
Fancy Types for XML:

Benjamin C. Pierce
University of Pennsylvania

<Links> meeting, Edinburgh, April 2005

Fancy Types for XML:
Friend or Foe?

Benjamin C. Pierce
University of Pennsylvania

<Links> meeting, Edinburgh, April 2005

XML and the Web

• Any candidate web-programming language
must deal seriously with XML

• At least, there must be good support for
XML concrete syntax... but this is a pretty
trivial matter.

• The real question: How XML gets into the
type system?

Xtatic

• Xtatic is a lightweight extension of C# with

• regular types

• regular pattern matching
(a la XDuce)

See my web page
for lots of papers

The Xtatic Experience

• XML processing with "native" static types is
indeed very pleasant

• rich type structure of many XML
documents more traction for type
system

What was learned:

The Xtatic Experience

• XPath-style ("vertical") and regular-pattern-style
("horizontal") pattern matching are both very useful, in
different situations

• it appears [cf. Benzaken et al 2005, Gapeyev&Pierce 2004, etc.]
that they can be placed on a common foundation

• one nice use-case for the horizontal style is statically typed
string regexps

• another is that horizontal patterns also generalize ML-style
algebraic pattern matching

What was learned:

See our PLANX ‘05 paper for more details

The Less-Than-Xtatic
Experience

• Standards compliance (W3C Schema, XPath, etc., etc.)

• "Best effort" approach (but, e.g., no notion of "Schema-validated run-time values)

• deciding subtyping efficiently

• algorithms are known that seem to be "efficient enough in practice," but these
are not trivial to implement [Hosoya/Vouillon/Pierce ICFP 2000]

• compiling regular patterns efficiently [but cf. Michael Levin's forthcoming
dissertation]

• Precise type inference for pattern variables [but not clear it is absolutely necessary]

• Finding the "right" type system for attributes is still an open problem [but see
proposal by Hosoya&Murata]

Some tricky issues...

Some Critical Design Points
• Structural (types are descriptions of structure of values) vs.

nominal (each value is tagged at run time with a single atomic
"type name" that it belongs to) treatment of types

• Interaction between subtyping of XML types and the full
language's subtype relation. (Your language has subtyping, right??)

• Single-type tree grammars (W3C Schema, XQuery) vs. full regular
tree grammars (XDuce, Xtatic, CDuce, RelaxNG, etc.)

• Power of the language of XML types (unions and recursion for
sure; but what about intersections? differences? interleaving?)

