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ABSTRACT

RUN, Xtatic, RUN: EFFICIENT IMPLEMENTATION OF AN OBJECT-ORIENTED

LANGUAGE WITH REGULAR PATTERN MATCHING

Michael Y. Levin

Benjamin C. Pierce

Schema languages such as DTD, XML Schema, and Relax NG have been steadily growing in

importance in the XML community. A schema language provides a mechanism for defining the type

of XML documents; i.e., the set of constraints that specify the structure of XML documents that

are acceptable as data for a certain programming task.

A number of recent language designs—many of them descended from the XDuce language

of Hosoya, Pierce, and Vouillon—have showed how such schemas can be used statically for type-

checking XML processing code and dynamically for evaluation of XML structures. The technical

foundation of such languages is the notion of regular types, a mild generalization of nondeterministic

top-down tree automata, which correspond to a core of most popular schema notations, and the no-

tion of regular patterns—regular types decorated with variable binders—a powerful and convenient

primitive for dynamic inspection of XML values.

This dissertation is concerned with one of XDuce’s descendants, Xtatic. The goal of the

Xtatic project is to bring the regular type and regular pattern technologies to a wide audience by

integrating them with a mainstream object-oriented language. My research focuses on an efficient

implementation of Xtatic including a compiler that generates fast and compact target programs

and a run-time system that is designed to support efficient manipulation of XML fragments. Many

techniques described here are applicable not only to Xtatic but also to other XDuce derivatives

such as CDuce and Cω.
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Chapter 1

Introduction

This dissertation describes implementation strategies for the new object-oriented language Xtatic.

Xtatic is a combination of the general purpose object-oriented language C] with features for

type-safe processing of XML data. The thesis defended here is that it is feasible to implement

Xtatic efficiently. In this introduction, we describe Xtatic, enumerate the major points of its

implementation, and provide a road map for the rest of the dissertation.

1.1 Background

Schema languages such as DTD [72], XML Schema [73], and Relax NG [7] have been steadily

growing in importance in the XML community. A schema language provides a mechanism for

defining a type of XML documents; i.e., the set of constraints that specify the structure of XML

documents that are acceptable as data for a certain programming task. Until recently, schema

languages have been used largely for dynamic verification of XML documents or as a specification

language to communicate—informally—the prescribed format of XML data without any goal of

automated enforcement.

Some years ago, Hosoya, Pierce, and Vouillon [34, 37, 35, 36, 30] designed the XML transforma-

tion language XDuce, which showed how such schemas can be used to establish and ensure static

properties of programs. The language centers around the notion of regular types, which classify sets

of XML documents or, equivalently, sets of ordered sequences of unranked node-labeled trees anno-

tated with unordered sets of attributes. Like the type systems of other statically typed languages,

the type system of XDuce ensures that the invariants specified in a program hold at run-time.

Unlike the types of other languages, however, regular types can be used specifically to describe sets

of values that correspond to sets of documents that can be defined in one of the mentioned schema
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languages.

In addition to being used for specification of statically-checked constraints, regular types can

form a basis for exploring values dynamically. XDuce employs regular patterns—regular types

decorated with variable binders—in conjunction with the algebraic pattern matching construct

match popularized by ML and Haskell to provide a powerful and convenient primitive for dynamic

inspection of XML values.

XDuce made a big impact as one of the first statically typed XML processing languages and

resulted in several descendants. One such descendant is the Xtatic language whose goal is to bring

the regular type and regular pattern technologies to a wide audience by integrating them with a

mainstream object-oriented language.

This dissertation focuses on an efficient implementation of Xtatic including a compiler that

generates fast and compact low-level programs and a run-time system that is designed to support

efficient manipulation of XML fragments.

1.2 Contributions

Functional languages such as ML and Haskell share many features with Xtatic. In particular,

the pattern matching constructs found in these languages resemble those in Xtatic, and ideas

of immutable values and lazy implementation of certain operations on them are also natural in

Xtatic. Consequently, many techniques used in implementation of compilers and run-time systems

of functional languages can be reused in an implementation of Xtatic.

A lot of research has been concerned with efficient implementation of object-oriented languages,

answering questions of how to speed up invocation of methods and how to optimize the memory

layout of objects. Our implementation takes full advantage of this research by providing a source-

to-source compiler from Xtatic into C]. As a result, we do not have to worry about these issues

since they are handled by the C] compiler.

Despite these points, however, implementing Xtatic involves a substantial amount of original

research. The primary distinguishing aspect of Xtatic is the relative complexity of its pattern

matching mechanism in comparison to pattern matching mechanisms of other languages. Un-

like algebraic patterns of functional languages, Xtatic’s regular patterns obey various semantic

equivalence rules that make syntax directed pattern matching and pattern compilation difficult.

Recursive patterns and patterns with Kleene operators * and + require nuanced compilation ap-

proaches that carefully balance performance goals with code size considerations. Regular patterns

with variable binding can be ambiguous and, therefore, difficult to implement in a deterministic

2



and easy-to-understand way.

Furthermore, the run-time system must meet several requirements including support for 1) fast

and memory-efficient pattern matching operations on both element sequences and textual data and

2) seamless and safe integration of data in foreign formats such as Document Object Model (DOM).

In response to all of the above challenges, this dissertation proposes the following contributions.

• The key issue in implementing Xtatic is how to compile regular pattern matching efficiently

and compactly. An Xtatic compiler must address not only the familiar problems of pattern

optimization for ML-style pattern matching, but also some new ones, arising principally from

the use of recursion in patterns. To talk about these issues and to present compilation

algorithms rigorously, we introduce matching automata—a formalism for modeling low-level

pattern matching constructs at a level of abstraction that allows us to elide the specifics

of a particular target language. We use the framework of matching automata to define a

compilation algorithm for pattern matching with regular patterns without variable binders.

This contribution is described in Chapter 4.

• To enhance the performance of our pattern compiler, we extend the matching automaton

framework with a semantic optimization technique in which we use the schema of the value

flowing into a pattern matching expression to generate efficient target code. We present a

practical, but not always optimal, type-based pattern compilation algorithm, define a formal

optimality criterion of “no useless tests”, and show that the problem of generating optimal

pattern matching code is decidable for finite (non-recursive) patterns. This work is described

in Chapter 6.

• We next proceed to give a formal treatment of compiling pattern matching that involves

patterns with variable binders. A principal difficulty in this undertaking involves treatment

of ambiguous patterns. In the presence of variable binding, it becomes possible to match a

value against a pattern in multiple ways each producing a different variable binding outcome.

We define an easy-to-understand disambiguation semantics that specifies a particular way of

pattern matching and design a compilation algorithm that generates a deterministic matching

automaton performing variable binding according to this semantics. This contribution is

covered in Chapter 5.

• The design of the run-time system also presents a set of novel challenges. Chapter 7 describes

how Xtatic supports fast and compact operations on element sequences and textual data

and facilitates seamless and safe integration with data in foreign formats such as Document

Object Model (DOM).
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We establish the thesis of this dissertation by 1) showing that the basic matching automaton

framework and the compilers based on it work reasonably well for regular patterns without binders,

2) enhancing the prototype framework with type-based optimization, support for regular patterns

with binders, and efficient run-time representation, and 3) demonstrating—in Section 7.4—that

the obtained full implementation of Xtatic is quite successful when compared with other XML

processing systems.

There is more work to be done! The next step in the evolution of Xtatic concerns graduating

from being a research project and moving toward being accepted in a wider community of program-

mers. For this to become reality, Xtatic must become a practical general-purpose programming

language: it must be well-integrated with existing XML standards, in particular, its type system

must be better aligned with XML Schema; it must support more expressive and high-level pattern

matching constructs. Xtatic’s implementation must become more robust as well: it must provide

stream-based processing to support very large documents and indexing mechanisms to improve

pattern matching performance; the existing algorithms must be fine tuned, especially to reduce the

size of the target program. Chapter 8 presents the conclusions of this dissertation and discusses

some future directions in more detail.

1.3 Writing Credits

The overview of Xtatic presented in Chapter 3 is based on the work leading to the current design

of the language conducted by Gapeyev and Pierce [23]. Chapter 7 is derived from a paper written in

collaboration with Gapeyev, Pierce, and Schmitt [20] based on my implementation of the Xtatic

compiler. Chapters 4, 6, and 5 are based on papers [50, 52, 51] written in collaboration with my

adviser Benjamin C. Pierce.
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Chapter 2

Related Work

This chapter considers two categories of related work. First we describe the landscape of XML

transformation languages and briefly address their implementation practices. We then give an

overview of other research projects that are related in some ways to the implementation techniques

or formalisms developed in this dissertation. Chapters 4, 6, 5, 7 provide more detailed discussion

of related work.

2.1 Related Languages

XDuce [35, 36, 37] was the first language featuring XML trees as built-in values, a type system

based on regular types for statically type-checking computations involving XML, and a powerful

form of pattern matching based on regular patterns.

XDuce’s regular types were developed to mirror most core features of popular XML schema

languages such as DTD [72], XML Schema [73], and Relax NG [7]. Like the schema languages,

XDuce has concatenation, union, repetition and option type constructors and top-level mutually

recursive type declaration. At the core of XDuce type checking is a subtyping algorithm that tests

whether one type is subsumed by another. XDuce defines a semantic subtyping relation—type

T is a subtype of type S if values belonging to T are a subset of values belonging S. One of the

achievements of the XDuce project was to show how such set-based subtyping can be implemented

efficiently.

In addition to being used for specification of statically-checked constraints, regular types can

also provide a mechanism for exploring values dynamically. A value v can be matched against a

type T yielding true if and only if v conforms to T. XDuce defines a more advanced matching

construct patterns as types extended with variable binders. Patterns can serve not only as boolean
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predicates on values but also as a tool for value deconstruction.

XDuce gave rise to several descendants including Xtatic. The focus of the Xtatic project is

on integrating XDuce’s regular types and regular patterns with a modern object-oriented language.

Different aspects of the Xtatic design and implementation are described in a series of papers—

the first outlines the design choices we have made to facilitate smooth integration while keeping

Xtatic easy to understand for the programmer [22]; the second presents the core language design,

integrating the object and tree data models and establishing basic soundness results [23]; the third

proposes a technique for compiling regular patterns based on matching automata [50], and the

fourth describes the run-time system of Xtatic [21].

Another XDuce descendant that is close to Xtatic in several respects is the CDuce language

of Benzaken, Castagna, and Frisch [19, 4]. Like Xtatic, CDuce is based on XDuce-style regular

types and emphasizes a declarative style of recursive tree transformation based on algebraic pattern

matching. In other respects, the focus in CDuce is quite different: its type system includes

several features (such as intersection and function types) not present in Xtatic, it is not object-

oriented, and it is not integrated with an existing language. Xtatic, by contrast, has taken a more

conservative approach in its type system, instead emphasizing smooth compatibility with an existing

mainstream object-oriented language. Two significant differences are the object-oriented flavor of

our representations and our approach to various interoperability issues such as cross-language calls

and compatibility with legacy XML representations.

Another close cousin of Xtatic is Meijer, Schulte, and Bierman’s Cω language (previously called

Xen) [54, 55], an extension of C] that smoothly integrates support for objects, relations, and XML.

Some aspects of the Cω language design are much more ambitious than Xtatic: in particular, the

extensions to its type system (sequence and choice type constructors) are more tightly intertwined

with the core object model—indeed, XML itself is simply a syntax for serialized object instances.

In other respects, Cω is more conservative than Xtatic: for example, its choice constructor is

not a true least upper bound, and the subtype relation is defined by a conventional, semantically

incomplete, collection of inference rules, while Xtatic’s is given by a more straightforward (and,

for the implementation, more demanding) ”subtype = subset” construction.

Xact [47, 6] extends Java with XML processing, proposing another somewhat different pro-

gramming idiom: the creation of XML values is done using XML templates, which are immutable

first-class structures representing XML with named gaps that may be filled to obtain ordinary XML

trees. Xact also features a static type system guaranteeing that, at a given point in the program, a

template statically satisfies a given DTD. Xact’s implementation, developed independently and in

parallel with Xtatic but driven by similar needs (supporting efficient sharing, etc.) and targeting
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a similar (object-oriented) run-time environment, has strong similarities to ours; in particular, lazy

data structures are used to support efficient gap plugging.

XJ [29] is another extension of Java for native XML processing that emphasizes fidelity to

the XML Schema and XPath standards, for instance by only allowing subtyping by name (as

opposed to the structural subtyping of the languages mentioned above). XJ is also one of the few

XML processing languages that allow imperative modification of XML data. This feature, however,

significantly weakens the safety guarantees offered by static typing: the updated tree must be re-

validated dynamically, raising an exception if its new type fails to match static expectations. In

keeping with its emphasis on standards and its imperative nature, XJ uses DOM for its run-time

representation of XML data.

XOBE [46] is a source to source compiler for an extension of Java. From a language design

point of view, it is very similar to Xtatic, allowing seamless integration of XML with Java, taking

a declarative style of tree processing, and providing a rich type system and subtyping relation based

on regular expression types. The run-time representation, like XJ, relies on DOM.

Scala is a general-purpose experimental web services language that compiles into Java byte-

code and therefore may be seen as an extension of Java since Scala programs may still easily

interact with Java code. Scala is currently being extended with XML support [11].

Work also continues on XDuce itself, including fully typed treatment of attributes à la Re-

laxNG [33] and regular expression filters [31]. These developments are highly relevant to future

work on the Xtatic language design.

A recent survey paper by Møller and Schwartzbach [56] offers an excellent overview of recent

work on static typechecking for XML transformation languages, with detailed comparisons between

a number of representative languages, including XDuce and Xact.

XQuery [74]—arguably the current gold standard in stand-alone XML processing languages—

and XSLT [68] are special-purpose XML processing languages specified by W3C that have strong

industrial support, including a variety of implementations and wide user base.

2.2 Other Related Work

Compilation of datatype-based pattern matching has been researched extensively in the field of

functional programming [3, 2, 12, 62]. Xtatic’s pattern matching constructs inherit many char-

acteristics of datatype-based pattern matching constructs, and, therefore, we can reuse functional

languages compilation algorithms in an implementation of Xtatic. Section 4.8 provides an overview

of different datatype-based compilation approaches and discusses how they relate to our algorithm.
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Logic programming languages also employ compilation and run-time representation approaches

whose goals are similar to those of the approaches used in Xtatic. Among them are algorithms and

data structures for fast sequence concatenation [64, 53] and pattern match optimization techniques

focused on reducing the amount of backtracking and promoting sharing of common tests performed

by different branches of conditional expressions [48, 10]. We discuss logic programming techniques

in sections 4.8 and 7.5.

Procedure inlining [40, 1, 69] is another relevant research area. Xtatic’s pattern compiler

is similar to a procedure inliner in that it examines a cyclic structure—a recursive pattern—and

segregates the nodes of that structure that can be compiled inline from the nodes that must be

compiled into stand alone code fragments. See more on this in Section 4.8.

A great deal of research has been conducted in the area of tree automata and regular tree lan-

guages [8, 5, 58, 59]. This field studies properties of regular tree and forest languages and algorithms

for various decision problems such as membership testing, minimization, and determinization. A

key distinction of our matching automata framework is that its focus is on modeling low-level

target language code, and, as a result, existing tree automata techniques may not be directly ap-

plicable Xtatic’s implementation. Section 4.8 gives an overview of tree automata and regular tree

languages literature and discusses its relationship to our work.

Two categories of research projects are related to Xtatic’s type-based optimization. The

first encompasses type-based optimization algorithms for Xtatic-like languages and is represented

by Alain Frisch’s work on CDuce [16, 17]. Unlike our matching-automaton-based algorithms, his

optimization algorithms are based on a more abstract notion of tree automata that is not suitable for

direct code generation. The second category includes research on minimizing XPath queries. Some

approaches in this area develop algorithms that generate optimal queries for subsets of XPath [71,

13]; others give heuristic, not fully optimal, algorithms that work for full XPath [26, 14, 27, 28].

Section 6.6 addresses these research projects in more detail.

Section 7.5 outlines research relevant to the development of Xtatic’s run-time system. It

discusses the run-time systems of several related languages [4, 6, 44] and efficient algorithms for

various operations on sequence data structures [57, 63, 45, 41, 42, 43, 60, 38, 70, 66, 64, 53].
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Chapter 3

The Xtatic Language

This chapter describes Xtatic and illustrates it by some sample programs. Gapeyev and Pierce

[23] give a more detailed specification of the language.

3.1 Language Overview

Xtatic is a lightweight extension of C] offering native support for statically typed XML processing.

XML trees are built-in values in Xtatic, and static analysis of the trees created and manipulated

by programs is part of the ordinary job of the typechecker. “Tree grep” pattern matching is used

to investigate and transform XML trees.

XTATIC inherits its key features from XDuce [35, 36, 37]. These features include XML trees as

built-in values, a type system based on regular types (closely related to popular schema languages

such as DTD and XML-Schema) for static typechecking of computations involving XML, and a

powerful form of pattern matching called regular patterns.

The integration of XML trees with the object-oriented data model of C] happens on two levels.

First, the XML type hierarchy is grafted into the C] class hierarchy by making all regular types

be subtypes of a special class Seq. This allows XML trees to be passed to generic C] library

facilities such as collection classes, stored in fields of objects, etc. Conversely, the roles of labels in

element sequences and their types are played by objects and classes; ordinary XML sequences are

represented using objects from a special Tag class as labels.

3.1.1 Values

Xtatic values consist of native C] values and (potentially empty) sequences of elements each
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containing a C] value used as the tag and a nested child value:

v ::= h | () | (h1)[v1] . . . (hn)[vn]

where h and hi range over native C] values that can be either objects or values of primitive types

such as integers and characters.

For instance, we can write (1)[] for the sequence of one element whose label is the integer 1 and

whose contents is the empty sequence. (We omit parentheses when the empty sequence is nested

within a parent element.) Assuming that Tagauthor is a subclass of Tag representing the XML tag

author, the Xtatic value (newTagauthor())[]/> corresponds to an XML sequence containing one

author-labeled element with an empty contents. For such sequences, Xtatic provides a lighter

notation in which the parenthesis in the label are dropped and the new expression is replaced by

the corresponding XML tag. For example, the above value can be written as author[].

Textual data is encoded by sequences of character-labeled elements. For instance ‘abc‘ is a

short-hand for the value (′a′)[], (′b′)[], (′c′)[].

Consider the following document fragment—a sequence of two entries from an address book—

given here side-by side in XML and Xtatic concrete syntax.

<person>

<name>Haruo Hosoya</name>

<email>hahasoya</email>

</person>

<person>

<name>Jerome Vouillon</name>

<tel>123</tel>

</person>

person[

name[‘Haruo Hosoya‘]

email[‘hahasoya‘]

]

person[

name[‘Jerome Vouillon‘]

tel[‘123‘]

]

The structure of the Xtatic document mirrors the structure of the XML document, the only

difference being a more compact notation for elements and backquotes, which distinguish XML

textual data from arbitrary Xtatic expressions yielding XML elements.

