm — ﬂK oy Tl} ,1 ﬂK oy Tl}l} =
{]K’l’ {]mHT,n»LT[}U{]mllT,n»—»TI}I}-

Proof:

GET: Suppose ¢ € ﬂm — {]K o Tl} SN {]K o TI}I} Suppose that (join m n) " cis defined, and write o’
for (join m n) " ¢. For each k € K, we must show that a'(k) € (ﬂm — T, n o Tl} U {Im o T, n— TI})Q.
There are three possibilities to consider: First, if & € dom(c(m)), then c¢(m)(k) € T by the type
of c. Also, ¢(n)(k) € Tq, so d'(k) € ﬂm T, n s Tl}. Second, if k € dom(c(n)), then similarly
a'(k) € ﬂm ST nes T[}. Finally, if ¥ ¢ dom(c(m)) U dom(c(n)), then k ¢ dom(a’), which is permit-
ted by the target type.

Pur: Suppose that a has type ﬂK R {Im —T,n Ay Tl}uﬂm Ay T,n — Tl}l} and that ¢ has type
{Im — ﬂ[(s Tl} N ﬂ[(s Tl}l} Suppose that (join m n)\ (a, ¢) is defined, and write ¢ for
(joinm n)\,(a, ¢). For each k € dom(a), note that a(k)(m) € Tq, so {k— a(k)(m) |k € dom(a)[} €
{]K oy TI}, and similarly for n.

GETPUT: Suppose ¢ € {Im — {]K s Tl} , T {]K s TI}I} and (join m n) \((join m n) "¢, ¢) defined.

Now calculate as follows, writing a as (join m n), "¢, and using the fact that dom(a) = dom(c(m)) U

65

dom(c(n)):
(join m n)\, ((join m n) "¢, ¢)

—(joinm n)\, (ﬂk - ﬂg:cc((”;()g“)ﬂ | & € dom(c(m)) U dom(c(n))|} , c)

e)l | € domie]
g e 2 et
)

/ m — c(m)(k / /
_ m i |k — <k — n'_)cg))(k) |kedom(c(m))udom(c(n))l}(k Y(m) | k Gdom(a)l}

n— k' — |k —

n— c(n)(k(;;g) ‘ ke dom(c(m)) U dOm(c(n))I} (k/)(n) | = dom(a)|}

m— k' =k — Z"‘:Cc((";()g)} | k € dom(a) |} (K')(m) | ¥ € dom(a)ﬂ
N i = = g:cc(”;)(;‘:) | k € dom(a)ﬂ n) | k' € dom(a)G

m |k — ;n:cc I})| k' € dom(a)|}

n— |k — n|—>c()(k') I}()| k" € dom(a)I}

_im = K = c(m)(K') | K € dom(a) |}
ﬂnHﬂk — ¢(n)(K') | k" € dom(a)[} I}
_ﬂm»—> {k" — c(m)(k") | K € dom(c(m)) Udom((n))[}I}
((m)) c(n)

n— {k' — c(n)(k') | k" € dom(c(m)) U dom(c(n))[}

=C

PuTGET: Suppose a S {]K’l}ﬂmHT’n;Tl}U{]mi}T’nHTﬁl} and ¢ S

{]m — ﬂK s Tl} N ﬂK s Tl}l} Suppose that (join mn),/((join m n)\,(a, ¢)) is defined,
and write a’ for (join m n),/” ((join m n)\ (a, ¢)). Consider an arbitrary k € K. If k ¢ dom(a), then, by
the definition of the put function, k¥ ¢ dom((join m n)\ (a, ¢)(m)) and k ¢ dom((join m n)\ (a, ¢)(n));
hence, k ¢ dom(a’). On the other hand, if ¥ € dom(a), then, by the type of a and the definition of the
put function, either k € dom((join m n)\ (a, ¢))(m)) or k € dom((join m n)\(a, ¢))(n)), so, by the
definition of the get function, k € dom(a’), with a’(k)(m) = a(k)(m) and o' (k)(n) = a(k)(n). O

9.6 Lemma [Totality]: VKCN. VI'C7. join m n € ﬂmHﬂKﬂTﬂ,nHﬂKéTl}l} FELY
ﬂK’LﬂmHT,n»LTﬂUﬂm»AT,nHTl}[}.

Proof: The get and put components are both total functions. O

10 Related Work

The lens combinators described in this paper evolved in the setting of the Harmony data synchronizer. The
overall architecture of Harmony and the role of lenses in building synchronizers for various forms of data are
described in [38], along with a detailed discussion of related work on synchronization.