3.1.2 Types

Xtatic has two kinds of types: native C] types such as classes and primitive types for classifying

C] values and regular types for describing XML data. This section concentrates on regular types

and omits a thorough discussion of native C] types. More details about formalizing object-oriented

aspects of Xtatic-like languages can be found in the description of Featherweight Java [39] and

the definition of Xtatic [23].
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Xtatic types are described by the following grammar:

T ::= H | () | (H)[T ] | T1, T2 | T1|T2 | T∗ | Any | X

These denote native C] types, the type of the empty sequence, a labeled element type, sequential

composition, union, repetition, wild-card, and a type variable. Type variables are introduced by

top-level mutually recursive declarations of the form def X = T .

One possible type for the telephone book value shown in Section 3.1.1 is a list of persons, each

containing a name, an optional phone number, and a list of emails:

person[name[pcdata], tel[pcdata]?, email[pcdata]*]

where “?” marks optional components—it is an abbreviation for a union with the empty sequence—

and “pcdata” describes sequences of characters.

In the presence of the following type definitions, our address book could be given the type

APers*:

def Name = name[pcdata]

def Tel = tel[pcdata]

def Email = email[pcdata]

def TPers = person[Name,Tel]

def APers = person[Name,Tel?,Email*]

Subtyping in Xtatic inherits XDuce’s “semantic” definition of subtyping for regular types. In

semantic subtyping, type T1 is a subtype of type T2 if the set of values classified by T1 is a subset

of the set of values classified by T2. For example, every value of type TPers can also be described

by the type APers, so we have TPers <: APers.

XDuce’s simple semantic definition of subtyping extends naturally to Xtatic’s object-labeled

trees and classes. The subclass relation on labels is lifted to the subtype relation on regular types:

(A)[] is a subtype of (B)[] if A is a subclass of B.

The combined data model and type system, dubbed regular object types, have been formalized

in [23]. Algorithms for checking subtyping and inferring types for variables bound in patterns can

be adapted straightforwardly from those of XDuce [37, 35].

3.1.3 Patterns

Types and subtyping are also the foundation of regular pattern matching, which generalizes both

the switch statement of C] and the algebraic pattern matching popularized by functional languages
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such as ML. A regular pattern is just a regular type decorated with variable binders. A value v

can be matched against a pattern p, binding variables occurring in p to the corresponding parts of

v, if v belongs to the language denoted by the regular type obtained from p by stripping variable

binders. For matching against multiple patterns, Xtatic provides a match construct that is similar

to the switch statement of C] and the match expression of functional languages such as ML. For

example, the following method extracts a sequence of type TPers from a sequence of type APers,

removing persons that do not have a phone number and eliding emails.

fun addrbook(APers* ps) : TPers* =

TPers* res = ();

bool cont = true;

while cont

match ps with

person[name[Any] n, tel[Any] t, Any], Any rest →

res = res, person[n,t];

ps = rest;

person[Any], Any rest →

ps = rest;

() →

cont = false;

return res;

Regular patterns are described by the following grammar in which P and Q range over all

patterns and host language patterns respectively:

P ::= Q | () | (H)[P ] | P1, P2 | P1|P2 | T∗ | Any | P x

Q ::= H | Q x

Compared with the facilities available in pure C] (such as the raw DOM API), regular pat-

tern matching allows much cleaner and more readable implementations of many tree investigation

and transformation algorithms. However, compared with other native XML processing languages,

Xtatic’s pattern matching primitives are still fairly low-level: for example, no special syntax is

provided for collecting all sub-trees matching a given pattern, or for iterating over sequences. We

are currently investigating how best to add more powerful pattern matching; for now, our imple-

mentation efforts are concentrated on achieving good performance for low-level XML processing

code.
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Chapter 4

Foundations of Pattern

Compilation

This chapter describes the fundamental issues arising in compilation of Xtatic programs. The

focus is on compilation of pattern matching, since this is the main distinguishing aspect of Xtatic

compared to both traditional object-oriented and traditional functional languages. We use a limited

subset of Xtatic in this chapter—not only are most constructs unrelated to pattern matching

omitted, but patterns themselves are restricted to those without term binders and attributes.

Compilation of datatype-based patterns has been addressed extensively in the literature (see

Chapter 2). The main issue in translating these patterns is how to minimize the number of tests

performed during pattern matching while keeping the size of the output code small. Xtatic

regular patterns, being more expressive than datatype-based patterns, raise the same issues and

add some new ones—in particular, the handling of recursion. Whereas the number of tests required

to determine whether a given input value matches an datatype-based pattern is bounded by a

function of the size of the pattern, matching against a recursively defined pattern may involve a

number of tests depending on the size of the value. (For example, the recursive pattern X defined

by X = () | a[X],X describes trees of arbitrary depth whose nodes are all labeled by a; checking

that a given tree matches X involves exploring all of its nodes.) Since XML documents may be

large, the designer of a regular pattern compiler must be particularly sensitive to the performance

of the generated code with respect to the size of input values.

Algorithms for high-quality pattern compilation in this domain are somewhat complex, and we
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have found it useful to spend significant effort on developing careful proofs of correctness. To sim-

plify these proofs—as well as the presentation of the algorithms themselves—we separate compila-

tion conceptually into four phases. The first phase converts source program patterns into a simpler,

less ambiguous form corresponding to states of a non-deterministic, top-down tree automaton. The

structure of tree automata, however, is both too rigid and too high-level to suggest a direct way

of generating equivalent low-level code; we need a more flexible automata model to bridge the gap

between the source and the target of the compiler. This leads us to introduce matching automata,

which extend tree automata with variable binding, subroutines, and integer indices tracking which

of a set of patterns match an input value. The second compilation phase converts collections of tree

automaton states into equivalent matching automata. The remaining phases generate code: the

third phase produces intermediate language procedures from matching automata obtained in the

second phase; the fourth phase—not covered in this dissertation—converts intermediate language

code into target code in pure C].

To motivate the developments of this chapter, we explore a series of examples and identify

several issues that greatly influence the quality of low-level pattern-matching code. Based on these

observations, we propose two compilation algorithms—one generating backtracking code, and the

other a non-backtracking variant. To present these algorithms, we introduce matching automata—

a model of intermediate language programs, allowing us to elide the specifics of the intermediate

language and reason about properties of the compilation algorithms at a more abstract level.

The remainder of the chapter is organized as follows. Section 4.1 introduces a subset of Xtatic

called XtaticLite. Section 4.2 describes the intermediate language XIL that will be used as a

back-end for both the backtracking and the non-backtracking compilers. Section 4.3 previews the

two compilation approaches. Section 4.4 reviews the definition of binary top-down tree automata,

introduces matching automata, defines two particular forms of matching automata, called “simple

backtracking” and “simple non-backtracking”, and analyzes examples highlighting a number of

important issues arising in regular pattern compilation. Section 4.5 explains how to build matching

automata in backtracking and non-backtracking forms. Section 4.7 sketches our implementation

and discusses some performance experiments.

4.1 Source Language

Since this chapter addresses compilation of pattern matching, we consider a subset of Xtatic that

is sufficient to describe the concepts presented here. The difference between Xtatic and the subset

XtaticLite can be summarized by the following restrictions:
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v ::= () empty sequence
l[v1] . . . l[vk] non-empty sequence

p ::= () empty sequence pattern
l[p] single element sequence pattern
p1,p2 concatenation pattern
p1|p2 union pattern
X top-level definition variable pattern

t ::= x term variable
n integer
() empty sequence
l[t] single element sequence
t1,t2 sequence concatenation
A(t) function call
match x with p → t pattern matching

d ::= fun A(x) = t function declaration
def X = p pattern declaration

Figure 4.1: XtaticLite syntax

• Object-oriented features are omitted—a program is a collection of mutually recursive top-level

function definitions instead of a collection of classes

• XML values are tagged by uninterpreted labels as opposed to C] objects

• Types are omitted

• Variable binding is omitted from patterns

4.1.1 Definition: Sequence values, patterns, terms, and top-level definitions of XtaticLite are

described by the grammar shown in Figure 4.1 (where l,x,n,X, and A range over labels, term

variable names, integers, pattern variable names, and function names respectively.)

XtaticLite has two kinds of values: sequence values and integers, ranged over by v and n

respectively. Integer values are only introduced for presentational convenience to indicate different

outcomes of pattern matching in sample programs. Sequence values, on the other hand, can be used

as pattern matching arguments. A sequence value is a sequence of elements, where each element

has the form l[v], with l a label and v a sequence of child elements. The empty sequence is written

(), but as before we omit the parentheses if the empty sequence is delimited by a label, writing just

l[] instead of l[()]. Element sequences can be used to represent attribute-less XML documents.

For instance, the XML element <a><b/><c/></a> can be encoded by the value a[b[],c[]].
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XtaticLite supports the following kinds of patterns: the empty sequence pattern, a labeled

element pattern, sequential composition and union of two patterns, and a pattern variable. Pattern

variables are introduced by top-level mutually recursive declarations of the form def X = p. Top-

level declarations induce a function def that maps variables to the associated patterns: def(X) =

p if and only if the program contains the declaration def X = p.

() ∈ () (LXP-Emp)

v ∈ p

l[v] ∈ l[p]
(LXP-Elem)

v ∈ def(X)

v ∈ X
(LXP-Def)

v = v1, v2 v1 ∈ p1 v2 ∈ p2

v ∈ p1,p2
(LXP-Cat)

v1 ∈ p1

v ∈ p1|p2

(LXP-UniL)

v2 ∈ p2

v ∈ p1|p2
(LXP-UniR)

Figure 4.2: XtaticLite pattern-matching semantics

Figure 4.2 defines the semantics of patterns by a binary relation v ∈ p over sequence values and

patterns. The empty sequence matches the empty pattern; an element matches an element pattern

if the labels of the value and the pattern are the same, and if the children of the element match

the sub-pattern; a value matches a pattern variable if it matches the corresponding pattern; a non-

empty sequence matches a concatenation pattern if it can be split into two parts both matching the

corresponding sub-patterns; a value matches a union pattern if it matches one of the alternatives.
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The term language of XtaticLite includes variable references, value building constructs, func-

tion calls, and pattern matching expressions. Pattern matching expressions have the form match t

with p1 → t1 | . . . | pn → tn else t0 where the default clause is optional. To evaluate a match

expression, XtaticLite computes t and matches the result against patterns p1 . . . pn evaluating

the right hand side of the first clause containing a matching pattern or t0 if no patterns matched.

If the default clause is omitted, the match expression is said to be exhaustive. In such cases, we

can assume that any input value matches at least one of the patterns. (This is ensured statically

by the source language’s type checker.)

4.1.2 Example: The following program defines two mutually recursive patterns, X and Y (match-

ing respectively a[]; a[a[a[]],a[]]; etc. and (); a[a[]],a[]; etc.) and a function that checks

whether its argument matches X or Y and returns 1 or 2, respectively, or 0 if the argument matches

neither pattern.

def X = a[Y],Y

def Y = () | a[X],X

fun F(x) =

match x with

| X → 1

| Y → 2

else → 0

In the remainder of this chapter, we discusses compilation of pattern matching expressions only.

Furthermore, we only consider a restricted form of match expressions—match t with p1 → 1 |

. . . | pn → n else 0—where each right hand side is an integer identifying the position of the

corresponding clause in the list of clauses. This restriction together with the ones described in

the beginning of this section helps us carry out a complete formal development of the algorithms

presented in this chapter.

4.2 Intermediate Language

This section describes the intermediate language XIL that is sufficient to represent XtaticLite

programs at a low level.

4.2.1 Definition: Patterns, exit-free terms, terms with exits, and top-level definitions of XIL

are described by the grammar shown in Figure 4.3 (where l,x,n,A and j range over XDuce labels,

variable names, natural numbers, function names, and exception labels respectively.)
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p ::= () empty sequence
l[x1],x2 non-empty sequence

t ::= x term variable
n integer
() empty sequence
l[t] single element sequence
t1,t2 sequence concatenation
[t1, . . . , tk] tuple constructor
πn(t) tuple projection
A(t) function call
and(t) conjunction
if t1 then t2 else t3 conditional

e ::= t exit-free term
case x of p → e else e0 pattern matching
exit j(t) raising a lexical exception

d ::= fun A(x) = e1 with j(x) → e function declaration

Figure 4.3: XIL syntax

Four features distinguish XIL from XtaticLite: booleans, tuples, simpler pattern matching

constructs, and static exceptions. Let us briefly discuss these features and motivation behind them.

It is not possible to compile some XtaticLite pattern matching expressions—particularly

those involving recursive patterns—into single XIL fragments. To implement such expressions, our

compiler generates auxiliary functions each performing some subtask of the overall task. To indicate

whether a given subtask succeeds, the corresponding auxiliary function returns a boolean value.

Instead of introducing a separate boolean data type, we found it convenient to encode booleans by

integers—0 and 1 representing false and true respectively. Boolean values can only be used in

tuple constructors and if and and expressions.

Sometimes it is useful to employ auxiliary functions that return several bits of information. To

implement multi-value return, we use tuples of booleans—the third kind of values in addition to

sequence and integer values of XtaticLite. Tuple values can only be used in projection operations.

Pattern matching expressions of XIL have the same structure as match expressions of Xtati-

cLite, but only two kinds of rudimentary patterns are available: one matches the empty sequence;

the other matches a non-empty sequence extracting the contents of the first element, and the se-

quence of the remaining elements. Like match expressions, case expressions can have a fall-through

case, and, if it is absent, the case expression’s patterns can be assumed to be exhaustive.
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Similarly to the internal language of the OCaml compiler [12], XIL uses static exceptions to

provide unconditional parameterized forward jumps—also referred to as exits—within a function

body. Static exceptions are introduced in conjunction with a function declaration. A function

consists of a body and a collection of exception handlers. An exception handler consists of a unique

label, a collection of formal parameters, and a body. An exception is raised by an exit statement

specifying the label and the actual parameters. The body of a function can raise any exception

associated with that function. An exception handler can raise only those exceptions that appear

after itself in the declaration. Consider the following program. It takes a pair of boolean values

and returns 1 if the first component of the pair is true. If the first component is false, it returns

2 if the second component is true or 3 otherwise. Notice that j2 can be raised either in the body

of the function or in the body of the j1 handler; j1 can only be raised in the body of the function.

fun A(x) =

if π1(x) then 1

else exit j1(π2(x))

with

j1(y) →

if y then 2

else exit j2()

j2() → 3

To simplify reasoning about static exceptions, we employ a two-level syntax that distinguishes

two kinds of terms—those that can contain an exit statement as a subterm and those that cannot.

Furthermore, we syntactically restrict exit statements to occur only in tail positions of other terms.

Static exceptions allow us to encode join points. The next example illustrates that this capability

is critical for avoiding code duplication when two or more code fragments share some pattern-

matching steps.

4.2.2 Example: Consider the XtaticLite program shown in Figure 4.4(a). It consists of a

function that performs the following check on its argument x:

• if x is bound to a[],b[] or b[],a[], then return 1;

• if x is bound to a[],a[] or b[],b[], then return 2;

• if x contains a three-element sequence whose first two elements are either a[] or b[] and

whose third element is a[], then return 3.
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fun A(x) =

match x with

| a[],b[] | b[],a[] → 1

| a[],a[] | b[],b[] → 2

| (a[]|b[]), (a[]|b[]), a[] → 3

fun A(x) =

case x of

| a[x1],x2 →
case x2 of

| b[x3],x4 → exit j1(x4)

| a[x3],x4 → exit j2(x4)

| b[x1],x2 →
case x2 of

| b[x3],x4 → exit j2(x4)

| a[x3],x4 → exit j1(x4)

with

j1(x4) →
case x4 of

| () → 1

else 3

j2(x4) →
case x4 of

| () → 2

else 3

(a) (b)

Figure 4.4: An illustration of join points implemented by static exceptions: a XtaticLite program
(a) and an equivalent XIL programs (b)

Taking into account that the above match expression is exhaustive, and, hence, only the enu-

merated values can be passed as its parameters, the presented source program can be translated

into the XIL program shown in Figure 4.4(b). This program starts by checking whether the first

element is tagged by a or by b. In either case, it proceeds to perform a similar check on the second

element. If the first and the second elements are tagged by different labels, the program must

check whether the remainder of the sequence is empty; if so, the input value matches the pattern

of the first match clause; otherwise, it matches the pattern of the third match clause. This check

is encoded by static exception j1. Static exception j2 corresponds to the case when the first and

second elements are tagged by the same label.

We can rewrite the displayed XIL program without static exceptions by inlining the case

expressions appearing below the with keyword in place of the corresponding exit statements.

This would lead to slight code duplication since there are two occurrences of exits to both j1

and j2. In general, avoiding join points by code duplication is impractical since it often leads to

exponential code explosion.

We can also implement join points and jumps by functions and function calls respectively. For

several reasons, however, we avoid doing so and reserve the machinery of top-level functions strictly
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for handling recursive patterns. The benefits of using static exceptions instead of top-level functions

are as follows:

• it simplifies correctness proofs for our intermediate code generation algorithm;

• it simplifies specification and implementation of various intermediate code optimization passes

such as exit folding;

• it results in more aesthetically pleasing intermediate code since patterns are more likely to

be translated inline into self-contained XIL fragments.

To define the semantics of static exceptions, we parameterize XIL’s evaluation relation an

mapping from exception labels to the corresponding exception handlers. An exit environment ∆ is a

partial function mapping an exception label to a triple (x,e,∆′) containing a sequence of variables,

a term, and an exit environment. A function declaration fun A(x) = e1 with j2(x2) → e2 . . .

jm(xm) → em induces a collection of exit environments ∆1, . . . , ∆m where ∆i(jk) = (xk,ek,∆k)

for each k ∈ {i+1, . . . , m}. Function declarations are represented by a mapping fdef; for example,

the above declaration results in fdef(A) = (x,e1,∆1).

4.2.3 Definition: Judgments for function application: call A(v′) −→ v; and term evaluation:

E ` t −→ v and E •∆ ` e −→ v are defined as the least fixed point of the inference rules in Figure

4.5. E[v/x] denotes an environment mapping x ∈ x to the corresponding v ∈ v and agreeing with

E on all other variables. E\y denotes an environment which is undefined on y, but is otherwise

equal to E.

4.3 Two Compilation Schemes

We intend to study in detail two compilation schemes, differing in their handling of recursive

patterns. In the backtracking approach, every recursive pattern induces a target language helper

function that returns true (1) if its input matches the pattern or false (0) if it does not. Figure

4.6(a) shows the result of compiling the source program of Example 4.1.2 using the backtracking

approach. The two mutually recursive functions X and Y correspond to the source patterns with

the same names. (For brevity, we omit X; it is similar to Y, except that it does not check for the

empty sequence.) This program is backtracking because the tests of the “else if” branch of F involve

traversing the values that are also processed during the tests of the “if” branch.