Our foundational structures—lenses and their laws—are not new: closely related structures have been
studied for decades in the database community. However, our “programming language treatment” of these
structures has led us to a formulation that is arguably simpler (transforming states rather than “update

66

functions”) and somewhat more refined (treating well-behavedness as a form of type assertion). Our formu-
lation is also novel in considering the issue of continuity, thus supporting a rich variety of surface language
structures including definition by recursion.

The idea of defining programming languages for constructing bi-directional transformations of various
sorts has also been explored previously in diverse communities. We appear to be the first to take totality
as a primary goal (while connecting the language with a formal semantic foundation, choosing primitives
that can be combined into composite lenses whose totality is guaranteed by construction), and the first to
emphasize types (i.e., compositional reasoning) as an organizing design principle.

Foundations of View Update

The foundations of view update translation were studied intensively by database researchers in the late ’70s
and '80s. This thread of work is closely related to our semantics of lenses in Section 3.

Dayal and Bernstein [16] gave a seminal formal account of the theory of “correct update translation.”
Their notion of “exactly performing an update” corresponds to our PUTGET law. Their “absence of side
effects” corresponds to our GETPUT and PUTPUT laws. Their requirement of preservation of semantic
consistency corresponds to the partiality of our put functions.

Bancilhon and Spyratos [9] developed an elegant semantic characterization of update translation, intro-
ducing the notion of complement of a view, which must include at least all information missing from the
view. When a complement is fixed, there exists at most one update of the database that reflects a given up-
date on the view while leaving the complement unmodified—i.e., that “translates updates under a constant
complement.” In general, a view may have many complements, each corresponding to a possible strategy
for translating view updates to database updates. The problem of translating view updates then becomes a
problem of finding, for a given view, a suitable complement.

Gottlob, Paolini, and Zicari [19] offered a more refined theory based on a syntactic translation of view
updates. They identified a hierarchy of restricted cases of their framework, the most permissive form being
their “dynamic views” and the most restrictive, called “cyclic views with constant complement,” being
formally equivalent to Bancilhon and Spyratos’s update translators.

In a companion report [37], we state a precise correspondence between our lenses and the structures
studied by Bancilhon and Spyratos and by Gottlob, Paolini, and Zicari. Briefly, our set of very well behaved
lenses is isomorphic to the set of translators under constant complement in the sense of Bacilhon and Spyratos,
while our set of well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gottlob, Paolini,
and Zicari. To be precise, both of these results must be qualified by an additional condition regarding
partiality. The frameworks of Bacilhon and Spyratos and of Gottlob, Paolini, and Zicari are both formulated
in terms of translating update functions on A into update functions on C, i.e., their put functions have type
(A — A) — (C — (), while our lenses translate abstract states into update functions on C, i.e., our
put functions have type (isomorphic to) A — (C — (). Moreover, in both of these frameworks, “update
translators” (the analog of our put functions) are defined only over some particular chosen set U of abstract
update functions, not over all functions from A to A. These update translators return total functions from
C to C. Our put functions, on the other hand, are slightly more general as they are defined over all abstract
states and return partial functions from C to C. Finally, the get functions of lenses are allowed to be partial,
whereas the corresponding functions (called views) in the other two frameworks are assumed to be total. In
order to make the correspondences tight, our sets of well-behaved and very well behaved lenses need to be
restricted to subsets that are also total in a suitable sense.

A related observation is that, if we restrict both get and put to be total functions (i.e., put must be total
with respect to all abstract update functions), then our lens laws (including PUTPUT) characterize the set
C as isomorphic to A x B for some B.

In the literature on programming languages, laws similar to our lens laws (but somewhat simpler, dealing
only with total get and put functions) appear in Oles’ category of “state shapes” [36] and in Hofmann and
Pierce’s work on “positive subtyping” [20].

Recent work by Lechtenborger [25] establishes that translations of view updates under constant comple-
ments are possible precisely if view update effects may be undone using further view updates.

67

Languages for Bi-Directional Transformations

At the level of syntax, different forms of bi-directional programming have been explored across a surpris-
ingly diverse range of communities, including programming languages, databases, program transformation,
constraint-based user interfaces, and quantum computing. One useful way of classifying these languages is
by the “shape” of the semantic space in which their transformations live. We identify three major classes:

e Bi-directional languages, including ours, form lenses by pairing a get function of type C — A with a
put function of type A x C'— C. In general, the get function can project away some information from
the concrete view, which must then be restored by the put function.

e In bijective languages, the put function has the simpler type A — C—it is given no concrete argument
to refer to. To avoid loss of information, the get and put functions must form a (perhaps partial)
bijection between C' and A.

e Reversible languages go a step further, demanding only that the work performed by any function to
produce a given output can be undone by applying the function “in reverse” working backwards from
this output to produce the original input. Here, there is no separate put function at all: instead, the
get function itself is constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is Meertens’s formal treatment of
constraint maintainers for constraint-based user interfaces [30]. Meertens’s semantic setting is actually even
more general: he takes get and put to be relations, not just functions, and his constraint maintainers are
symmetric: get relates pairs from C' x A to elements of A and put relates pairs in A x C' to elements of C
the idea is that a constraint maintainer forms a connection between two graphical objects on the screen so
that, whenever one of the objects is changed by the user, the change can be propagated by the maintainer to
the other object such that some desired relationship between the objects is always maintained. Taking the
special case where the get relation is actually a function (which is important for Meertens because this is the
case where composition [in the sense of our ; combinator] is guaranteed to preserve well-behavedness), yields
essentially our very well behaved lenses. Meertens proposes a variety of combinators for building constraint
maintainers, most of which have analogs among our lenses, but does not directly deal with definition by
recursion; also, some of his combinators do not support compositional reasoning about well-behavedness. He
considers constraint maintainers for structured data such as lists, as we do for trees, but here adopts a rather
different point of view from ours, focusing on constraint maintainers that work with structures not directly
but in terms of the “edit scripts” that might have produced them. In the terminology of synchronization,
he switches from a state-based to an operation-based treatment at this point.

Recent work of Mu, Hu, and Takeichi on “injective languages” for view-update-based structure editors
[32] adopts a similar perspective. Although their transformations obey our GETPUT law, their notion of well-
behaved transformations is informed by different goals than ours, leading to a weaker form of the PUTGET
law. A primary concern is using the view-to-view transformations to simultaneously restore invariants within
the source view as well as update the concrete view. For example, an abstract view may maintain two lists
where the name field of each element in one list must match the name field in the corresponding element
in the other list. If an element is added to the first list, then not only must the change be propagated to
the concrete view, it must also add a new element to the second list in the abstract view. It is easy to see
that PUTGET cannot hold if the abstract view, itself, is—in this sense—modified by the put. Similarly, they
assume that edits to the abstract view mark all modified fields as “updated.” These marks are removed
when the put lens computes the modifications to the concrete view—another change to the abstract view
that must violate PUTGET. Consequently, to support invariant preservation within the abstract view, and
to support edit lists, their transformations only obey a much weaker variant of PUTGET (described above
in Section 5.5).

Another paper by Hu, Mu, and Takeichi [21] applies a bi-directional programming language quite closely
related to ours to the design of “programmable editors” for structured documents. As in [32], they support
preservation of local invariants in the put direction. Here, instead of annotating the abstract view with

68

modification marks, they assume that a put or a get occurs after every modification to either view. They
use this “only one update” assumption to choose the correct inverse for the lens that copied data in the
get direction — because only one branch can have been modified at any given time. Consequently, they
can put the data from the modified branch and overwrite the unmodified branch. Here, too, the notion of
well-behavedness needs to be weakened, as described in Section 5.5.