In the non-backtracking approach, helper functions correspond to sets of recursive patterns.

Instead of returning booleans, they return tuples of booleans [t1,. . .,tn] indicating which of the
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E ` n −→ n (LXIL-Int)

E ` x −→ E(x) (LXIL-Var)

∃t ∈ t. E ` t −→ 0

E ` and(t) −→ 0
(LXIL-And1)

∀t ∈ t. E ` t −→ 1

E ` and(t) −→ 1
(LXIL-And2)

E ` t1 −→ 1 E ` t2 −→ v2

E ` if t1 then t2 else t3 −→ v2
(LXIL-If1)

E ` t1 −→ 0 E ` t3 −→ v3

E ` if t1 then t2 else t3 −→ v3

(LXIL-If2)

E ` t −→ v call A(v) −→ v′

E ` A(t) −→ v′
(LXIL-App)

E ` t −→ v

E • ∆ ` t −→ v
(LXIL-SimpTerm)

E ` t −→ v ∆(j) = (x,e′,∆′)

∅[v/x] • ∆′ ` e′ −→ v′

E • ∆ ` exit j(t) −→ v′
(LXIL-Exit)

E(x) = () ()→t′ ∈ p→t

E′ = E\x E′ • ∆ ` t′ −→ v′

E • ∆ ` case x of p→t else t0 −→ v′
(LXIL-Case1)

E(x) = l[w1],w2 (l[u],v)→t′ ∈ p→t

E′ = (E\x)[w1/u, w2/v] E′ • ∆ ` t′ −→ v′

E • ∆ ` case x of p→t else t0 −→ v′
(LXIL-Case2)

E(x) = v ∀p′→t′ ∈ p→t. E ` v /∈ p′

E • ∆ ` t0 −→ v′

E • ∆ ` case x of p→t else t0 −→ 0
(LXIL-Case3)

fdef(A) = (x,e′,∆′) ∅[v/x] • ∆′ ` e′ −→ v′

call A(v) −→ v′
(LXIL-Call)

Figure 4.5: XIL Evaluation
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fun F(x) =

case x of

| () →
2

| a[x],y →
if Y(x) && Y(y) then 1

else

if X(x) && X(y) then 2

else 0

else 0

fun Y(x) =

case x of

| () → 1

| a[x],y →
if X(x) && X(y)

then 1

else 0

else 0

fun F(x) = case x of

| () → 2

| a[x],y →
let pr1 = XY(x) in

let pr2 = XY(y) in

if π2(pr1) && π2(pr2) then 1

else

if π1(pr1) && π1(pr2) then 2

else 0

else 0

fun XY(x) =

case x of

| () → [0,1]

| a[x],y →
let pr1 = XY(x) in

let pr2 = XY(y) in

[π2(pr1) && π2(pr2),

π1(pr1) && π1(pr2)]

(a) (b)

Figure 4.6: Backtracking (a) and non-backtracking (b) target programs

set of patterns match the function’s input. Figure 4.6(b) contains the result of compiling the sample

program in the non-backtracking approach. The helper function XY returns a pair whose first and

second components correspond to patterns X and Y respectively.

The advantages of the backtracking approach are that operations on boolean values are more

efficient than operations on tuples of boolean values and that the number of helper functions is

guaranteed to be at most linear in the size of the patterns. The price of this is backtracking

and suboptimal performance for some matching problems. Conversely, the non-backtracking ap-

proach generates programs that employ more complex operations and potentially exponentially

many helper functions, but that are always guaranteed to run in time at worst linear in the size of

the input.

We now proceed to a more formal development of these compilation schemes.

4.4 Matching Automata

In this section, we review standard top-down tree automata, introduce matching automata, define

special backtracking and non-backtracking forms of matching automata, and present examples of
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matching automata illustrating several important compilation issues.

4.4.1 Tree Automata

The semantics of source patterns described in the previous section does not directly lead to an

efficient pattern matching algorithm. In particular, matching an input value v against a pattern

of the form p1,p2 involves splitting v at an arbitrary position, v = v1,v2, and matching v1 and v2

against p1 and p2, respectively. If v is a long sequence, this kind of non-deterministic processing

will be prohibitively expensive. For the same reason, it is difficult to compile source patterns into

efficient pattern-matching code directly.

Matching against a pattern of the special form l[p1],p2, on the other hand, can be executed

deterministically by checking that the value’s first element matches l[p1] and its remaining el-

ements match p2. Thus, converting source patterns into a form in which the first component of

any concatenation is a labeled pattern will provide us with a better starting point for generating

efficient pattern matching code. (In rare cases, this conversion may result in space blow-up; see

discussion of complexity issues in Section 4.5.7.) This form of patterns can be described by states

of a non-deterministic, top-down tree automaton.

4.4.1 Definition: A non-deterministic top-down tree automaton is a tuple A = (S,T), where S

is a set of states and T is a set of transitions consisting of empty transitions of the form s → () and

label transitions of the form s → l[s1],s2, where s,s1,s2 ∈ S and l is a label. The acceptance

relation on values and states, denoted v ∈ s, is defined by the following rules:

s → () ∈ T

() ∈ s
(TA-Emp)

s → l[s1],s2 ∈ T

v1 ∈ s1 v2 ∈ s2

l[v1],v2 ∈ s
(TA-Lab)

The patterns of Example 4.1.2 shown in the previous section can be converted into a tree

automaton with two states, S = {s1, s2} (corresponding to patterns X and Y respectively), two

label transitions, s1 → a[s2],s2 and s2 → a[s1],s1, and an empty transition s2 → (). Let us

derive a[a[]],a[] ∈ s2.

(1) a[a[]],a[] ∈ s2 by TA-Lab from 2 instances of (2)

(2) a[] ∈ s1 by TA-Lab from 2 instances of (3)

(3) () ∈ s2 by TA-Emp
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Figure 4.7: Sample Tree Automaton

Tree automata can be depicted by graphs whose nodes and edges represent states and transitions

as follows. For any transition of the form s1 → l[s2],s3, there is an edge labeled l from the node

corresponding to s1 to a bar which has two outgoing edges: one, labeled in, leads to the node

corresponding to s2, and the other, labeled out, leads to the node corresponding to s3. An empty

transition of the form s → () is represented by a dangling edge labeled by (). Figure 4.7 shows

the tree automaton discussed above.

From now on, we will assume that source program patterns have been converted into a tree

automaton, and the subsequent algorithms will deal with the states of this automaton. Hosoya and

Pierce [35] give a detailed description of the algorithm converting a collection of source patterns into

states of a tree automaton. Essentially, it transforms patterns into a disjunctive normal form by

applying associativity of concatenation and distributivity of concatenation with respect to union.

4.4.2 Matching Automata

Tree automata are a good first step, but several factors make them inappropriate for representing

low-level pattern matching code. The first has to do with handling values of the form l[v1],v2.

While a tree automaton processes v1 and v2 independently, a target program should be able to

handle them sequentially and use information obtained during inspection of v1 to drive processing of

v2. The second concerns the treatment of recursive patterns. While, in tree automata, circularities

entailed by recursive patterns are implicit in the transition relation, in the target language they

must be implemented by recursive procedures. Since there may be multiple ways of achieving this

goal, tree automata transitions alone are not sufficient for modeling target language. The third issue

arises from the fact that tree automata are designed to match against a single pattern, whereas, to

implement match expressions, we need a mechanism for matching efficiently against collections of

patterns.

For more effective processing of subtrees, we introduce transitions with variables. This new kind

of transitions has a source state, a target language pattern that determines when the transition is
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applicable and binds the subtrees of the current value, and a set of destination pairs that specify

the continuation of the transition. For instance, a tree automaton transition s1 → a[s2],s3 can

be rewritten as a transition with variables s1 : a[x],y → {x ∈ s2, y ∈ s3}. When s1 receives a

value a[v1],v2, the automaton binds x to v1 and y to v2 and transfers control to the destination

states sending the contents of x to s2 and the contents of y to s3. Once we introduce variables, v1

and v2 do not have to be processed immediately; instead, the automaton can proceed examining

one of them while keeping the other stored in a variable for future reference. The following example

demonstrates that such flexibility can be advantageous.

4.4.2 Example: It can be shown that there does not exist a deterministic top-down tree automa-

ton that implements the pattern a[],b[] | a[b[]]. With the help of transitions with variables,

however, it is possible to recognize it deterministically. Consider an automaton (S,T) where S =

{s1, s2, s3, s2}, and T contains the following transitions:

s1 : a[x],y→ {x ∈ s2}

s2 : b[w],z→ {w ∈ s4, z ∈ s4, y ∈ s4}

s2 : () → {y ∈ s3}

s3 : b[x],y→ {x ∈ s4, y ∈ s4}

s4 : () → ∅

The transition originating in s1 saves subtrees v1 and v2 of the input value a[v1],v2 in x and

y and sends the contents of x to s2. In s2, the automaton examines the shape of x and, depending

on the result, processes the contents of y: if x contains a b-labeled element, y is sent to s4; if x

contains the empty sequence, y is sent to s3. Observe that the above automaton is deterministic

since no state is a source of multiple transitions with the same label.

In addition to simple transitions with variables discussed in the above example, we introduce

subroutine transitions to make automata look more like target language code with respect to

handling recursive patterns. A subroutine transition has the form s : A → {y1 ∈ s1, . . . , yk ∈

sk} where A is the name of a subroutine automaton. When s receives a value v, the subroutine

automaton A is invoked, and, if it accepts v, the destination pairs are evaluated as in simple

transitions.

To support matching against multiple patterns, we introduce index sets and index mapping

relations. The idea is for an automaton not to simply accept or reject its input, but also to output

an integer index in case of acceptance. For instance, an automaton for a matching problem based on

patterns p1, . . ., pk would output an index i ∈ {1, . . . , k} iff its input matches pi. To accommodate

computing with indices, we enrich simple transitions with index sets and subroutine transitions with
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index mapping relations. Thus, a simple transition has the form q : p
I
→ {y1 ∈ q1, . . . , yn ∈ qn}

where I is a set integer indices, and a subroutine transition has the form q : A
σ
→ {y1 ∈ q1, . . . , yn ∈

qn} where σ is a binary relation on indices. The index set in a simple transition indicates which

of the original patterns can still match the input value when the transition is taken. The index

mapping relation in a subroutine transition serves a similar function: the pattern pk can still be

matched when the transition is taken as long as the subroutine automaton accepts the current value

returning j and (j 7→ k) ∈ σ.

The following definition summarizes all of the above concerns. We write E[v1/x, v2/y] to denote

an environment mapping x to v1 and y to v2 and agreeing with E on all other variables and E\y

to denote an environment which is undefined on y and otherwise equal to E.

4.4.3 Definition: A matching automaton is a tuple (Q,qs,R), where Q is a set of states, qs is a

start state, and R is a set of transitions. There are two kinds of transitions: simple and subroutine.

They have the following structure:

q : p
I
→ {y1 ∈ q1, . . . , ym ∈ qm} (simple)

q : A
σ
→ {y1 ∈ q1, . . . , ym ∈ qm} (subroutine)

Both types of transitions have a source state q and a set of destination pairs {y1 ∈ q1 . . . ym ∈ qm}.

A destination pair consists of a destination variable yi and a destination state qi. A simple tran-

sition contains a target language pattern p—which can be of the form () or l[x],z—and a set of

integer indices I. A subroutine transition contains a subroutine automaton name A and a relation

σ mapping indices to indices.

Let M be a mapping of automaton names to matching automata and let A = (Q,qs,R) be a

matching automaton. The acceptance relation E ` v ∈ q ⇒ k is defined on environments, values,

states, and indices by the following rules.

q : ()
I
→ {y1 ∈ q1, . . . , ym ∈ qm} ∈ R

k ∈ I

∀i ∈ {1, . . . , m}. E\yi ` E(yi) ∈ qi ⇒ k

E ` () ∈ q ⇒ k
(MA-Emp)

q : l[x],z
I
→ {y1 ∈ q1, . . . , ym ∈ qm} ∈ R

k ∈ I E′ = E[v1/x, v2/z]

∀i ∈ {1, . . . , m}. E′\yi ` E′(yi) ∈ qi ⇒ k

E ` l[v1],v2 ∈ q ⇒ k
(MA-Lab)
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q : B
σ
→ {y1 ∈ q1, . . . , ym ∈ qm} ∈ R

E ` v ∈ M(B) ⇒ j (j,k) ∈ σ

∀i ∈ {1, . . . , m}. E\yi ` E(yi) ∈ qi ⇒ k

E ` v ∈ q ⇒ k

(MA-Sub)

A value v is accepted by the automaton A with an index k in an environment E, written

E ` v ∈ A ⇒ k, if it is accepted by the automaton’s start state: E ` v ∈ qs ⇒ k.

The rule MA-Emp says that the empty sequence () is accepted by a state q in an environment

E returning an index k if there is a transition of the form q : () → . . . and for each destination

pair yi ∈ qi, the value E(yi) is accepted by qi returning k in an environment obtained from E

by removing y’s binding. MA-Lab describes how a state can accept a value l[v1],v2 using a

transition of the form q : l[x],z → . . .. It is similar to MA-Emp except that the environments

used for checking the destination pairs are extended with bindings of x to v1 and z to v2. MA-Sub

deals with subroutine transitions. A value is accepted by a state q in an environment E producing

an index k if there is a transition of the form q : B → . . ., the automaton M(B) accepts v in E

producing an index j such that (j 7→ k) is in the transition’s index mapping relation, and the

destination pairs are checked as in MA-Emp.

The index mapping relations in subroutine transitions serve two purposes. First, they allow us

to reduce the number of subroutine automata since we can avoid building isomorphic automata that

only differ in their indices. Second, and more importantly, they are essential for creating matching

automata that represent non-backtracking target programs.

Let us consider a matching automaton which implements Example 4.1.2. This automaton, let

us call it XY, consists of states q1 (the start state) and q2 and transitions

q1 : ()
I1→ ∅ where I1 = {2},

q1 : a[x],y
I2→ {x ∈ q2} where I2 = {1, 2}, and

q2 : IC
σ1→ ∅ where σ1 = {1 7→ 1, 2 7→ 2}

The subroutine automaton IC contains states q3 (its start state) and q4 and subroutine transi-

tions

q3 : XY
σ2→ {y ∈ q4} and

q4 : XY
σ2→ ∅ where σ2 = {1 7→ 2, 2 7→ 1}

Diagrams of matching automata are similar to those of tree automata except that they must

account for the additional annotations on transitions. Edges must be annotated with index sets

in case of simple transitions and index mapping relations in case of subroutine transitions. The
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parts of edges connecting a bar to a destination state are labeled by the corresponding destination

variable instead of the keywords “in” and “out” used in tree automata figures. Figure 4.8(b) shows

the automata discussed in the above example.

The goal of XY is to output 1 if its input matches X or 2 if its input matches Y. Let us derive

∅ ` a[a[]],a[] ∈ XY ⇒ 2.

(1) ∅ ` a[a[]],a[] ∈ XY ⇒ 2 by Definition 4.4.3 from (2)

(2) ∅ ` a[a[]],a[] ∈ q1 ⇒ 2 by MA-Lab from (3)

(3) E1 ` a[] ∈ q2 ⇒ 2 by MA-Sub from (4)

E1 = ∅[a[]/y]

(4) E1 ` a[] ∈ IC ⇒ 2 by Definition 4.4.3 from (5)

(5) E1 ` a[] ∈ q3 ⇒ 2 by MA-Sub from (6,7)

(6) E1 ` a[] ∈ XY ⇒ 1 derived similarly to (1)

(7) ∅ ` a[] ∈ q4 ⇒ 2 by MA-Sub from (8)

(8) ∅ ` a[] ∈ XY ⇒ 1 derived similarly to (1)

4.4.3 Special Forms of Matching Automata
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Figure 4.8: Matching Automata in Simple Backtracking (a) and Non-Backtracking (b) Forms

The definition of matching automata is very flexible. For instance, tree automata can be viewed

as a special case of matching automata that implement single clause match expressions. As a

result of this flexibility, not every matching automaton can be easily mapped to a target language

program. The purpose of the forthcoming development is to identify matching automata for which

this mapping is straightforward. Specifically, we will define two sets of restrictions ensuring that
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matching automata correspond directly to either backtracking or non-backtracking target language

programs introduced in the previous section. We say that automata satisfying the former set of

restrictions are in simple backtracking form, and automata satisfying the latter set of restrictions

are in simple non-backtracking form.

As we introduce various restrictions, we will show how parts of matching automata correspond to

target language expressions. We will use the matching automata of Figure 4.8 and the corresponding

programs of Figure 4.6 to illustrate this connection.

We begin by discussing restrictions that are pertinent to both backtracking and non-backtracking

styles.

We say that a matching automaton is sequential if each of its transitions has at most one

destination pair. The automata of Figure 4.8 are sequential, for example, but the automaton

shown in Figure 4.9(b) below is not: its non-final transitions have two destination pairs.

We say that a matching automaton is disjoint if for any state of the automaton, simple tran-

sitions originating in this state are non-overlapping. Automata of Figure 4.8 are disjoint; the

automaton of Figure 4.9(b) is not since q1 is a source of two a-transitions.

A state of a sequential and disjoint automaton can be converted to a target language case

expression, each outgoing transition corresponding to a case branch. For example, observe how

states q1 and q8 of Figure 4.8(a) and q1 of Figure 4.8(b) correspond to the case expressions

appearing in Figure 4.6.

The remaining restrictions are related to subroutine transitions.

We say that an automaton has separated transitions if whenever a state has an outgoing sub-

routine transition, all other transitions originating in this state are subroutine transitions as well.

States of such automata can be partitioned into subroutine and simple states; each serving as a

source of only the corresponding kind of transitions. Moreover, we say that an automaton has staged

transitions if the destination states of its subroutine transitions are subroutine states. Consider, for

instance, the automaton Y shown in Figure 4.8(a). It has a simple state q8 and subroutine states

q9 and q10. The automaton is staged since the destination state of the first subroutine transition is

a subroutine state q10 and the second subroutine transition is final and does not have a destination

state.

The next concept is specific to the backtracking form of matching automata.

We say that a matching automaton is boolean if, for any of its simple transitions q1 : p
I
→ . . .

and for any of its subroutine transitions q2 : A
σ
→ . . ., it is the case that I = range(σ) = {1}. A

subroutine transition q : A
σ
→ . . . is boolean if dom(σ) = {1}. Since boolean matching automata

involve a single index, their function, like tree automata, is either to accept or to reject the input
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value. Thus, in the target language boolean automata can be represented by boolean functions.

The backtracking compilation approach employs two kinds of matching automata: a matcher

implements a source match expression; a boolean acceptor implements a particular pattern and

returns 1 if it matches the input value. Only the latter kind of automata are used as subroutines

in the backtracking method.