The TRIP2 system (e.g. [27]) uses bidirectional transformations specified as collections of Prolog rules
as a means of implementing direct-manipulation interfaces for application data structures. The get and put
components of these mappings are written separately by the user.

Languages for Bijective Transformations

An active thread of work in the program transformation community concerns program inversion and inverse
computation—see, for example, [4, 5] and many other papers cited there. Program inversion [18] derives
the inverse program from the forward program. Inverse computation [28] computes a possible input of a
program from the program and a particular output. One approach to inverse computation is to design
languages that produce easily invertible expressions. For example, designing languages that can only express
injective functions (in which case every program is trivially invertible). These languages bear some intriguing
similarities to ours, but differ in a number of ways, primarily in their focus on the bijective case.

In the database community, Abiteboul, Cluet, and Milo [1] defined a declarative language of correspon-
dences between parts of trees in a data forest. In turn, these correspondence rules can be used to translate
one tree format into another through non-deterministic Prolog-like computation. This process assumes an
isomorphism between the two data formats. The same authors [2] later defined a system for bi-directional
transformations based around the concept of structuring schemas (parse grammars annotated with semantic
information). Thus their get functions involved parsing, whereas their puts consisted of unparsing. Again,
to avoid ambiguous abstract updates, they restricted themselves to lossless grammars that define an isomor-
phism between concrete and abstract views.

Ohori and Tajima [35] developed a statically-typed polymorphic record calculus for defining views on
object-oriented databases. They specifically restricted which fields of a view are updatable, allowing only
those with a ground (simple) type to be updated, whereas our lenses can accommodate structural updates
as well.

A related idea from the functional programming community, called views [45], extends algebraic pattern
matching to abstract data types using programmer-supplied in and out operators.

Languages for Reversible Transformations

Our work is the first (of which we are aware) in which totality and compositional reasoning about totality are
taken as primary design goals. Nevertheless, in all of the languages discussed above there is an expectation
that programmers will want their transformations to be “total enough”—i.e., that the sets of inputs for
which the get and put functions are defined should be large enough for some given purpose. In particular,
we expect that put functions should be accept a suitably large set of abstract inputs for each given concrete
input, since the whole point of these languages is to allow editing through a view. A quite different class
of languages have been designed to support reversible computation, in which the put functions are only
ever applied to the results of the corresponding get functions. While the goals of these languages are quite
different from ours—they have nothing to do with view update—there are intriguing similarities in the basic
approach.

Landauer [24] observed that non-injective functions were logically irreversible, and that this irreversibil-
ity requires the generation and dissipation of some heat per machine cycle. Bennet [11] demonstrated that
this irreversibility was not inevitable by constructing a reversible Turing machine, showing that thermo-
dynamically reversible computers were plausible. Baker [8] argued that irreversible primitives were only
part of the problem; irreversibility at the “highest levels” of computer usage cause the most difficulty due
to information loss. Consequently, he advocated the design of programs that “conserve information.” Be-
cause deciding reversibility of large programs is unsolvable, he proposed designing languages that guaranteed

69

that all well-formed programs are reversible, i.e. designing languages whose primitives were reversible, and
whose combinators preserved reversibility. A considerable body of work has developed around these ideas

(e.g. [33)]).

Update Translation for Tree Views

There have been many proposals for query languages for trees (e.g., XQuery [44] and its forerunners, UnQL,
StruQL, and Lorel), but these either do not consider the view update problem at all or else handle update
only in situations where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [17], and Braganholo, Davidson, and Heuser [12] studied
the problem of updating relational databases “presented as XML.” Their solution requires a 1:1 mapping
between XML view elements and objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [43] described a mechanism for translating updates on XML structures
that are stored in an underlying relational database. In this setting there is again an isomorphism between
the concrete relational database and the abstract XML view, so updates are unambiguous—rather, the
problem is choosing the most efficient way of translating a given XML update into a sequence of relational
operations.