The automata shown in Figure 4.8(a) are in simple backtracking form. In particular, F is

a matcher and X and Y are boolean acceptors. Subroutine states q2, q6, and q9 correspond to

the if expressions in the target program. Each of these states is the start of one or more “call

tails”—sequences of subroutine transitions sharing the same index mapping relation σ. A call tail

corresponds to an if branch: the conjunction of the subroutine calls constitutes the test, and the

index occurring in range(σ) is returned if the test succeeds. The following definition summarizes

the above restrictions.

4.4.4 Definition: A collection of matching automata is said to be in simple backtracking form

(SBF) if it can be partitioned into matchers and acceptors, all of which are sequential and dis-

joint automata with separated and staged transitions. Furthermore, only acceptors may serve as

subroutines, and acceptors and subroutine transitions must be boolean.

In the non-backtracking scheme, subroutine states must have at most one outgoing subroutine

transition. (This is what ensures that there is no backtracking!) To satisfy this condition, we

remove the restriction requiring subroutines to be boolean (so there is no longer a distinction

between acceptors and matchers) and introduce an additional kind of matching automata called

index converters whose purpose is to make a sequence of subroutine calls and convert the returned

indices. The automata shown in Figure 4.8(b) are in simple non-backtracking form; XY is a matcher,

and IC is an index converter.

Note that in this example, the index converter is unnecessary; we can inline the subroutine call

invoking the converter by substituting q3 for q2 without changing the meaning of XY. Such inlining,

however, is not always possible. Example 4.4.8 below will involve an essential index converter that

cannot be eliminated. The following definition formalizes the simple non-backtracking form.

4.4.5 Definition: A collection of matching automata is said to be in a simple non-backtracking

form (SNBF) if it can be partitioned into a collection of matchers and index converters, all of

which are sequential and disjoint automata with separated and staged transitions. Furthermore,

converters may only call matchers and vice versa; any subroutine state may be the source of

exactly one transition; subroutine transitions in matchers must be final; and index converters may

only contain subroutine states. We also require that subroutine transitions in matchers and index
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converters be compatible with each other: if q : IC
σ
→ ∅ is a subroutine transition in a matcher and

q′ : A
ρ
→ . . . is a subroutine transition in the index converter IC, then dom(σ) = range(ρ).

In the target language, matchers are implemented by functions that return tuples of booleans.

The elements of the tuple correspond to the different indices output by the matcher. The matcher

outputs an index iff the function returns a tuple with the corresponding element set to true. For

example, matcher XY outputs 1 or 2; thus, the corresponding target function returns a pair. A

subroutine state in a matcher gives rise to a let expression whose components are generated from

the matcher’s subroutine transition as well as the subroutine transitions of the index converter.

4.4.4 Examples

While designing our regular pattern compiler, we found that several factors play a major role in the

quality of the output code. Sometimes we were surprised by a dramatic effect of some seemingly

innocuous change to the compiler on either the performance or size of the generated code. The

following series of examples is an extract of what we believe are the most important lessons learned

from our experiments.
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Figure 4.9: Example 4.4.6; correspondence between a tree automaton (a) and a matching automaton
(b); an equivalent exhaustive matching automaton (c)

4.4.6 Example: Our first example illustrates two points. First, we show how we can create a

matching automaton by a simple modification of the tree automaton corresponding to the matching

problem’s patterns. We then show how the obtained matching automaton can be converted into a

substantially more efficient matching automaton. Consider the following source program fragment:
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def A = () | a[A],A

match x with

| a[a[]],a[A] → 1

| a[A] → 2

A tree automaton built from the patterns of this expression is shown in Figure 4.9(a). Its states

s1 and s3 correspond to the first and second patterns respectively. A corresponding matching

automaton can be constructed directly from the states and transitions of the tree automaton.

First, we must account for the difference in the structure of transitions by modifying tree automaton

transitions of the form s1 → a[s2],s3 and s1 → () into transitions with variables s1 : a[x],y→

{x ∈ s2, y ∈ s3} and s1 : () → ∅ respectively. We also must create a start state that combines

the transitions originating in s1 and s3, the states corresponding to the patterns of the match

expression. Finally, we must annotate the transitions with appropriate index sets. The result of

this transformation is the matching automaton shown in Figure 4.9(b). It succeeds, outputting 1

or 2, if its input matches the first or second pattern of the match expression, respectively; if the

input matches neither, the automaton fails.

This matching automaton can be improved. Observe that the match expression of this example

is exhaustive (it has no else branch), so we may assume that the matching automaton will never

receive an input value that does not match either source pattern. For values that match one of

the patterns, it is sufficient to count the number of top-level elements: if there are two, then the

input value matches the first pattern; if one, then the second pattern. This is implemented by the

matching automaton shown in Figure 4.9(c). In q1, it receives a value of the form a[v1],v2 and

stores v1 in x and v2 in y; then, in q2 it investigates the contents of y, and, if it is of the form

a[v3],v4, returns 1, or, if it is of the form (), returns 2. Note, that investigating the contents

of x before the contents of y would not immediately reveal the answer since learning that v1 is of

the form a[v3],v4 does not tell us whether the input value matches the first or the second source

pattern.

This new matching automaton is in SBF—in particular, it is disjoint and sequential. In general,

making matching automata disjoint and sequential yields two benefits. The obvious benefit is

that a disjoint matching automaton involves less backtracking and hence is more efficient than its

non-disjoint equivalent. The indirect, but, as our experience and this example indicate, significant

benefit is that making automata disjoint and sequential can lead us to a compact solution that

traverses only the parts of the input value necessary to determine the result.
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Figure 4.10: Example 4.4.7; exponential (a), and linear subroutine automata (b)

We now move to a discussion of issues related to subroutine automata and subroutine transitions—

the issues that influenced most of the essential design choices during the development of our com-

piler.

4.4.7 Example: In this example, we discuss a program whose most obvious implementation has

exponential running time. Consider the following fragment:

def A = a[B] | a[C]

def B = b[] | a[A]

def C = c[] | a[A]

match x with

| A → 1

else 0

Let us try to convert this match expression into a matching automaton in SBF. Our first instinct

is to associate each of the three recursive patterns with a separate subroutine automaton; Figure

4.10(a) shows the corresponding solution. (We omit C since it is similar to B. Also, since the match

expression of this example consists of a single clause, all index sets and index mapping relations in

transitions are vacuously {1} and {1 7→ 1} respectively; so, we omit them from the figure.)

Observe that A, if executed sequentially, will take exponentially many steps to reject a value of

the form a[a[ . . . [d[]] . . . ]]. The source of this inefficiency lies in the fact that there are two

subroutine transitions originating in q3, and the automaton will backtrack, repeatedly trying one

of the transitions, failing, and trying the other transition.
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We can obtain a linear matching automaton by observing that it is not necessary to associate a

subroutine with each pattern defined recursively in this example. Figure 4.10(b) displays a solution

in which only A has a corresponding matching automaton. Instead of having subroutine calls to

B and C, this automaton incorporates their states and transitions directly. The new automaton is

non-backtracking since it does not have a state with more than one outgoing subroutine transition.

This example shows the benefit of minimizing the number of subroutine automata. Later,

however, we will see that this strategy should not be applied naively because it can lead to a huge

size explosion.
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Figure 4.11: Example 4.4.8; exponential boolean (a) and linear non-boolean automata (b)

4.4.8 Example: This example shows that, for some matching problems, using boolean subrou-

tines is not enough. Consider the following program:

def X = b[] | a[Y],Z | a[Z],Y

def Y = c[] | a[Z],X | a[X],Z

def Z = d[] | a[X],Y | a[Y],X

match x with

| X → 1

else 0
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Figure 4.11(a) contains a boolean matching automaton for this match expression. This automa-

ton, like the initial matching automaton built for Example 4.10, exhibits exponential running time.

Unlike that example, however, it is not clear how to transform the exponential automaton into a

more efficient boolean automaton. In such cases, we can fall back to using more general subroutine

automata of SNBF. The automaton XYZ shown in Figure 4.11 implements this matching problem—

it outputs 1, 2, or 3 if the input matches X, Y, or Z respectively. XYZ, like any automaton in SNBF,

is linear.

As we have mentioned before, in this example, it is not possible to achieve the desired behavior

by circumventing the index converter and making the two XYZ calls from q2. Such an automaton

would not distinguish values matching a[Y],Z and a[Z],Y—they should be accepted and 1 should

be returned—from values matching a[Y],Y and a[Z],Z—they should be rejected.

q1

q6

q5

q2

q4

q3

q1

q10

q7

q5q4

q12

q9

q2 q3

q11

q8

C1=

C2=
a1[x],y x

()

() y

y

z

z

d[x],z

e[x],z

()

()y

ye[z],y

. . .

D

E()

() x

x

y

y

d[x],y

e[x],y

d[z],y D

E

z

z

D

Dx

x

(a)

q1 q3 q7q6q5q4q2C3=
xya2[x],y x C1C1 vzC1a1[x],z a1[v],y C1y

(b)

Figure 4.12: Example 4.4.9; equivalent matching automata with a large (a) and a small (b) number
of states

4.4.9 Example: We conclude with an example showing a potential drastic explosion of the size

of matching automata. Consider the following program:
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def D = d[D?]

def E = e[E?]

def A1 = a1[C1]

def A2 = a2[C2]

def C1 = D | E

def C2 = A1,C1

def C3 = A2,C2

match x with

| C3 → 1

else 0

Only patterns D and E are recursive, and, so, it is reasonable to associate subroutine matching

automata with these and only these patterns. Let us try to build matching automata for C1, C2,

and C3 in succession. Figure 4.12(a) shows a matching automaton for C1; it has two final states

with subroutine transitions. The same figure displays a significantly larger matching automaton

for C2. (The omitted part of C2 indicated by . . . is similar to the part above it: q6 is isomorphic

to q5.) Automaton C2 has four final states. If we build a matching automaton for C3 following

the same pattern, it will have sixteen final states and will not fit on the page. The size grows

double-exponentially in the size of the source pattern!

To avoid the above size explosion, it is sufficient to associate a subroutine automaton with C1

as well as with D and E. Figure 4.12(b) shows a compact matching automaton for C3 that takes

advantage of C1’s subroutine automaton.

Armed with various insights from these examples, we now proceed to a description of our

compilation algorithms.

4.5 Compilation

Section 4.4.1 discussed how patterns of a source program can be converted into states of a top-down

nondeterministic tree automaton A = (S,T). This section describes the compilation algorithm that

builds matching automata in simple backtracking or non-backtracking forms for matching problems

specified in terms of elements of S. In particular, we will show how, given an ordered sequence of

tree automaton states s1 . . . sn, we can build a matching automaton, in either of the two special

forms, that on an input value v outputs k iff v ∈ sk.

We start by giving a top-level overview of the SBF compilation algorithm. We then discuss in

more detail several key techniques employed in the algorithm and state several of its properties.

We conclude the section with an outline of the SNBF compilation algorithm and summarizing

complexity of the presented algorithms.
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4.5.1 Outline of SBF compilation

The compilation algorithm will manipulate a data structure that is a generalization of sequences

of tree automaton states. In this data structure, tree automaton states are arranged into a ma-

trix whose rows and columns are associated with integer indices and variables respectively. More

formally:

4.5.1 Definition: Let A = (S,T) be a tree automaton. A configuration over S consists of a tuple

of distinct variables <x1,. . . ,xn> and a set of tuples {(s11, . . . , s1n, j1), . . . , (sm1, . . . , smn, jm)}

each associating a collection of states from S to an integer index. A configuration can be depicted

as follows:

C =

x1 . . . xn

s11 . . . s1n j1

. . .

sm1 . . . smn jm

We say that an environment E satisfies C yielding an index jr, written E |= C ⇒ jr, if

E(xi) ∈ sri for all i ∈ {1, . . . , n}. A configuration C is satisfiable by an environment E if there

exists an index k such that E |= C ⇒ k.

The core of the SBF algorithm is a recursive function sbf that takes a configuration and produces

a matching automaton. Any configuration encountered by sbf represents a state of the resulting

matching automaton. The algorithm uses two methods of expanding configurations to generate

transitions of the matching automaton. Expansion results in residual configurations that are used

as parameters to recursive calls of sbf. The algorithm terminates when the current configuration

has no columns.

The following sections provide more details. First, we describe two expansion techniques: one

for generating simple transitions, and the other for generating subroutine transitions. Then, we

show how sbf determines which of the two expansion techniques should be applied to a given

configuration and, in a related development, address the size explosion concern raised in Example

4.4.9. We then describe several techniques for optimizing configurations that lead to smaller and

more efficient matching automata. This is followed by a formal definition of the algorithm and the

proof of its correctness.

4.5.2 Two Configuration Expansion Techniques
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4.5.2 Example: Let us illustrate the expansion method producing simple transitions. We refer

to this kind of expansion as expansion by label. Consider the following diagram that illustrates the

first step in the construction of the matching automaton shown in Figure 4.9(c).

x

s1 1

s3 2
C1

{1,2}

a[x],y x y

s2 s3 1

s5 s4 2
C2

?

Here, C1 is the initial configuration that corresponds to the source state of the matching au-

tomaton. It includes the tree automaton states s1 and s3 that represent the source patterns of

the underlying match expression (see Figure 4.9(a)). To expand a configuration by label, we must

select one of its columns and a label appearing in some transition whose start state is an element of

the selected column. There is only one column in C1; so, it is selected for expansion (as indicated

by the vertical arrow.) Both of the states in the selected column are sources of a single a-labeled

transition. Therefore, there is only one way to expand C1 by label, and the result of this expansion

is the residual configuration C2.

C2 is obtained from C1 as follows. First we remove the selected column and the rows whose

state in the selected column does not have an a-labeled transition. (No rows are removed in our

case.) Then we generate two variables that do not appear in the obtained configuration and add

two new columns consisting of these variables and the successor states of the a-labeled transitions.

In particular, the contents of the two new columns in the first row of C2 arises from the transition

s1 → a[s2],s3, and the contents of the second row arises from the transition s3 → a[s5],s4.

C1 and C2 correspond to the states q1 and q2 of the matching automaton shown in Figure 4.9(c).

The pattern part of the transition between C1 and C2 consists of the label a and the variables used

in the expansion. The index set consists of the indices appearing in the destination configuration.

The destination variable is unknown at this stage; it will be determined by the column that is

selected for expansion of C2. The following figure shows how C2 is expanded.

y x y

s2 s3 1

s5 s4 2
C2

x z y

s2 s5 s4 1

x

s5 2

{1}

?

?

a[z],y

()

{2}

C4

C3

Let us base expansion of C2 on the second column (hence y becomes the destination variable

of the transition generated in the previous paragraph.) There are two distinct labels occurring in

transitions whose source states are in the second column: () and a. Hence, we must expand C2

twice: once with respect to each label. Expanding C2 by a is done similarly to how we expanded
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C1. Expanding by () is even simpler: it follows the same steps as expanding by a but does not

involve generating variable names or introducing new columns.

The following definition summarizes expansion by label. Function expand by label generates

a residual configuration given the current configuration, a column, and a transition label. The

definition considers two cases: one for some binary label l; the other for the empty sequence label

(). In this definition and in the subsequent propositions, we will use newvars(C,c) to indicate a

pair of variables that do not appear in C after its column c has been removed.

expand by label

















x1 . . . xn

s11 . . . s1n j1

. . .

sm1 . . . smn jm

, c, l

















=

u v x1 . . . xc−1 xc+1 . . . xn

t′11 t′′11 s11 . . . s1(c−1) s1(c+1) . . . s1n j1

. . .

t′1k1
t′′1k1

s11 . . . s1(c−1) s1(c+1) . . . s1n j1

...

t′m1 t′′m1 sm1 . . . sm(c−1) sm(c+1) . . . smn jm

. . .

t′mkm
t′′mkm

sm1 . . . sm(c−1) sm(c+1) . . . smn jm

where {(t′i1, t′′i1), . . . , (t′iki
, t′′iki

)} = {(t′, t′′) | sic → l[t′],t′′ ∈ T} for i ∈ {1, . . . , m} and

(u,v) = newvars(C,c) for the input configuration C

expand by label

















x1 . . . xn

s11 . . . s1n j1

. . .

sm1 . . . smn jm

, c, ()

















=

x1 . . . xc−1 xc+1 . . . xn

sk11 . . . sk1(c−1) sk1(c+1) . . . sk1n jk1

. . .

ski1 . . . ski(c−1) ski(c+1) . . . skin jki

where {k1, . . . , ki} = {k | skc → () ∈ T}

The following propositions indicate that expansion by label preserves the meaning of the input

configuration. We use var(C,c) to denote the variable appearing in column c of configuration C.
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4.5.3 Proposition: If C1 = expand by label(C,c,l) and y = var(C,c) and (u,v) = newvars

(C,c) and E(y) = l[w1],w2 and E1 = (E\y)[w1/u, w2/v], then E |= C ⇒ k iff E1 |= C1 ⇒ k.

Proof: Follows trivially from the definition of configuration by label, definition of tree automaton

acceptance 4.4.1, and definition of configuration acceptance 4.5.1. �

4.5.4 Proposition: If C1 = expand by label(C,c,()) and y = var(C,c) and E(y) = () and

E1 = E\y, then E |= C ⇒ k iff E1 |= C1 ⇒ k.

Proof: Follows trivially from the definition of configuration by label, definition of tree automaton

acceptance 4.4.1, and definition of configuration acceptance 4.5.1. �

4.5.5 Example: The second kind of expansion produces subroutine transitions and is called

expansion by state. Consider the following configurations corresponding to states q2, q3, and q4 of

Figure 4.8(a).

x y

s2 s2 1

s1 s1 2
C1

y

s2 1

y

s1 2

?

?

C2

C3

M<s2>

{17→1}

M<s1>

{17→2}

Just as in expansion by label, we must select a column whose states will serve as the basis for

expansion. The first column of C1 was selected in this example. There are two distinct states in

the first column, and, so, C1 is expanded two times: by s2 resulting in C2, and by s1 resulting

in C3. C2 is obtained from C1 by removing the selected column and the rows whose state in the

selected column is not equal to s2. C3 is produced similarly. In the generated transitions, M<s1> and

M<s2> denote subroutine matching automata corresponding to states s1 and s2. The compilation

algorithm constructs these automata using initial single-state configurations (<x>,{(s1, 1)}) and

(<x>,{(s2, 1)}) respectively.

Expansion by state is formalized by the following function that generates a residual configuration

given the current configuration, a column, and a tree automaton state:
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expand by state

















x1 . . . xn

s11 . . . s1n j1

. . .

sm1 . . . smn jm

, c, s

















=

x1 . . . xc−1 xc+1 . . . xn

sk11 . . . sk1(c−1) sk1(c+1) . . . sk1n jk1

. . .

ski1 . . . ski(c−1) ski(c+1) . . . skin jki

where {k1, . . . , ki} = {k | skc = s}.