The view update problem has also been studied in the context of object-oriented databases. School,
Laasch, and Tresch [41] restrict the notion of views to queries that preserve object identity. The view update
problem is greatly simplified in this setting, as the objects contained in the view are the objects of the
database, and an update on the view is directly an update on objects of the database.

Update Translation for Relational Views

Research on view update translation in the database literature has tended to focus on taking an existing
language for defining get functions (e.g., relational algebra) and then considering how to infer corresponding
put functions, either automatically or with some user assistance. By contrast, we have designed a new
language in which the definitions of get and put go hand-in-hand. Our approach also goes beyond classical
work in the relational setting by directly transforming and updating tree-structured data, rather than flat
relations. (Of course, trees can be encoded as relations, but it is not clear how our tree-manipulation
primitives could be expressed using the recursion-free relational languages considered in previous work in
this area.) We briefly review the most relevant research from the relational setting.

Masunaga [26] described an automated algorithm for translating updates on views defined by relational
algebra. The core idea was to annotate where the “semantic ambiguities” arise, indicating they must be
resolved either with knowledge of underlying database semantic constraints or by interactions with the user.

Keller [22] catalogued all possible strategies for handling updates to a select-project-join view and showed
that these are exactly the set of translations that satisfy a small set of intuitive criteria. These criteria are:

1. No database side effects: only update tuples in the underlying database that appear somehow in the
view.

2. Only one-step changes: each underlying tuple is updated at most once.

3. No unnecessary changes: there is no operationally equivalent translation that performs a proper subset
of the translated actions.

4. Replacements cannot be simplified (e.g., to avoid changing the key, or to avoid changing as many
attributes).

5. No delete-insert pairs: for any relation, you have deletions or insertions, but not both (use replacements
instead).

These criteria apply to update translations on relational databases, whereas our state-based approach means
only criteria (1), (3), and (4) might apply to us. Keller later [23] proposed allowing users to choose an

70

update translator at view definition time by engaging in an interactive dialog with the system and answering
questions about potential sources of ambiguity in update translation. Building on this foundation, Barsalou,
Siambela, Keller, and Wiederhold [10] described a scheme for interactively constructing update translators
for object-based views of relational databases.

Medeiros and Tompa [29] presented a design tool for exploring the effects of choosing a view update policy.
This tool shows the update translation for update requests supplied by the user; by considering all possible
valid concrete states, the tool predicts whether the desired update would in fact be reflected back into the
view after applying the translated update to the concrete database. Miller et al. [31] describe Clio, a system
for managing heterogenous transformation and integration. Clio provides a tool for visualizing two schemas,
specifying correspondences between fields, defining a mapping between the schemas, and viewing sample
query results. They only consider the get direction of our lenses, but their system is somewhat mapping-
agnostic, so it might eventually be possible to use a framework like Clio as a user interface supporting
incremental lens programming like that in Figure 8.

Atzeni and Torlone [7, 6] described a tool for translating views and observed that if one can translate any
concrete view to and from a meta-model (shared abstract view), one then gets bi-directional transformations
between any pair of concrete views. They limited themselves to mappings where the concrete and abstract
views are isomorphic.

Complexity bounds have also been studied for various versions of the view update inference problem. In
one of the earliest, Cosmadakis and Papadimitriou [14, 15] considered the view update problem for a single
relation, where the view is a projection of the underlying relation, and showed that there are polynomial
time algorithms for determining whether insertions, deletions, and tuple replacements to a projection view
are translatable into concrete updates. More recently, Buneman, Khanna, and Tan [13] established a variety
of intractability results for the problem of inferring “minimal” view updates in the relational setting for
query languages that include both join and either project or union.

The designers of the RIGEL language [40] argued that programmers should specify the translations of
abstract updates. However, they did not provide a way to ensure consistency between the get and put
directions of their translations.

Another problem that is sometimes mentioned in connection with view update translation is that of
incremental view maintenance (e.g., [3])—efficiently recalculating an abstract view after a small update to
the underlying concrete view. Although the phrase “view update problem” is sometimes (confusingly) used
for work in this domain, there is little technical connection with the problem of translating view updates to
updates on an underlying concrete structure.