4.5.6 Proposition: If y = var(C,c) and E1 = E\y and L = column states(C,c), then E |=

C ⇒ k iff ∃s ∈ L. E1 |= expand by state(C,c,s)⇒ k and E(y) ∈ s.

Proof: Follows trivially from the definition of configuration by state and definition of configura-

tion acceptance 4.5.1. �

4.5.3 Loop Breakers

To help us determine whether a configuration should be expanded by label (as in Example 4.5.2)

or by state (as in Example 4.5.5), we introduce the following concept.

4.5.7 Definition: Let A = (S,T) be a tree automaton. We say that Rec ⊆ S is a set of loop

breakers for A if removing the transitions originating in Rec ensures that the remaining transition

relation is acyclic.

The initial configuration that corresponds to the start state of the matching automaton is

always expanded by label. A non-initial configuration is expanded by state if all of its columns

contain a loop breaker. If a non-initial configuration contains columns that have no loop breakers,

one of such columns is selected for expansion and the configuration is expanded by label. This

strategy ensures that the compilation algorithm terminates. The goal of the initial configuration

rule is to prevent generating a non-terminating matching automaton that calls itself (or some other

automaton) recursively without making any progress.

The above definition specifies a necessary condition for a set of loop breakers, but does not tell

us how to compute it. Let us consider several alternatives. The first one is the set of all states

of a tree automaton; it is the maximal set of loop breakers. If the compilation algorithm uses

the maximal set of loop breakers, the size of the generated matching automaton is guaranteed to

be at worst linear in the size of the input tree automaton. The disadvantage of this approach is
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that it generates too many subroutine transitions resulting in more backtracking and extra cost of

subroutine invocation.

At the other extreme are minimal sets of loop breakers. They lead to more efficient matching

automata by minimizing the number of subroutine transitions as shown in Example 4.4.7. Example

4.4.9 demonstrates, however, that minimal sets of loop breakers can result in a matching automaton

with a double exponential number of states.

s3 s5

s4

s6

s2s1

. . .

. . .

out

out

out

in

in

()

in

a2 a1

out

in

e

d

Figure 4.13: Tree Automaton for Example 4.4.9 that may lead to a space explosion

To understand what causes the double exponential blowup, consider Figure 4.13 that shows the

tree automaton associated with Example 4.4.9. Observe, that the transitions originating in s1 and

s2 duplicate the destination state and that s3 has two outgoing transitions. Both these factors

contribute to the blowup.

In view of this, we consider two other approaches to computing the set of loop breakers: a

multiple predecessor set of loop breakers is the union of a minimal set and the set of states with

multiple incoming transitions (such as s2 and s3); a multiple successor set of loop breakers is the

union of a minimal set and the set of states with multiple outgoing transitions (such as s3). Using

multiple successor or multiple predecessor loop breakers ensures that the size of the generated

automaton is at worst exponential or polynomial respectively. For the tree automaton of Figure

4.13, for example, the multiple successor set of loop breakers {s3, s4, s6} leads to the matching

automaton shown in Figure 4.12(b).

Our current compiler implementation uses the same loop breaker set throughout compilation.

Tests have shown that using either multiple predecessor or multiple successor sets of loop breakers

results in satisfactory target programs that are almost as fast as those generated with the minimal

set of loop breakers and almost as small as those generated with the maximal set of loop breakers.

In the future, we would like to consider an adaptive strategy that starts with the minimal set of

loop breakers and switches to a more size conscious set of loop breakers if the generated program

exceeds a certain size threshold.
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4.5.4 Optimizing Configurations

Depending on whether the input match expression is exhaustive or not, the sbf operates in either

the exhaustive or non-exhaustive mode. In the exhaustive mode, sbf can take advantage of the

fact that only values that match one of the alternatives can be given as input to the generated

matching automaton. The first exhaustiveness optimization simplifies configurations all of whose

rows contain the same index into zero-column configurations. Consider, for instance, C3 and C4 of

Example 4.5.2. For any satisfying environments, these configurations are equivalent to the zero-

column configurations (<>,{1}) and (<>,{2}) respectively. Using this optimization, we can finalize

the matching automaton generated in Example 4.5.2 by making the transitions originating in C2

final (c.f. the matching automaton of Figure 4.9(c)).

Another exhaustive mode optimization involves eliminating columns containing the same state.

Again we refer to configurations C3 and C4 of Example 4.5.2. These configurations are subject to

the described optimization since they have only one row. Removing the columns will result in the

same zero-column configurations that we obtained by applying the optimization described in the

previous paragraph.

fun sbf simple(C,A,Rec,exh) =

let c = simple col(C)

let L = labels(C,c)

for l ∈ L do

let Cl = expand by label(C,c,l)

let Il = indices(Cl)

if width(Cl) = 0 then

let Ml = ({C},C,0)

let rl = C : ()
Il→ ∅

else

let (Ml,yl) = sbf(Cl,A,Rec,exh)

if l = () then

let rl = C : ()
Il→ {yl ∈ sstate(Ml)}

else

let (u,v) = newvars(C,c)

let rl = C : l[u],v
Il→ {yl ∈ sstate(Ml)}

return (
⋃

l∈L C
rl→ Ml, var(C,c))

fun sbf sub(C,A,Rec,exh) =

let S = column states(C,1)

for s ∈ S do

let Cs = expand by state(C,1,s)

let σs = {(1,j) | j ∈ indices(Cs)}

if width(Cs) = 0 then

let Ms = ({C},C,0)

let rs = C : M<s>
σs→ ∅

else

let (Ms,ys) = sbf sub(Cs,A,Rec,exh)

let rs = C : M<s>
σs→ {ys ∈ sstate(Ms)}

return (
⋃

s∈S C
rs→ Ms, var(C,1))

fun sbf(C,A,Rec,exh) =

let C = optimize(C,exh)

if ∃c. Rec ∩ column states(C,c) = 0 then

return sbf simple(C,A,Rec,exh)

else return sbf sub(C,A,Rec,exh)

Figure 4.14: Functions of the SBF compilation algorithm
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4.5.5 Formalization of the SBF Algorithm

The SBF algorithm employs three functions sbf simple, sbf sub, and sbf displayed in Figure

4.14. All three functions take an input configuration, a description of the tree automaton on which

the configuration is based, a set of loop breakers, and a boolean exhaustiveness flag and generate

a matching automaton whose semantics is equivalent to the input configuration and the variable

inspected by the start state of the matching automaton.

Functions sbf simple and sbf sub generate a matching automaton whose start state is a simple

state and a subroutine state respectively; sbf determines whether a simple state can be generated

from a given configuration and depending on this invokes either sbf simple or sbf sub.

The following helper functions are used: simple col takes a configuration and returns a column

that has no loop breakers; labels takes a configuration and a column and returns all the labels that

mark tree automaton transitions originating in the tree automaton states of the column; indices

returns the indices of a given configuration; width denotes the number of columns in a given con-

figuration; sstate returns the start state of a given matching automaton; var takes a configuration

and a column and returns the variable corresponding to the column, and column states returns

the set of states appearing in a given column.

Function sbf simple goes through the following steps. It starts by finding a column that does

not have loop breakers. It then expands the current configuration by label using the label that occur

in the transitions originating in the states of the selected column. It converts the obtained residual

configurations to corresponding matching automata by making recursive calls to sbf. After this,

sbf simple generates matching automaton transitions from the current state to the start states

of these matching automata. In the last line, sbf simple puts everything together by combinging

the transitions generated in the previous step, the matching automata generated by the recursive

calls, and the current state into a resulting matching automaton denoted by
⋃

l∈L C
rl→ Ml.

Function sbf sub works similarly except that uses expansion by state instead of expansion by

label. M<s> denotes a subroutine matching automaton built from an initial configuration containing

one tree automaton state s.

At the top level, the compilation algorithm proceeds as follows. It first creates a sequence of

states corresponding to each match expression of the source program. Let us denote this collection

of sequences s1, . . . , sj . Let f1 . . . fj be boolean flags indicating whether the corresponding match

expressions are exhaustive or not. Additionally, to ensure that there is a subroutine automaton for

any generated subroutine transition, the algorithm also creates a singleton sequence for every state

of the input tree automaton. Let us denote the collection of these singleton sequences sj+1, . . . ,

sp.
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The algorithm then constructs an initial configuration for both types of sequences and invokes

sbf simple on the obtained configurations thus producing the resulting collection of matching

automata.

To formalize these steps, let us introduce a function that builds an initial configuration from a

sequence of states: config(<s1,. . . ,sm>) = (<x>,{(s1, 1), . . . , (sm, m)}). Let A be the input tree

automaton, and let Rec be a set of loop breakers for A. Then, the top level of SBF can be described

by the following equations.

(Ms1, ) = sbf simple(config(s1),A,Rec,f1)

. . .

(Msj, ) = sbf simple(config(sj),A,Rec,fj)

(Msj+1, ) = sbf simple(config(sj+1),A,Rec,false)

. . .

(Msp, ) = sbf simple(config(sp),A,Rec,false)

Note that acceptors must be generated in the non-exhaustive mode since their goal is to check

whether or not an arbitrary input value matches the underlying tree automaton state.

Also, observe that the use of sbf simple in the above equations ensures that the initial config-

urations are expanded by label. As we have mentioned above, this is necessary to avoid generating

non-terminating matching automata.

We now describe the important properties of the SBF algorithm. The first lemma states that

the algorithm terminates.

4.5.8 Lemma: Let A = (S,T) be a tree automaton and let Rec ⊆ S be a loop breaker set. Then

sbf simple, sbf sub, and sbf terminate on arguments C, A, Rec, and exh for any configuration C

over S and any boolean value exh.

Proof: Let the height of a tree automaton state s ∈ S be calculated as follows. If s ∈ Rec or s

is a final state, then the height of s is 1. Otherwise, it is 1 + max({h1 + h2 | ∃l. s→l[s1],s2 ∈

R and hi is the height of si}). Let the height of a column in a configuration be the maximum height

of the column’s states, and let the height of a configuration be the sum of the heights of its columns.

Since Rec is a set of loop breakers for S, height is well defined for all states in S—see Definition

4.5.7—and consequently for all configurations over S. From the definitions of expand by label

and expand by state, we can see that the height of the residual configuration is smaller than the

height of the original configuration. Therefore, the height of the current configuration can be used

as a termination measure that decreases as the algorithm makes recursive calls in the bodies of

sbf simple and sbf sub. �
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The next lemma establishes that the matching automaton generated by sbf is indeed in simple

backtracking form.

4.5.9 Lemma: Let A = (S,T) be a tree automaton; let Rec ⊆ S be a loop breaker set, and let

(M,y) be the result of applying sbf simple, sbf sub, or sbf to the arguments C, A, Rec, and exh

where C is a configuration over S and exh is a boolean value. Then M is in SBF.

Proof: The fact that M is sequential and disjoint and its transitions are separated and staged

is evident from observing the algorithm. We can also show that transitions of M only involve

indices(C); therefore, all subroutine automata are boolean since they are obtained from singleton

configurations. �

To prove that the SBF algorithm is correct, we introduce a collection of inference rules defining

a syntactic acceptance relation between environments, configurations and integers and prove that it

is equivalent to the semantic satisfaction relation introduced above. The inference rules will have a

structure similar to the structure of the algorithm. This will lead to a straight forward statements

and proofs of the correctness property that will relate the algorithm and the inference rules.

Figure 4.15 defines three mutually recursive judgments that correspond to the three procedures

of the forthcoming algorithm. The judgment E `sim C ⇒ i is based on expand by label and

normally is applicable when the underlying configuration contains a non-recursive column. (The

one exception to this is in the rule SubState where this judgment is invoked regardless of the

configuration’s shape.) The judgment E `sub C ⇒ i is based on expand by state and is applied to

configurations all of whose columns contain recursive states. The judgment E ` C ⇒ i combines

the other judgments by invoking one or the other depending on the shape of the configuration.

The rule SimLab is applicable when the variable of the selected column is bound to a non-empty

sequence. The rule’s conclusion is satisfied if the assertion involving the residual configuration,

computed by expand by label, is satisfied in the environment in which the selected variable is

replaced by the pair of variables generated by newvars. Notice that expand by label also uses

newvars thus ensuring that the variables added to the environment are the same as the variables

added to the residual configuration.

If the selected variable is bound to the empty sequence (), the rule SimEmp applies. It is

similar to the previous rule except that it does not add new bindings to the environment and,

correspondingly, its residual configuration contains one fewer column (instead of one more) than

the configuration in the conclusion.

The rule SubZero is used for configurations with no columns. Such configurations are satisfied

in any environment by any of their indices. The conclusion of the other subroutine rule SubState
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c = simple col(C) y = var(C,c) (u,v) = newvars(C,c)

E(y) = l[w1],w2 (E\y)[w1/u, w2/v] ` expand by label(C,c,l)⇒ k

E `sim C ⇒ k
(SimLab)

c = simple col(C) y = var(C,c) E(y) = ()

E\y ` expand by label(C,c,())⇒ k

E `sim C ⇒ k
(SimEmp)

width(C) = 0 k ∈ indices(C)

E `sub C ⇒ k
(SubZero)

s ∈ column states(C,1) y = var(C,1) ∅[E(y)/x] `sim config(<s>)⇒ 1
E\y `sub expand by state(C,1,s)⇒ k

E `sub C ⇒ k
(SubState)

∃c ∈ {1, . . . , width(C)}. Rec ∩ column states(C,c) = ∅ E `sim C ⇒ k

E ` C ⇒ k
(Sim)

∀c ∈ {1, . . . , width(C)}. Rec ∩ column states(C,c) 6= ∅ E `sub C ⇒ k

E ` C ⇒ k
(Sub)

Figure 4.15: Syntactic Satisfaction

is satisfied if, given an arbitrary state from the configuration’s first column s, the two premises are

satisfied. The first assertion contains the environment (without the binding for y, the variable of the

first column) and the residual configuration generated after expanding by s. The other assertion

checks whether s accepts the value v to which the selected variable y is bound. This assertion is

composed of a new environment that binds x to v and a new configuration generated by config.

Note that the new environment is created with a single binding for the variable x which is also the

variable used by config in the initial configuration. Also, observe that the environment used in the

conclusion of SubState binds the same value as the environment created for the second premise.

Therefore, to avoid infinite derivation branches consisting of instances of SubState, we force this

premise to use the `sim judgment regardless of whether the created configuration is recursive or not.

This ensures progress since the `sim rules always reduce the size of values in the environment.

The combined judgment ` is used in SimLab and is defined by the rules Sim and Sub which

check whether the given configuration contains a column with non-recursive states or not and invoke

the `sim or `sub judgments respectively.

The following lemma shows that the introduced syntactic relations are sound with respect to

the semantic satisfaction relation.
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4.5.10 Lemma: If E `sim C ⇒ k or E `sub C ⇒ k or E ` C ⇒ k, then E |= C ⇒ k.

Proof: The proof proceeds by simultaneous induction on derivations of the syntactic judgments.

Case SimLab:

From the premises of the rule, we have the following assertions: c = simple col(C) and y =

var(C,c) and u,v = newvars(C,c) and E(y) = l[w1],w2 and E1 = (E\y)[w1/u, w2/v] and C1 =

expand by label(C,c,l) and E1 ` C1 ⇒ k. By the induction hypothesis, they imply E1 |= C1 ⇒ k.

It follows by Proposition 4.5.3 that E |= C ⇒ k.

Case SimEmp:

Similar to SimLab

Case SubZero:

From the premises of the rule, we have width(C) = 0 and k ∈ indices(C). The result E |= C ⇒ k

follows by the definition of semantic satisfaction.

Case SubState:

From the premises of the rule, we have s ∈ column states(C,1) and y = var(C,1) and

E0 = ∅[E(y)/x] and E1 = E\y and C1 = expand by state(C,1,s) and E0 `sim config(<s>)⇒ 1

and E1 `sub C1 ⇒ k. Applying the induction hypothesis twice, we obtain E0 |= config(<s>) ⇒ 1

and E1 |= C1 ⇒ k. From the definition of configuration acceptance, it then follows that E(y) ∈ s

which implies E |= C ⇒ k by Proposition 4.5.6.

Case Sim:

From the premises of the rule, we have E `sim C ⇒ k. By the induction hypothesis, E |= C ⇒ k.

Case Sub:

Similar to Sim. �

Now, we will prove that the syntactic satisfaction relations are complete with respect to the

semantic satisfaction relation.

4.5.11 Lemma: If E |= C ⇒ k then E `sub C ⇒ k and E ` C ⇒ k. Furthermore, if width(C) 6= 0,

then E `sim C ⇒ k also.

Proof: The proof proceeds by induction on the size of values in E. We first prove the statement

for the `sim relation, then use it to prove the statement for the `sub relation, and finally, use both

of these results to prove the statement for the combined relation `.
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Case: Assume that width(C) 6= 0 and let c = simple col(C); let y = var(C,c); let E(y) =

l[w1],w2; let (u,v) = newvars(C,c); let E1 = (E\y)[w1/u, w2/v], and let C1 = expand by label

(C,c,l).

By Proposition 4.5.3, we have E1 |= C1 ⇒ k. Since E1 was obtained by replacing a binding

with l[w1],w2 by two bindings with strictly smaller values w1 and w2, we can apply the induction

hypothesis which results in E1 ` C1 ⇒ k. Now, by SimLab we have E `sim C ⇒ k.

Case: Conversely, assume that width(C) 6= 0 and c = simple col(C) and y = var(C,c) and

E(y) = () and E1 = E\y and C1 = expand by label(C,c,()).

By Proposition 4.5.4, we have E1 |= C1 ⇒ k. Since we obtained E1 by eliminating a binding from

E, we can apply the induction hypothesis which results in E1 ` C1 ⇒ k. Now, by SimEmp we have

E `sim C ⇒ k.

Case: Assume width(C) = 0.

By the definition of semantic acceptance it must be the case that k ∈ indices(C). Then, by

SubZero, E1 `sub C1 ⇒ k.

Case: Conversely, assume that width(C) 6= 0 and y = var(C,1) and E1 = E\y.

By Proposition 4.5.6, there exists a state s ∈ column states(C,1) such that E1 |= expand by state

(C,1,s) ⇒ k and E(y) ∈ s. The latter and the definition of configuration acceptance imply that

E0 |= config(<s>) ⇒ 1 where E0 = 0[E(y)/x]. By the induction hypothesis, since E1 is smaller

than E, we have E1 `sub expand by state(C,1,s)⇒ k. From the result for the `sim relation proved

in the first two cases, we have E0 `sim config(<s>)⇒ 1. Therefore, by SubState, E `sub C ⇒ k.

Case: Assume ∃c ∈ {1, . . . , width(C)}. Rec ∩ column states(C,c) = ∅.

From the result for the `sim relation proved in the first two cases, we have E `sim C ⇒ 1. Hence by

Sim, E ` C ⇒ 1.