11 Conclusions and Future Work

We have taken care to find combinators that fit together in a sensible way and that are easy to program
with. Starting with lens laws that define “reasonable behavior”, adding type annotations, and proving that
each of our lenses is total, has imposed constraints on our design of new lenses. These strong constraints,
paradoxically, make the design process easier. In the early stages of the Harmony, working in an under-
constrained design space, we found it extremely difficult to converge on a useful set of primitive lenses. Later,
when we understood how to impose the framework of type declarations and the demand for compositional
reasoning, we experienced a huge increase in manageability. The types helped not just in finding programming
errors in derived lenses, but in exposing design mistakes in the lenses themselves at an early stage.
Naturally, the progress we have made on lens combinators raises a host of further challenges.

Static Analysis

The most urgent of these is automated typechecking. At present, it is the lens programmers’ responsibility
to check the well-behavedness of the lenses that they write. But the types of the primitive combinators have
been designed so that these checks are both local and essentially mechanical. The obvious next step is to

71

reformulate the type declarations as a type algebra and find a mechanical procedure for checking (or, more
ambitiously, inferring) types.

A number of other interesting questions are related to static analysis of lenses. For instance, can we
characterize the complexity of programs built from these combinators? Is there an algebraic theory of lens
combinators that would underpin optimization of lens expressions in the same way that the relational algebra
and its algebraic theory are used to optimize relational database queries? (For example, the combinators
we have described here have the property that map I;; map Il = map (l1;12) for all {1 and I3, but the latter
should run substantially faster.)

Implementation

This algebraic theory will play a crucial role in a more serious implementation effort. Our current prototype
performs a straightforward translation from a concrete syntax similar to the one used in this paper to a
combinator library written in OCaml. This is fast enough for experimenting with lens programming (Malo
Denielou has built an interactive programming environment that recompiles and re-applies lenses on every
keystroke) and for small demos (our calendar lenses can process a few thousands of appointments in under a
minute), but we would like to apply the Harmony system to applications such as synchronization of biological
databases that will require much higher throughput.

Applications

Our interest in bi-directional tree transformations arose in the context of the Harmony data synchronization
framework. Besides the bookmark synchronizer described in Section 8, we are currently developing a number
of synchronizers (for calendars, address books, structured text, etc.) as instances of Harmony. This exercise
provides valuable stress-testing for both our combinators and their formal foundations.

Additional Combinators

Another area for further investigation is the design of additional combinators. While we have found the
ones we have described here to be expressive enough to code a large number of both intricate structural
manipulations such as the list transformations in Section 7 as well as more prosaic application transformations
such as the ones needed by the bookmark synchronizer in Section 8 , there are some areas where we would
like more general forms of the lenses we have (e.g., a more flexible form of xfork, where the splitting and
recombining of trees is not based on top-level names, but involves deeper structure), lenses expressing more
global transformations on trees (including analogs of database operations such as join), or lenses addressing
completely different sorts of transformations (e.g., none of our combinators do any significant processing on
edge labels, which might include string processing, arithmetic, etc.).

Expressiveness

More generally, what are the limits of bi-directional programming? How expressive are the combinators we
have defined here? Do they cover any known or succinctly characterizable classes of computations (in the
sense that the set of get parts of the total lenses built from these combinators coincide with this class)?
We have put considerable energy into these questions, but at the moment we can only report that they are
challenging!

Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than by explicit programming—e.g.,
by generating them automatically from schemas for concrete and abstract views, or by inference from a set
of pairs of inputs and desired outputs (“programming by example”). Such a facility might be used to do

72

part of the work for a programmer wanting to add synchronization support for a new application (where the
abstract schema is already known, for example), leaving just a few spots to fill in.

Beyond Trees

Finally, we intend to experiment with instantiating our semantic framework with other structures besides
trees—in particular, with relations, to establish closer links with existing research on the view update problem
in databases.

Acknowledgements

The Harmony project was begun in collaboration with Zhe Yang; Zhe contributed numerous insights whose
generic material can be found (generally in much-recombined form) in this paper. Owen Gunden and,
more recently, Malo Denielou have also collaborated with us on many aspects of the Harmony design and
implementation; in particular, Malo’s compiler and programming environment for the combinators described
in this paper have contributed enormously. Trevor Jim provided the initial push to start the project by
observing that the next step beyond the Unison file synchronizer (of which Trevor was a co-designer) would
be synchronizing XML. Conversations with Martin Hofmann, Zack Ives, Nitin Khandelwal, Sanjeev Khanna,
William Lovas, Kate Moore, Cyrus Najmabadi, Penny Anderson, and Steve Zdancewic helped us sharpen
our ideas. Serge Abiteboul, Zack Ives, Dan Suciu, and Phil Wadler pointed us to related work. We would
also like to thank Karthik Bhargavan, Vanessa Braganholo, Peter Buneman, Malo Denielou, Owen Gunden,
Michael Hicks, Zack Ives, Trevor Jim, Kate Moore, Wang-Chiew Tan, Stephen Tse, and Zhe Yang, for very
helpful comments on earlier drafts of this paper.

The Harmony project is supported by the National Science Foundation under grant ITR-0113226, Prin-
ciples and Practice of Synchronization.

References

[1] S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation for heterogeneous data. In
Proceedings of 6th Int. Conf. on Database Theory (ICDT), 1997.

[2] S. Abiteboul, S. Cluet, and T. Milo. A logical view of structure files. VLDB Journal, 7(2):96-114, 1998.

[3] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L. Wiener. Incremental maintenance for ma-
terialized views over semistructured data. In Proc. 24th Int. Conf. Very Large Data Bases (VLDB),
1998.

[4] S. M. Abramov and R. Gliick. The universal resolving algorithm: inverse computation in a functional
language. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Construction. Proceed-
ings, volume 1837, pages 187-212. Springer-Verlag, 2000.

[5] S. M. Abramov and R. Gliick. Principles of inverse computation and the universal resolving algorithm.
In T. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The Essence of Computation: Complexity,
Analysis, Transformation, volume 2566 of Lecture Notes in Computer Science, pages 269-295. Springer-
Verlag, 2002.

[6] P. Atzeni and R. Torlone. Management of multiple models in an extensible database design tool. In
Proceedings of EDBT’96, LNCS 1057, 1996.

[7] P. Atzeni and R. Torlone. MDM: a multiple-data model tool for the management of heterogeneous
database schemes. In Proceedings of ACM SIGMOD, Exhibition Section, pages 528-531, 1997.

73

8]

[9]
[10]

[11]

[15]

[16]

[17]

22]

23]
[24]

[25]

[26]

H. G. Baker. NREVERSAL of fortune — the thermodynamics of garbage collection. In Proc. Int’l
Workshop on Memory Management, September 1992. St. Malo, France. Springer LNCS 637, 1992.

F. Bancilhon and N. Spyratos. Update semantics of relational views. TODS, 6(4):557-575, 1981.

T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Updating relational databases through
object-based views. In PODS’91, pages 248-257, 1991.

C. H. Bennet. Logical reversibility of computation. IBM Journal of Research and Development,
17(6):525-532, 1973.

V. Braganholo, S. Davidson, and C. Heuser. On the updatability of XML views over relational databases.
In WebDB 2003, 2003.

P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annotations through views.
In PODS 02, pages 150-158, 2002.

S. S. Cosmadakis. Translating updates of relational data base views. Master’s thesis, Massachusetts
Institute of Technology, 1983. MIT-LCS-TR-284.

S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views. Journal of the ACM, 31(4):742—
760, 1984.

U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views.
TODS, 7(3):381-416, September 1982.

V. de Paula Braganholo, C. A. Heuser, and C. R. M. Vittori. Updating relational databases through
XML views. In Proc. 8rd Int. Conf. on Information Integration and Web-based Applications and Services
(IIWAS), 2001.