Case: Conversely, assume ∀c ∈ {1, . . . , width(C)}. Rec ∩ column states(C,c) 6= ∅.

From the result for the `sub relation proved in the third and fourth cases, we have E `sub C ⇒ 1.

Hence by Sub, E ` C ⇒ 1. �

Observe the importance of using `sim instead of ` in the second premise of SubState. This

allows our inductive argument to go through by proving the statement for `sim first and using it in

the proof of the statement for `sub. This arrangement is what ensures termination of the syntactic

acceptance relation and consequently termination of the automaton generated by the algorithm of

the following subsection.
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We now show that the algorithm coincides with the syntactic satisfaction relation. First, we

prove a technical proposition that establishes that the automata built by recursive invocations of

sbf and sbf sub are disjoint as specified by the following definition.

4.5.12 Definition: Automata A = (Q1,q1,R1) and B = (Q2,q2,R2) are disjoint if for any state

q and transition r such that q ∈ Q1 and q ∈ Q2 and r originates in q, it is the case that r ∈ R1 iff

r ∈ R2.

4.5.13 Proposition: Given disjoint automata A1 = (Q1,q1,R1) and A2 = (Q2,q2,R2), let B =

({q0} ∪ Q1 ∪ Q2, q0, R0 ∪ R1 ∪ R2) where q0 /∈ Q1 ∪ Q2 and R0 contains only transitions originating in

q0. For any environment E, value v, index k, and i ∈ {1, 2}, if q ∈ Qi and E ` v ∈ q(B)⇒ k, then

E ` v ∈ q(Ai) ⇒ k.

Proof: Straight forward induction on the acceptance derivation for B. �

The following lemma states the algorithm’s correctness property by associating the functions of

Figure 4.14 with the syntactic relations of the previous subsection.

4.5.14 Lemma: Let A = (S,T) be a tree automaton; let Rec ⊆ S be a loop breaker set; let E be

an environment, and let C be a configuration over S with at least one column. Then, if exh = true

and C is satisfiable by E or if exh = false, we have

• if (M,y) = sbf simple(C,A,Rec,exh), then E `sim C ⇒ k iff E\y ` E(y) ∈ M ⇒ k

• if (M,y) = sbf sub(C,A,Rec,exh), then E `sub C ⇒ k iff E\y ` E(y) ∈ M ⇒ k

• if (M,y) = sbf simple(C,A,Rec,exh), then E ` C ⇒ k iff E\y ` E(y) ∈ M ⇒ k

Proof: We prove the forward direction of the lemma by induction on the size of the derivations

of the left hand side judgments.

Case: Assume (M,y) = sbf simple(C,A,Rec,exh) and E `sim C ⇒ k.

Either the premises of SimLab or the premises of SimEmp must hold.

Subcase: Consider the former

Let c = simple col(C), let y = var(C,c), let (u,v) = newvars(C,c), let E(y) = l[w1],w2, let

El = (E\y)[w1/u, w2/v], and let Cl = expand by label(C,c,l). Then, El ` Cl ⇒ k. Let Il =

indices(Cl). By Proposition 4.5.3, we have E |= C ⇒ k. For this to take place, we must have l ∈
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labels(C,c). It cannot be the case that width(Cl) = 0 since l is a binary label and by definition

of expand by label, width(Cl) > width(C) ≥ 0. Under these conditions, sbf simple executes

code (Ml,yl) = sbf(Cl,A,Rec,exh), creates a transition rl = C : l[u],v
Il→ {yl ∈ sstate(Ml)},

and ensures that M includes C as the start state, rl among its transitions, and all the states and

transitions of Ml. By the induction hypothesis, El ` Cl ⇒ k implies El\yl ` El(yl) ∈ Ml ⇒ k, and,

hence, it must be the case that El\yl ` El(yl) ∈ sstate(Ml) ⇒ k. By MA-Lab, we can conclude

E\y ` E(y) ∈ C ⇒ k, and, so, E\y ` E(y) ∈ M ⇒ k.

Subcase: Otherwise, SimEmp is applicable

Let c = simple col(C), let y = var(C,c), let Cl = expand by label(C,c,()), and let E(y)

= (), let El = E\y. Then, El ` Cl ⇒ k. Let Il = indices(Cl). By Proposition 4.5.3, we have

E |= C ⇒ k. For this to take place, we must have () ∈ labels(C,c). Suppose that width(Cl) = 0.

Then, El ` Cl ⇒ k implies El `sub Cl ⇒ k by inversion of ` and, by inversion of `sub, we have k

∈ Il. Under these conditions, M must include the start state C and a transition rl = C : ()
Il→ ∅.

By MA-Emp, we can conclude E\y ` E(y) ∈ C ⇒ k, and, so, E\y ` E(y) ∈ M ⇒ k. Otherwise,

width(Cl) 6= 0. In this case, sbf simple generates (Ml,yl) = sbf(Cl,A,Rec,exh), a transition rl

= C : ()
Il→ {yl ∈ sstate(Ml)}, and M must contain C as the start state, rl among its transitions,

and all the states and transitions of Ml. By the induction hypothesis, El ` Cl ⇒ k implies El\yl `

El(yl) ∈ Ml ⇒ k, and, hence, it must be the case that El\yl ` El(yl) ∈ sstate(Ml) ⇒ k. By

MA-Lab, we can conclude E\y ` E(y) ∈ C ⇒ k, and, so, E\y ` E(y) ∈ M ⇒ k.

Case: Assume (M,y) = sbf sub(C,A,Rec,exh) and E `sub C ⇒ k.

The `sub assertion could only be derived by SubState. Let s ∈ column states(C,1), let y =

var(C,1), let E0 = ∅[E(y)/x], let Es = E\y, and let Cs = expand by state(C,1,s). We must

have E0 `sim config(<s>) ⇒ 1 and Es `sub Cs ⇒ k. Let Is = indices(Cs). Since (M<s>,z) =

sbf simple(config<s>,A,Rec,false) where z = x (since x is the variable of the only column in

config<s>), by the induction hypothesis, E0 `sim config<s>⇒ 1 implies ∅ ` E(y) ∈ M<s>⇒ 1.

Subcase: Suppose that width(Cs) = 0.

By inversion of `sub, we have k ∈ Is. Under these conditions, M must include the start state C and

a transition rl = C : M<s>
σs→ ∅ where σs = {(1,j) | j ∈ Is}. By MA-Sub, we can conclude

E\y ` E(y) ∈ C ⇒ k, and, so, E\y ` E(y) ∈ M ⇒ k.

Subcase: Conversely suppose that width(Cs) 6= 0.

Then M must include C as the start state, a transition rs = C : M<s>
σs→ {ys ∈ sstate(Ms)} and

all the states and transitions of Ms where (Ms,ys) = sbf sub(Cs,A,Rec,exh). By the induction

hypothesis, Es\ys ` Es(ys) ∈ Ms ⇒ k. Then, it must be the case that, Es\ys ` Es(ys) ∈
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sstate(Ms) ⇒ k. By MA-Sub, the assertions ∅ ` E(y) ∈ M<s> ⇒ 1 and rs ∈ transitions(M)

and Es\ys ` Es(ys) ∈ sstate(Ms) ⇒ k and (1,k) ∈ σs imply E\y ` E(y) ∈ C ⇒ k, which implies

E\y ` E(y) ∈ M ⇒ k.

Case: Assume (M,y) = sbf(C,A,Rec,exh) and E ` C ⇒ k.

The ` assertion could be derived by Sim or Sub. In either case, the result follows by the inductive

assumption.

We prove the backward direction by induction on the size of the derivations of the right hand

side judgments.

Case: Assume that (M,y) = sbf simple(C,A,Rec,exh) and E\y ` E(y) ∈ M ⇒ k.

Let c = simple col(C). For the acceptance assertion to hold, it must be the case that E\y `

E(y) ∈ C ⇒ k. Since C is a simple state, for this to hold, either premises of MA-Lab or MA-Emp

must hold.

Subcase: Consider MA-Lab.

In this case, M must contain a transition of the form C : l[u],v
I
→ S. There is only one place in

sbf simple where such a transition is created. It happens if l 6= () for some l ∈ labels(C,c)

and width(Cl) 6= 0 where Cl = expand by label(C,c,l). We have (u,v) = newvars(C,c)

and S = {yl ∈ sstate(Ml)} where (Ml,yl) = sbf(Cl,A,Rec,exh). Inverting MA-Lab, we have

El\yl ` El(yl) ∈ sstate(Ml)(M) ⇒ k where El = E\y[w1/u, w2/v] and E(y) = l[w1],w2. Since

the algorithm is deterministic, i.e. processing the same configuration several times, it generates

the same states and transitions each time, the subautomata created by the recursive calls are

mutually disjoint. Therefore, by 4.5.13, El\yl ` El(yl) ∈ sstate(Ml)(Ml) ⇒ k, and, hence,

El\yl ` El(yl) ∈ Ml ⇒ k. By the induction hypothesis, El ` Cl ⇒ k. Now, by SimLab,

E `sim C ⇒ k.

Subcase: Otherwise, MA-Emp must be applicable.

In this case, M must contain a transition of the form C : ()
I
→ S. Such a transition can be generated

by sbf simple only if l = () for some l ∈ labels(C,c). Let Cl = expand by label(C,c,())

and, let Il = indices(Cl). If width(Cl) = 0, then the above mentioned transition has the form

C : ()
Il→ ∅. Inverting MA-Emp, we have k ∈ Il. Then, by SubZero, El `sub Cl ⇒ k, and by Sub,

El ` Cl ⇒ k. Now, by SimEmp, E `sim C ⇒ k. Conversely, if width(Cl) 6= 0, the argument follows

the same steps as in the MA-Lab subcase.

Case: Assume that (M,y) = sbf sub(C,A,Rec,exh) and E\y ` E(y) ∈ M ⇒ k.

For the acceptance assertion to hold, it must be the case that E\y ` E(y) ∈ C ⇒ k. Since C is

a subroutine state, for the last assertion to hold, premises of MA-Sub must hold. Suppose the
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accepting transition was generated when considering some s ∈ column states(C,1). In part, this

implies ∅ ` E(y) ∈ M<s> ⇒ 1. Recall that (M<s>,z) = sbf simple(config<s>,A,Rec,exh) where

z = x since x is the variable of the only column in config<s>. By the induction hypothesis, we

have ∅[E(y)/x] `sim config<s>⇒ 1. Let Cs = expand by state(C,1,s).

Subcase: Suppose width(Cs) = 0.

In this case, for MA-Sub to be satisfied, it must be the case that k ∈ indices(Cs). Then, by

SubZero, E\y `sub Cs ⇒ k. Now, by SubState, E `sub C ⇒ k.

Subcase: Conversely, width(Cs) 6= 0.

Then, the accepting transition must be of the form C : M<s>
σs→ {ys ∈ sstate(Ms)} where σs

= {(1,j) | j ∈ indices(Cs)} and (Ms,ys) = sbf sub(Cs,A,Rec,exh). Inverting MA-Sub, we

have (E\y)\ys ` (E\y)(ys) ∈ sstate(Ms)(M)⇒ k. By Proposition 4.5.13, (E\y)\ys ` (E\y)(ys) ∈

sstate(Ms)(Ms) ⇒ k, and, hence, (E\y)\ys ` (E\y)(ys) ∈ Ms ⇒ k. By the induction hypothesis,

E\y `sub Cs ⇒ k. So, by SubState, E `sub C ⇒ k.

Case: Assume that (M,y) = sbf(C,A,Rec,exh) and E\y ` E(y) ∈ M ⇒ k.

Either sbf simple or sbf sub must have been used to generate (M,y). Follow the same reasoning

steps as in the above two cases to conclude E `sim C ⇒ k or E `sub C ⇒ k respectively. The result

E ` C ⇒ k follows by either Sim or Sub. �

4.5.6 The SNBF Algorithm

There are two differences between the SNBF and SBF algorithms. The first concerns handling

configurations that cannot be expanded by label. Instead of doing expansion by state as it was

described for sbf, the SNBF algorithm generates a fresh index converter that makes a subrou-

tine transition for every column of the current configuration. Subroutine automata used in these

transitions are based on the states appearing in the corresponding column.

Since the SNBF algorithm employs subroutine automata that are based on collections of tree

automaton states, rather than just one state, at the top level, the algorithm generates a subroutine

for every subset of S. (Our implementation does not generate a subroutine automaton unless it

encounters a call to it while constructing another automaton.)

4.5.7 Summary of Complexity Results

Let us consider the running time and the size of the generated matching automata for the com-

pilation algorithms described in this section. Example 4.4.8 shows that backtracking matching

automata generated by SBF can exhibit exponential running time in the size of the input value.
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Non-backtracking matching automata generated by SNBF are at worst linear. We have not studied

running time complexity of matching automata in relation to the size of the tree automaton given

as input to SBF and SNBF. In our application domain of large XML documents and relatively

small patterns, this question is less important than complexity in the size of the value.

Space complexity involves two components: the number of generated subroutine matching au-

tomata and the size of an individual matching automaton. The SBF algorithm generates at most a

linear number of subroutine automata in the size of the input tree automaton. The SNBF algorithm

can result in exponentially many subroutine automata.

The size of an individual matching automaton depends on the strategy for selecting loop break-

ers. The maximal set of loop breakers results in a matching automaton whose size is at worst linear

in the size of the input tree automaton. As Example 4.4.9 shows, a minimal set of loop breakers

can result in a double exponential matching automata. Finally, we can show that using multiple

predecessor or multiple successor loop breaker sets ensures that the size of the generated automaton

is no worse than polynomial and exponential respectively.

4.6 From Matching Automata to Intermediate Code

This section describes how a collection of matching automata in SBF or SNBF can be converted into

a collection of XIL functions. We assume that the collection of matching automata is call-closed—

that is if a matching automaton A from the collection has a subroutine transition to a matching

automaton B, then B is also in the collection. We start by presenting the conversion algorithm for

matching automata in SBF.

4.6.1 Converting SBF Matching Automata into XIL

Our goal is to convert every matching automaton to an equivalent integer-valued XIL function.

To associate matching automata and XIL functions formally, we must account for the difference

in the semantics of these two models. One mismatch arises from the fact that while the matching

automaton acceptance relation is non-deterministic—one of multiple values may be output for a

given input value—the evaluation semantics of XIL is deterministic—a function can return exactly

one integer for a given input. We must also specify how rejection of a value is represented in the

intermediate language.

Since matching automaton indices are intended to identify clauses of a match expression, we

must take into consideration the first-match semantics of pattern matching when we specify how

to disambiguate the non-determinism of the matching automaton acceptance relation. Thus if a

55



matching automaton accepts some value v with an output index i, we require the corresponding

XIL function to terminate on v producing some integer j that is smaller than or equal to i.

Of course, the function must also be sound with respect to the matching automaton; so, if the

function result is j for an input value v, it must be the case that the matching automaton accepts

v outputting j as well.

Rejection of a value in XIL can be signaled by returning a special integer that may not be the

result of any accepting computation. Since matching automaton indices are necessarily positive, 0

can serve as such a rejection indicator. Our goal for the relationship between the two models there-

fore is as follows: the matching automaton rejects an input value v if and only if the corresponding

XIL function terminates on v producing 0.

In the remainder of this section, we will show how to build XIL programs that satisfy to the

above relationship. We will use the same identifiers to denote both the matching automaton and

the XIL function obtained from it; however, since the matching automaton acceptance and XIL

evaluation judgments are syntactically different, there will be no confusion in the formal statements.

Let A be some matching automaton in SBF. Since A is acyclic, it is possible to sort its states

topologically obtaining q1 . . . qn where q1 is the start state. Figure 4.16(a) displays the structure of

the corresponding XIL function. Each ek is obtained from state qk, and there is a static exception

handler associated with every non-start state. Introducing exception handlers allows us to avoid

code duplication arising from states with multiple incoming transitions, but this approach leads to

an unnecessarily large number of exception handlers and exit statements. We do not deal with this

inefficiency until the following chapter where we will discuss an optimization phase that performs

inlining of superfluous exceptions.

Figure 4.16(b) contains function conv ma that takes matching automaton A = (Q,qs,R) and

converts it into a XIL function. The first line of the algorithm uses the function fresh id to create

a fresh variable x that will be used as the formal parameter of the function and the first parameter of

every exception handler. The second line performs the topological sort of the matching automaton

states. The function top sort takes the set of states, the transition relation, and the start state

of a matching automaton and returns the states sorted topologically according to the transition

relation with the start state in the first position. In the following lines, the algorithm uses fresh id

to generate an exception label for every non-start state of the matching automaton and creates a

map Exit associating each state with one exception label. The algorithm then proceeds to generate

XIL code for each state using function conv state that will be described below. The next line

computes the formal parameters of the exception handlers. We will describe the specifics of this

process when we discuss how code for individual states is generated. Finally, conv ma constructs
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fun A(x) =

e1

with

j2(...) → e2

...

jn(...) → en

function conv ma(A,Q,qs,R) =

let x = fresh id() in

let <q1 . . . qn> = top sort(Q,qs,R) in

let ji = fresh id() for i ∈ {2 . . . n} in

let Exit = {qi 7→ ji | i ∈ {2 . . . n}} in

let ei = conv state(qi,R,x,Exit) for i ∈ {1 . . . n} in

let Vi = sort(FV(qi)) for i ∈ {2 . . . n} in

fun A(x) = e1 with

j2(x,V2) → e2

. . .
jn(x,Vn) → en

end

(a) (b)

Figure 4.16: Converting matching automata to XIL: a sketch of a function corresponding to a
matching automaton (a); a conversion algorithm for a matching automaton A = (Q, qs, R)

q

q1
w1

qm

wm

lm[zm],ym

()

I1

I2

. . .

Im

l2[z2],y2
. . .

j(x,V) →
case x of

| () → exit j1(w1,V1)

| l2[z2],y2 → i

| . . .
| lm[zm],ym → exit jm(wm,Vm)

else 0

(a) (b)

Figure 4.17: Example of simple state conversion

and returns the declaration of a XIL function corresponding to the input matching automaton.

In conv ma and in other algorithms described below, we use the following quoting conventions

for dealing with code fragments. Expressions delimited by a rectangle represent code fragments

that should not be evaluated any further. Any identifier occurring inside a code fragment is a

variable ranging over some type of code (pattern, expression, integer, exit label, integer, variable

name); its contents should be spliced in place of the variable occurrence before the code fragment

is returned.

Let us now discuss how to generate XIL code for individual states. Consider an example of

a simple state and the corresponding code fragment shown in Figure 4.17. The latter is obtained

from the former as follows. Overall, a simple state q corresponds to a case expression with a clause

for each outgoing transition. Depending on whether q is a start state or not, the case expression

resides outside of exception handlers (like e1 in Figure 4.16(a)) or as part of some exception handler
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(like e2 through en in the same example.) Figure 4.17 presents an example of a non-start state;

for every incoming transition with a destination variable y, the generated program will contain an

exit statement of the form exit j(y . . .).