E. W. Dijkstra. Program inversion. In F. L. Bauer and M. Broy, editors, Program Construction,
International Summer School, July 26 - August 6, 1978, Marktoberdorf, germany, volume 69 of Lecture
Notes in Computer Science. Springer, 1979.

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views. TODS,
13(4):486-524, 1988.

M. Hofmann and B. Pierce. Positive subtyping. In POPL’95, 1995.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured documents based
on bi-directional transformations. In Partial Fvaluation and Program Manipulation (PEPM), 2004. To
appear.

A. M. Keller. Algorithms for translating view updates to database updates for views involving selections,
projections, and joins. In PODS’85, 1985.

A. M. Keller. Choosing a view update translator by dialog at view definition time. In VLDB’86, 1986.

R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of Research
and Development, 5(3):183-191, 1961. (Republished in IBM Jour. of Res. and Devel., 44(1/2):261-269,
Jan/Mar. 2000).

J. Lechtenborger. The impact of the constant complement approach towards view updating. In Pro-
ceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 49-55. ACM, June 9-12 2003. San Diego, CA.

Y. Masunaga. A relational database view update translation mechanism. In VLDB’8/, 1984.

74

[27]

28]

[40]
[41]

[42]
[43]
[44]
[45]
[46]

S. Matsuoka, S. Takahashi, T. Kamada, and A. Yonezawa. A general framework for bi-directional
translation between abstract and pictorial data. ACM Transactions on Information Systems, 10(4):408—
437, October 1992.

J. McCarthy. The inversion of functions defined by turing machines. In C. E. Shannon and J. McCarthy,
editors, Automata Studies, Annals of Mathematical Studies, number 34, pages 177-181. Princeton Uni-
versity Press, 1956.

C. M. B. Medeiros and F. W. Tompa. Understanding the implications of view update policies. In
VLDB’85, 1985.

L. Meertens. Designing constraint maintainers for user interaction, 1998. Manuscript.

R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, C. T. H. Ho, R. Fagin, and L. Popa. The clio
project: Managing heterogeneity. 30(1):78-83, March 2001.

S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating. In ASIAN
Symposium on Programming Languages and Systems (APLAS), Nov. 2004. To appear.

S.-C. Mu, Z. Hu, and M. Takeichi. An injective language for reversible computation. In Seventh
International Conference on Mathematics of Program Construction (MPC), 2004.

J. Niehren and A. Podelski. Feature automata and recognizable sets of feature trees. In TAPSOFT,
pages 356375, 1993.

A. Ohori and K. Tajima. A polymorphic calculus for views and object sharing. In PODS’94, 1994.

F. J. Oles. Type algebras, functor categories, and block structure. In M. Nivat and J. C. Reynolds,
editors, Algebraic Methods in Semantics. Cambrige University Press, 1985.

B. C. Pierce and A. Schmitt. Lenses and view update translation. Manuscript; available at http://
www.cis.upenn.edu/ bcpierce/harmony, 2003.

B. C. Pierce, A. Schmitt, and M. B. Greenwald. Bringing Harmony to optimism: A synchroniza-
tion framework for heterogeneous tree-structured data. Technical Report MS-CIS-03-42, University of
Pennsylvania, 2003. Submitted for publication.

B. C. Pierce and J. Vouillon. What’s in Unison? A formal specification and reference implementation
of a file synchronizer. Technical Report MS-CIS-03-36, Dept. of Computer and Information Science,
University of Pennsylvania, 2004.

L. Rowe and K. A. Schoens. Data abstractions, views, and updates in RIGEL. In SIGMOD’79, 1979.

M. H. Scholl, C. Laasch, and M. Tresch. Updatable Views in Object-Oriented Databases. In C. Delobel,
M. Kifer, and Y. Yasunga, editors, Proc. 2nd Intl. Conf. on Deductive and Object-Oriented Databases
(DOOD), number 566. Springer, 1991.

D. Spoonhower. View updates seen through the lens of synchronization. Manuscript, 2004.

I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In SIGMOD Conference, 2001.
W3C. XML Query, 2003. http://www.w3.org/XML/Query.

P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. In POPL’87. 1987.

G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press, 1993.

75