Since XIL patterns coincide with patterns annotating simple transitions in matching automata,

the pattern of each case clause is taken directly from the corresponding transition. The right

hand side of each clause is calculated from the destination part of the corresponding transition.

Because of sequentiality, all transitions have at most one destination pair; so, we must consider

two cases: transitions with one destination pair—such as the transitions annotated by () and

lm[zm],ym in Figure 4.17(a)—and terminal transitions with no destination pairs—such as the

transition annotated by l2[z2],y2.

When the control of a matching automaton is in a simple state with a terminal outgoing tran-

sition whose pattern matches the current value, the matching automaton may succeed outputting

any of the indices from the transition’s index set. We mirror this behavior in XIL by returning

the smallest index of the transition’s index set. This is illustrated in Figure 4.17(b) by the second

clause of the case expression where i is the integer constant equal to the smallest element of I2.

When the current value matches the pattern of a non-terminal transition originating in the

current state, the matching automaton will succeed if the transition’s destination state accepts

the value stored in the destination variable. This is simulated by an exit statement invoking the

exception handler corresponding to the destination state with the destination variable passed as the

first parameter. The first and the last clauses of the case expression shown in 4.17(b) are examples

of code generated for non-terminal transitions; they correspond to the non-terminal transitions of

the displayed matching automaton fragment.

It remains to discuss how we compute formal parameters of exception handlers and actual

parameters of exit statements. The first parameter has a special significance. In exit statements,

it is the destination variable of the corresponding transition as discussed in the previous paragraph.

In exception handlers it is the identifier generated in the first line of conv ma. The same identifier

is used as the parameter of the case expression residing in the body of the exception handler. The

remaining exception parameters are determined by the free variables of the state associated with

the exception handler. Intuitively, a variable is free in a state q if it is the destination variable of

some transition t reachable from q, but it does not appear in the pattern part of any transition

between q and t inclusively. This is formalized by the following definition.

4.6.1 Definition: Let A = (Q,qs,R) be a sequential acyclic matching automaton and let P be

58



the set of all XIL patterns. Sets of pattern, free and bound variables are defined as follows.

p ∈ P Vars(p) = ∅ if p = ()

Vars(p) = {y} ∪ {z} if p = l[y],z

q ∈ Q FV(q) = FV(r1) ∪ . . . ∪ FV(rn) where r1 . . . rn are transitions originating in q

BV(q) = BV(r1) ∪ . . . ∪ BV(rn) where r1 . . . rn are transitions reachable from q

r ∈ R BV(r) = Vars(p) if r is a simple transition of the form q : p
I
→ S

BV(r) = ∅ if r is a subroutine transition

FV(r) = ({y} ∪ FV(q)) \ BV(r) if the destination pair of r is of the form {y ∈ q′}

FV(r) = ∅ if r is a terminal transition,

The matching automaton is said to be well-scoped if FV(qs) = ∅.

Figure 4.17 illustrates the relationship between free variables and exception parameters. Meta-

variables V and V1 . . . Vm appearing in exit statements denote lists of free variables of states q and

q1 . . . qm respectively.

function conv simple(q,R,x,Exit) =

let {(p1,I1,S1) . . . (pm,Im,Sm)} =

{(p,I,S) | q : p
I
→ S ∈ R} in

let fi = conv trans(Ii,Si,Exit)

for i ∈ {1 . . .m} in

case x as

| p1 → f1

. . .
| pm → fm

else 0

end

function conv trans(I,S,Exit) =

if S = ∅ then

let i = min(I) in

i

else

assume S = {y ∈ q} in

let V = sort(FV(q)) in

let j = Exit(q) in

exit j(y,V)

end

(a) (b)

Figure 4.18: Simple state conversion algorithm: state conversion (a); transition conversion (b)

Figure 4.18 contains function conv simple that generates a case expression for a simple state

of a matching automaton q. In addition to the state, conv simple takes the transition relation

of the matching automaton, the name of the variable to be used as the argument of the case

expression, and the mapping of states to exception labels Exit. The first line of conv simple

extracts the transitions originating in q. Each transition will result in a clause in the constructed

case expression. The second line of conv simple invokes function conv trans to generate the

right hand side of a clause from the index set and the set of destination pairs of the corresponding

transition. A case expression is then built from the patterns appearing in the transitions and the

right hand side expressions generated by conv trans.
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Function conv trans constructs right hand sides of clauses as outlined above. For terminal

transitions, it returns the smallest associated index; for non-terminal transitions, it constructs

an exit statement raising the exception associated with the destination state. The sixth line

of conv trans constructs an alphabetically sorted list of variables that will be used as actual

parameters of the exit statement. Similarly, the sixth line of conv ma shown in Figure 4.16(b)

computes formal parameters of exception handlers. Note how we slightly abuse notation by using

the same lists of variables both as actual parameters in exit statements and as formal parameters

in the declaration of exception handlers; while this is consistent in XIL, in a typed setting, we

would have to generate different syntactic objects for formal and actual parameters based on the

same list of variables.

The following lemma formally associates the XIL statement produced by conv simple with the

input matching automaton state.

q

q4

q2q1
A

{17→1}

{17→2,1 7→3}
q3

y F

{17→3}

z

y

{17→1}

w

{17→1}

B

D

{17→2}

E

{17→1;17→3}

G

. . .

Cz

(a)

j(x,y,z,w) →
if and(A(x),B(y),C(z),G(w))

then 1

else if D(x)

then 2

else if and(E(x),F(y),G(z))

then 3

else 0

(b)

Figure 4.19: Example of subroutine state conversion

4.6.2 Lemma: Let A = (Q,qs,R) be a matching automaton in SBF, and let q ∈ Q be a simple

state. Let {q : pk
Ik→ {yk ∈ qk} | k ∈ {1 . . .m}} be the set of all non-terminal transitions originating

in q, and let Exit be a mapping from states to exception labels that maps q1 . . . qm to distinct

exception labels j1 . . . jm respectively. Let V1 . . . Vm be alphabetically sorted list of free variables

of states q1 . . . qm respectively. Let x be a variable distinct from those appearing in Vk for all

k ∈ {1 . . .m}. Let ∆ be an exit environment such that ∆(jk) = ((x,Vk),ek,∆k) for k ∈ {1 . . .m}

where ek and ∆k satisfy the following assumptions for any sequence value v and k ∈ {1 . . .m}:
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• for any environment E, if E[v/x] • ∆k ` ek −→ i for some i > 0, then E ` v ∈ qk ⇒ i.

• for any environment E, if E[v/x] • ∆k ` ek −→ 0, then E ` v /∈ qk;

• for any environment E such that FV(qk) ⊆ dom(E), if E ` v ∈ qk ⇒ i, then E[v/x] • ∆k `

ek −→ j for some j ≤ i.

• for any environment E such that FV(qk) ⊆ dom(E), if E ` v /∈ qk and the automaton does

not diverge on v, then E[v/x] • ∆k ` ek −→ 0.

Then a similar collection of assertions hold for the input state q and the corresponding XIL

expression e = conv simple(q,R,x,Exit) for any sequence value v:

• for any environment E, if E[v/x] • ∆ ` e −→ i for some i > 0, then E ` v ∈ q ⇒ i.

• for any environment E, if E[v/x] • ∆ ` e −→ 0, then E ` v /∈ q;

• for any environment E such that FV(q) ⊆ dom(E), if E ` v ∈ q ⇒ i, then E[v/x] • ∆ `

e −→ j for some j ≤ i.

• for any environment E such that FV(q) ⊆ dom(E), if E ` v /∈ q and the automaton does not

diverge on v, then E[v/x] • ∆ ` e −→ 0.

We now move to a discussion of how to generate XIL from subroutine states. Figure 4.19 shows

an example of a subroutine state and the code fragment obtained from it. First observe that q has

free variables y, z, and w since they are used as destination variables in several transitions but are

not defined anywhere else in the fragment. As explained above, these variables in addition to x are

the formal parameters of the exception handler associated with q. When the matching automaton

is in state q, it can succeed by following one of the following three scenarios:

• Subroutines A, B, C, and G succeed with output 1 given as input the contents of x, y, z, and

w respectively. In this case, the displayed matching automaton succeeds with output 1 since

the index mapping relations of all four subroutine transitions contain the pair 1 7→ 1.

• Subroutine D succeeds with output 1 given as input the contents of x. In this case, the

displayed matching automaton succeeds with output 2 because of the index mapping relation

{1 7→ 2}.

• Subroutines E, F, and G succeed with output 1 given as input the contents of x, y, and z

respectively. In this case, the displayed matching automaton succeeds with output 3 because
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of the index mapping pair 1 7→ 3. Notice that the index mapping pair 1 7→ 2 present in the

E transition does not play any role since the subsequent transitions originating in q3 and q4

cannot result in 2.

Each of these scenarios correspond to a call tail originating in q. A call tail is a sequence of

states connected by subroutine transitions with the same index mapping pair. More formally, a

call tail is defined as follows:

4.6.3 Definition: Let A = (Q,qs,R) be a matching automaton in SBF, and let q ∈ Q be a

subroutine state. We say that A contains a call tail originating in q and containing a call to B0

with the current value followed by calls B1(x1),. . . ,Bm(xm), and yielding an index k—written

q:B0(*),B1(x1), . . .,Bm(xm) ⇒ k ∈ R—if

q : B0
σ0→ {x1 ∈ q1} ∈ R and

q1 : B1
σ1→ {x2 ∈ q2} ∈ R and

. . .

qm : Bm
σm→ ∅ ∈ R,

where 1 7→ k ∈ σi for all i ∈ {0 . . .m}.

function conv sub(q,R,x) =

let S = {(i, B, CC) | q : B(*), CC ⇒ i ∈ R} in

let <(i1,B1,CC1) . . . (im,Bm,CCm)> =

sort tails(S) in

if and(B1(x),CC1) then i1

. . .
else if and(Bm(x),CCm) then im

else 0

end

function conv state(q,R,x,Exit) =

if is simple(q) then

conv simple(q,R,x,Exit)

else

conv sub(q,R,x)

end

(a) (b)

Figure 4.20: Subroutine state conversion algorithm (a); general state conversion algorithm (b)

A subroutine state corresponds to a sequence of XIL if/then branches—each arising from a call

tail. The test of a branch is a conjunction of the subroutine calls that make up the corresponding

call tail; if the calls succeed, the then part of the branch returns the index associated with the call

tail. The order of the branches is determined by first-match considerations—the smaller the index

output by a call tail is, the earlier this call tail has to be tested by the program.

Figure 4.20(a) shows how these ideas are implemented in function conv sub. Its first line

extracts the call tails originating in the input subroutine state and places them into S. We use CC
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to range over sequences of subroutine/variable pairs such as B(y),C(z),G(w) in the example of

Figure 4.19. The next line of conv sub uses function sort tails to sort the call tails in ascending

index order. A sequence of if/then expressions is then created from the call tails and returned.

The following lemma associates the XIL statement produced by conv sub with the input match-

ing automaton state.

4.6.4 Lemma: Let B1 . . . Bm be a call-closed collection of matching automata in SBF. Let B1 . . .

Bm also denote a collection of corresponding XIL functions satisfying the following conditions for

any sequence value v and any k ∈ {1 . . .m}:

• if call Bk(v) −→ 0, then ∅ ` v /∈ Bk;

• if call Bk(v) −→ i for some i > 0, then ∅ ` v ∈ Bk ⇒ i;

• if ∅ ` v ∈ Bk ⇒ i, then call Bk(v) −→ j for some j ≤ i;

• if ∅ ` v /∈ Bk and Bk does not diverge on v, then call Bk(v) −→ 0;

Let A = (Q,qs,R) be a matching automaton from the above collection, and let q ∈ Q be a subrou-

tine state. Let x be a variable distinct from the variables appearing in A. The following collection of

assertions hold for the input state q and the corresponding XIL expression e = conv sub(q,R,x)

for any sequence value v and for any environment E:

• if E[v/x] ` e −→ i for some i > 0, then E ` v ∈ q ⇒ i.

• if E[v/x] ` e −→ 0, then E ` v /∈ q;

• if E ` v ∈ q ⇒ i, then E[v/x] ` e −→ j for some j ≤ i.

• if E ` v /∈ q and the automaton does not diverge on v, then E[v/x] ` e −→ 0.

Figure 4.20(b) shows function conv state that generates XIL code for an arbitrary match-

ing automaton state. Using predicate is simple, it checks whether the input state is simple or

subroutine and invokes conv simple or conv sub appropriately.

We conclude this section with a lemma stating the correspondence between a collection of

matching automata and a collection of XIL functions generated from them using conv ma.
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4.6.5 Lemma: Let A1 = (Q1,q1,R1) . . . Am = (Qm,qm,Rm) be a call-closed collection of match-

ing automata in SBF, and let A1 . . . Am also denote a collection of XIL functions generated from

these automata:

conv ma(A1,Q1,q1,R1) = fun A1...

. . .

conv ma(Am,Qm,qm,Rm) = fun Am...

The correspondence between the matching automata and the associated XIL functions is de-

scribed by the following assertions that hold for any sequence value v and any k ∈ {1 . . .m}:

• if call Ak(v) −→ 0, then ∅ ` v /∈ Ak;

• if call Ak(v) −→ i for some i > 0, then ∅ ` v ∈ Ak ⇒ i;

• if ∅ ` v ∈ Ak ⇒ i, then call Ak(v) −→ j for some j ≤ i;

• if ∅ ` v /∈ Ak and Ak does not diverge on v, then call Ak(v) −→ 0;

In SBF, we do not distinguish between matchers and acceptors when converting matching

automata into XIL. An acceptor is just a special case of matchers that uses only two indices—0

and 1. In the above lemma, therefore, Bi can refer to either an acceptor or a matcher. SNBF is

different in a sense that matchers and index converters are treated differently—while the former

are converted to XIL functions as in SBF, the latter do not correspond to stand alone functions,

but, rather, are translated inline as part of subroutine state conversion.

rng2xt
max
Rec

succ
Rec

pred
Rec

size of gen’d code 8,788 7,758 9,169
# of eval steps 955,714 580,813 455,270
format html
size of gen’d code 18,127 15,577 18,357
# of eval steps 8,484 9,269 7,384
format bibtex
size of gen’d code 24,729 41,518 52,856
# of eval steps 131,642 45,104 22,892

rng2xt backtr. non-backtr.
size of gen’d code 9,169 17,096
# of eval steps 455,270 542,753
format html
size of gen’d code 18,357 23,138
# of eval steps 7,384 10,234
format bibtex
size of gen’d code 52,856 34,207
# of eval steps 22,892 34,722

Figure 4.21: Comparison of various loop breaker sets (a), and SBF vs. SNBF approaches (b)

4.7 Experiments

This section describes our performance experiments. To evaluate the code generated by our com-

piler, we have implemented a simple XIL interpreter instrumented to report the size of the generated
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program estimated by the number of abstract syntax tree nodes and its speed estimated by the

number of evaluation steps such as function calls, variable lookups, and primitive applications.

We analyze three test programs. The first one, rng2xt, is a 500 line program (2,200 AST nodes,

63% of which are in patterns) that converts a Relax NG schema into a collection of XDuce regular

types. It is run on a 900 line XML document. The second, format html, is a 3,000 line program

(7,400 AST nodes, 92% of which are in patterns) that traverses an html page, finds all of its

headings and makes a table of contents with references to them. The third, format bibtex, is a

1,200 line program (4,400 AST nodes, 55% of which are in patterns) that reads a bibtex file and

converts it into an html page displaying the file’s contents.

The first experiment compares different methods of selecting sets of loop breakers. In the table

shown in Figure 4.21(a), max Rec, succ Rec, and pred Rec denote the maximal, multiple successor,

and multiple predecessor sets of loop breakers respectively.

For the first two programs, all loop breaker selection strategies result in programs of roughly

the same size. For format bibtex, using the maximal set of loop breakers produces a substantially

smaller program as discussed in Section 4.5.3. Maximal sets of loop breakers generally lead to

slower programs. The fastest programs, for our tests, were generated using multiple predecessor

loop breaker sets. Apparently, this strategy introduces the least number of subroutine functions,

and, hence, incurs the least amount of penalty arising from function calls. Selecting minimal sets

of loop breakers simply did not work for format html and format bibtex resulting in dramatic code

size explosion.

The table shown in Figure 4.21(b)compares the backtracking and non-backtracking compilation

algorithms. In both cases, we use multiple predecessor loop breaker sets.

The backtracking approach results in faster programs for all the test cases. It seems that the

cost of backtracking occurring in the programs generated by this method is far outweighed by

the cost of operations on tuples of boolean values employed in the programs generated by the

non-backtracking approach.

4.8 Related Work

The XDuce programming language [36, 35], provided the starting point for our project and is

the source language of our compilers. As mentioned in Section 4.4.1, our compiler uses XDuce’s

algorithm for converting source patterns into states of a binary top-down tree automaton. Hosoya

and Pierce [35] provide a detailed account of this algorithm.

Compilation of datatype-based pattern matching has been researched extensively in the past.
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Papers in this field usually distinguish two general approaches. Baudinet and MacQueen [3] describe

a method based on decision trees (used in the SML/NJ compiler) that is geared toward producing

efficient non-backtracking code but might suffer from an occasional blowup of the output code size.

Conversely, Augustsson [2] introduces a backtracking approach that restrains the size of the output

code at the expense of its efficiency. Le Fessant and Maranget [12] combine the advantages of both

approaches by introducing several optimizations (used in the OCaml compiler) to the backtracking

technique that result in more efficient but still compact output code. (On a slightly different

note, Sestoft [62] shows how instrumentation and partial evaluation can help derive a reasonably

efficient pattern match compiler from a simple pattern matching algorithm. The resulting compiler,

however, is less advanced than the compilers mentioned above.)

A similar trade-off between performance and space considerations is present in the compila-

tion algorithms of this paper. By varying loop breaker sets used in the algorithm, we can either

minimize the code size but introduce more subroutine function calls and hence more backtracking,

or, conversely, minimize the number of subroutine calls at the risk of generating very large code.

Since our work focuses on recursive patterns and the many issues that arise as a result of dealing

with recursive patterns, our algorithms can be viewed as an extension of datatype based pattern

compilation.

Compilers for logic programming languages employ optimizations focused on avoiding back-

tracking and sharing common tests performed by different branches of conditional expressions. Like

datatype pattern matching optimizations, these techniques ([48] and [10]) do not handle recursive

patterns and, thus, cannot be used directly in our compiler.

The topic of procedure inlining optimization ([40], [1], [69]) is relevant to our work. Our compila-

tion algorithm is similar to procedure inliners in that it examines a potentially cyclic structure—a

tree automaton—and determines which nodes of that structure can be implemented inline and

which nodes must correspond to procedures. Peyton Jones and Marlow [40] introduce the notion of

loop breakers, show how selecting different loop breakers can have a significant effect on the quality

of the generated code, and describe a heuristic for locating loop breakers.

One might consider an alternative approach to compiling regular patterns. First, generate a

target program using a simple code generation method that associates a procedure with every tree

automaton state and does not perform any of the optimizations described in this paper. Then,

hand the obtained program to an existing procedure inliner, such as the one described by Peyton

Jones and Marlow [40], and let it do its job. The problem with this approach is that by the time

we generate the first version of target code, all the tree automaton-related information is lost and

cannot be taken advantage of by the optimizer. Hence, our approach of doing code generation and
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optimization in the same stage is advantageous.

A great deal of research has been conducted in the area of regular tree languages. This field

studies properties of regular tree and forest languages. Two kinds of trees are considered: ranked in

which any label has an arity, and the number of child subtrees in a node is determined by the arity

of the node’s label ([8]); and unranked in which any node can have arbitrary number of children

regardless of the label ([5], [58].)

One of the problems investigated in this area, the membership problem, is relevant to our

research. Its goal is to check whether a tree belongs to a particular regular tree language specified

by a regular tree grammar. A standard solution described in the literature involves converting

the grammar into a non-deterministic bottom-up tree automaton (NTA), building an equivalent

bottom-up deterministic tree automaton (DTA), and matching the input value against the obtained

DTA. The first and third components of the above process can be accomplished in linear time

in the size of the input. The process of determinization, however, can result in a DTA whose

size is exponential in the size of the original NTA. Seidl and Neumann [59] introduce pushdown

forest automata—bottom-up automata with a top-down twist—that exhibit better determinization

characteristics.

Bottom-up automata do not give us a natural framework for modeling target language code. It

is unclear how to “read-off” a target language program from a bottom-up automaton in such a way

that this program can be further optimized by inlining and other low-level transformations. For

this reason, we base our compilation algorithms on the top-down approach, and, hence, bottom-up

techniques cannot be applied for our purposes directly.

Furthermore, our matching automata are not meant—at least at this time—to compete with

the automata theoretic approaches on the terms that are of interest to that community. In our

framework, we are interested in and can express transformations that may give us constant factor

improvements in the performance of the generated program for common source programs rather

than asymptotic complexity improvements for certain rare cases. This interest is reflected in the

design of matching automata that features subroutine transitions to help us examine code inlining

approaches; indices to help us implement pattern matching with multiple patterns and experiment

with exhaustiveness optimization; and variables in transitions for more flexibility in scheduling

evaluation of subtrees of the input tree.

It can be shown [8] that word automata minimization algorithms can be generalized to tree

automata. Minimization of tree automata can be employed in conjunction with the compilation

algorithms discussed in this paper. Recall that the first stage of our compiler converts source

patterns into states of a tree automaton. Currently, the algorithm used in this stage [35] does not
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produce a minimal tree automaton. In the future, we would like to experiment with employing

existing minimization algorithms at this stage to give us a better starting point for SBF and SNBF.

Another question concerns minimizing matching automata produced by SBF and SNBF. This

problem is hard. Because of subroutine transitions, minimizing matching automata is not unlike

trying to find an optimal solution to function inlining, and we are not aware of a function inliner

that boasts optimality; they all are based on heuristics. Similarly, our compilation algorithms do

not claim to produce minimal matching automata, but rather matching automata that are good

enough in practice.
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Chapter 5

Unambiguous Regular Pattern

Matching with Variables

Extending regular pattern matching with variable binding is not a trivial matter. Not only does

it require untangling intricate interactions between variable binding on one side and recursion

and other complex aspects of pattern compilation on the other, but it also raises the question

of principled treatment of ambiguous patterns. The goal of this chapter is to provide a formal

foundation of variable binding and pattern disambiguation in the context of matching automata.

A pattern is ambiguous if there exists a value that can be matched against the pattern in more

than one way. Consider XtaticLite pattern p = a[]?,a[]? where p? stands for p|(). There are

two ways of matching p against a[]: in the first one, the left subpattern of p matches the whole

value and the right subpattern of p matches the empty sequence; in the second, the left subpattern

of p matches the empty sequence and the right subpattern of p matches the whole value.

Ambiguity can also arise in patterns with repetition operators. For instance, consider pattern

p = a[]*,a[]*. Similarly to the previous example, there are two ways of matching this pattern

against a[].

There are several known ways of specifying a deterministic semantics for regular pattern match-

ing. The POSIX disambiguation semantics [65] gives preference to the subpatterns that come earlier

in the left to right traversal of the abstract syntax tree and attempts to match the subpattern with

the highest priority to a portion of input that starts as early as possible and extends as long as

possible. For both patterns above, the POSIX disambiguation semantics prescribes the whole value

to be matched to the left subpattern.

The first/longest match disambiguation semantics [65] has a special provision for union and
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repetition patterns. It specifies that a union pattern must match its left (first) alternative if it is

at all possible and only match the right alternative of the union if the left one does not match.

A repetition pattern must be matched against a portion of the input value that starts as early as

possible and extends as long as possible. Like the POSIX semantics, the first/longest semantics

prescribes the whole value to be matched to the left subpattern for the two examples above. The

two disambiguation policies differ if p? is encoded by ()|p. In this case, a[]?,a[]? matches a[]

as before if the POSIX semantics is used because the left subpattern still tries to consume as much

as possible. Using the first/longest semantics, however, results in matching the first subpattern to

the empty sequence since the () alternative of the union has the higher priority.

The XDuce disambiguation semantics [30] is an approximation of the first/longest semantics

in which p* is encoded by X where X = X,p | () and the first match semantics is used for union

patterns. In many cases, this technique simulates the longest match semantics, but in some cases,

the two disambiguation strategies produce different results [65].

These issues of disambiguation, however, are of little significance to XtaticLite pattern match-

ing as it was introduced in Chapter 4. Because pattern matching against a single pattern is essen-

tially a true/false test, the end result of matching—whether a match clause is selected or not—is

independent of a particular way in which the input value is matched against the pattern. This

changes as soon as patterns are extended with variable binding.

Because of this direct correlation between variable binding and ambiguity, we propose a variable-

centric disambiguation semantics that selects a particular matching outcome based on how it affects

variable bindings rather than on how it affects the way in which subpatterns are associated with

subvalues. More specifically, we distinguish two kinds of variables: leftmost and rightmost. The

former prefer to be bound as early as possible in the input value; the latter as late as possible.

Consider this extension of one of the above patterns with a binder: p = a[]?, a[]? x. This

pattern matches the same inputs as the original, but it also binds x to the subvalue that is matched

against the right subpattern of p. If x is leftmost, then matching a[] against p results in matching

the empty sequence to the left subpattern and a[] to the right one therefore binding x to a[].

Conversely, if x is rightmost, the first subpattern is matched to a[] and the right subpattern is

matched to the empty sequence.

Using the proposed variable-centric disambiguation approach, we can simulate longest and short-

est match policies by decorating appropriate subpatterns with either leftmost or rightmost variables.

In the presence of multiple variables, the proposed approach does not provide full disambigua-

tion. Consider the pattern p = a[], a[() x] y | a[() x] y, a[]. When matched against

a[],a[], it produces two potential answers: in the first, x is bound to the contents of the first
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element and y is bound to the first element; in the second, x is bound to the contents of the second

element and y is bound to the second element. If x is leftmost and y is rightmost, neither outcome

is better than the other unless the variables are prioritized.

In this example, a natural prioritization order can be inferred from the structure of the patter:

y appears “earlier” than x in the abstract syntax tree of the pattern. In fact, y is always bound

to a subvalue that occurs before than the subvalue associated with x in the left to right scan of

the input value. So, in this example, it is natural to disambiguate based on y first, and only then

based on x if further ambiguity remains.

In general a variable ordering cannot be inferred from the syntactic structure of the pattern.

Consider the pattern a[] x, b[] y | b[] y, a[] x in which neither of the two variables appear

before the other. This is a common type of pattern that may, for example, occur as a result of

desugaring a pattern construct describing all possible interleaving of two-element a and b-labeled

sequences. We would like to be able to unambiguously match against such patterns without having

to specify an arbitrary variable ordering.

Even though the structure of the above pattern does not suggest a natural variable ordering,

any given input value imposes a particular order in which the variables are bound. For instance, if

the above pattern is matched against a[],b[], variable x is bound before variable y. Conversely,

if the pattern is matched against b[],a[], variable y is bound first. Thus, our disambiguation

semantics infers a different set of variable priorities for each input value.

For some patterns, even a given input does not lead to a natural variable prioritization order.

An example of such a pattern is a[] x, b[] y | a[] y, b[] x in which x and y are completely

symmetric. We say that such patterns do not have ordered binders; they are unfit for deterministic

pattern matching and must be rejected by the compiler.

The contribution of this chapter are twofold: it gives a precise formalization of the disam-

biguation approach sketched above, and it defines a compilation algorithm that generates efficient

single-pass matching automata implementing the proposed policy.

The rest of the chapter is as follows. Section 5.1 defines values, subvalue locations, and variable

environments. Section 5.2 describes regular patterns with binders and formalizes our disambigua-

tion policy by defining a deterministic pattern matching relation. Section 5.3 introduces tree au-

tomata with binding and defines both non-deterministic and deterministic acceptance relations for

them. Section 5.4 describes deterministic matching automata with binding. Section 5.5 presents

the compilation algorithm and establishes its correctness properties. Section 5.6 covers related

work.
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5.1 Values

This section introduces values, subvalue locations, and variable environments.

5.1.1 Definition: A value is either the empty sequence () or a non-empty sequence of elements,

a1[v1] . . . ak[vk], each consisting of a label and a nested child value.

A non-empty sequence value can be viewed as a labeled binary tree whose root label and left

and right subtrees correspond to the label of the first element, the child value of the first element,

and the rest of the sequence respectively. Any subvalue then can be addressed by a binary sequence.

For instance, in the value a[c[]],b[], the locations 0 and 1 denote the subvalues c[] and b[]

respectively.

5.1.2 Definition: A location is a sequence over {0, 1}; each 0 and 1 indicate the left and right

subtree of the current node respectively. The empty sequence location is denoted ε. Given a value

v and a location π within it, the corresponding subvalue is denoted vπ and is determined according

to the following rules:

vε = v

(a[v0], v1)
0π = vπ

0

(a[v0], v1)
1π = vπ

1

The lexicographic smaller than relation on locations is defined according to the following rules:

ε < π if π 6= ε

0π1 < 1π2

0π1 < 0π2 if π1 < π2

1π1 < 1π2 if π1 < π2

We will use ≤ to denote the reflexive closure of <.

Later, we will introduce patterns with binders and explain how values are matched against such

patterns. To help define the semantics of pattern matching, we introduce variable environments

which will be used as results of matching values against patterns with multiple binders.

5.1.3 Definition: A variable environment is a mapping from variable names to locations. The

concatenation of a location π and an environment Σ, denoted π •Σ, is an environment Σ1 such that

dom(Σ1) = dom(Σ) and for any x ∈ dom(Σ) and Σ(x) = π′, we have Σ1(x) = ππ′.
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When a value v is matched against a pattern p, the result is a variable environment that asso-

ciates the binders occurring in p with the locations of the corresponding subvalues in v. Matching

against an ambiguous pattern may result in multiple environments, and a deterministic pattern

matching semantics must chose of them as the designated answer.

Comparing variable environments is based on the lexicographic ordering of locations introduced

above. For some matching problems, it may be preferred that a variable be bound as early as

possible in the input value; for other problems, the preference may be to bind a variable as late as

possible. A set of such preferences is called a binding policy.

5.1.4 Definition: A binding policy for a collection of variables V is a mapping from V to

{left, right}.

Given a binding policy and an ordering of variables, two variable environments can be compared

as follows.

5.1.5 Definition: Let Σ1 and Σ2 be environments containing the same variables: dom(Σ1) =

dom(Σ2). Let V = x1 . . . xn be a sequence of all the variables in dom(Σ1) listed in some particular

order, and let L be a binding policy for dom(Σ1). Then Σ1 is smaller than Σ2 with respect to V

and L, written Σ1 <L
V Σ2, if there exists i ∈ {1 . . . n} such that L(xi) = left and Σ1(xi) < Σ2(xi)

or L(xi) = right and Σ2(xi) < Σ1(xi) and, furthermore, for all j ∈ {1 . . . i − 1}, it is the case that

Σ1(xj) = Σ2(xj).

For example, let Σ1 be a map from x to 11 and from y to 0, and let Σ2 be a map from x to 1

and from y to 01. Let V denote the variable sequence x, y. Then, Σ1 <L
V Σ2 for any L that maps

x to right, and Σ2 <L
V Σ1 for any L that maps x to left.

5.2 Patterns with Variables

This section discusses patterns with binders and their ambiguous and deterministic semantics. We

start by extending the notion of regular patterns introduced in Section 4.1 with binders.

5.2.1 Definition: Regular patterns with binders are described by the following grammar:

p ::= () | a[p] | p1, p2 | p1|p2 | p x | X

These denote the empty sequence pattern, a labeled element pattern, sequential composition and

union of two patterns, pattern with a binder, and a pattern variable. Pattern variables are intro-

duced by top-level mutually recursive declarations of the form def X = p. Top-level declarations
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induce a function def that maps variables to the associated patterns; e.g. the above declaration

implies def(X) = p. Variable with binders are restricted to tail positions; vars(p) denotes the set

of all binders in p.

We require that binders appear in tail positions. For instance, the pattern a[c[]] x, b[] y

does not meet this condition since x is not in a tail position. On the other hand, a[c[] x], b[] y

is legal since x is bound to the whole sequence that is the sub-value of the first element. Patterns

with binders can be nested: (a[], b[] y) x, for example, matches two-element a-b-sequences

binding x to the whole sequence and y to its one-element tail.

The pattern matching relation in the presence of binders must not only indicate whether a

particular value matches a particular pattern, but also return computed bindings for successful

matches. We accomplish this by extending the pattern matching relation of Section 4.1 with

variable environments.

5.2.2 Definition: A value v matches a pattern p yielding an environment Σ, written v ∈ p ⇒ Σ,

if one of the following rules apply:

() ∈ () ⇒ ∅ (P-Emp)

v ∈ p ⇒ Σ

a[v] ∈ a[p] ⇒ 0 • Σ
(P-Elem)

v1 ∈ p1 ⇒ Σ1 |v1| = k v2 ∈ p2 ⇒ Σ2

v1, v2 ∈ p1, p2 ⇒ Σ1 ∪ (1k • Σ2)
(P-Cat)

v1 ∈ p1 ⇒ Σ

v ∈ p1|p2 ⇒ Σ
(P-UniL)

v2 ∈ p2 ⇒ Σ

v ∈ p1|p2 ⇒ Σ
(P-UniR)

v ∈ p ⇒ Σ

v ∈ p x ⇒ {x 7→ ε} ∪ Σ
(P-Bind)

v ∈ def(X) ⇒ Σ

v ∈ X ⇒ Σ
(P-Def)
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Let v1 be the value a[],b[], and let p1 be the pattern (a[], b[] y) x | (a[], b[] x) y. The

pattern matching rules derive the following assertions: v1 ∈ p1 ⇒ Σ1 and v1 ∈ p1 ⇒ Σ2 where

Σ1 = {x 7→ ε, y 7→ 1}

Σ2 = {x 7→ 1, y 7→ ε}

To compute a unique answer, we must chose the “better” environment. If we specify a binding

policy and a variable ordering, we can do that by employing the comparison operator < defined

in the previous section. For example, let L be the binding policy {x 7→ left, y 7→ right}, and let V

be the variable ordering x,y. Then, Σ1 <L
V Σ2 and hence Σ1 is the selected answer for the above

pattern match. More generally:

5.2.3 Definition: Let v be a value, p a pattern, V an ordered sequence of vars(p), and L a

binding policy for vars(p). Then v unambiguously matches p with respect to V and L yielding an

environment Σ, written v ∈L
V p ⇒ Σ, if v ∈ p ⇒ Σ, and, for any Σ′ such that v ∈ p ⇒ Σ′, it is the

case that Σ <L
V Σ′.

How to select a variable ordering in a non-arbitrary way is not always apparent, since binders are

often independent of each other and there are no natural precedence relation on them. Consider, for

example, the pattern p2 = (a[], b[] y) x | (b[], a[] x) y. Variables x and y are symmetric,

and so there is no reason for one to have a higher priority than the other. Such patterns commonly

arise from desugaring interleaving operations, and our goal is to handle them in a principal and

convenient way.

Even though there is no variable ordering that makes sense for p2 in general, for any given value

that matches p2, there is a natural variable ordering. For instance, when p2 is matched with v1, the

beginning of the x binding precedes the beginning of the y binding (since x is bound to the whole

value, while y is bound to its subsequence starting from the second element.) Conversely, when

p2 is matched with the value b[],a[], the y binding precedes the x binding. Patterns like p2 are

said to have ordered bindings, and for such patterns it is possible to define deterministic pattern

matching without fixing variable ordering in advance.

5.2.4 Definition: Two environments Σ1 and Σ2 with the same domain are said to be compatible

if, for any distinct x, y ∈ dom(Σ1), we have simultaneously Σ1(x) ≤ Σ1(y) and Σ2(x) ≤ Σ2(y) or

Σ1(y) ≤ Σ1(x) and Σ2(y) ≤ Σ2(x).

A pattern p has ordered binders if, for any value v, whenever v ∈ p ⇒ Σ and v ∈ p ⇒ Σ′, the

environments Σ and Σ′ are compatible. Let v be a value and p a pattern with ordered binders.

Then, the induced order V = x1 . . . xn on vars(p) is an order satisfying the condition that for
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any environment Σ such that v ∈ p ⇒ Σ and for any i, j such that 1 ≤ i < j ≤ n, we have

Σ(xi) ≤ Σ(xj).

Let v be a value, p a pattern with ordered binders, and L a binding policy for vars(p). Then

v unambiguously matches p with respect to L yielding an environment Σ, written v ∈L p ⇒ Σ, if

v ∈L
V p ⇒ Σ where V is the order over vars(p) induced by v.

Returning to our examples, we can see that p1 does not have ordered bindings since the two

variable environments produced when p1 is matched with v1 are incompatible. On the other hand,

p2 has ordered binders and we have v1 ∈L p2 ⇒ Σ1.

5.3 Tree Automata with Binders

This section extends tree automata (Section 4.4.1) with variable binding support. We define the

syntax of tree automata with binders; introduce a non-deterministic matching/acceptance relation,

and show how if can be disambiguated.

5.3.1 Definition: A tree automaton with binders is a tuple A = (S, T, B), where S is a set of

states, T is a set of transitions, and B is a mapping from transitions to sets of variables. There

are two types of transitions: empty transitions of the form s → () and label transitions of the form

s → a[s1], s2, where s, s1, s2 ∈ S and a is a label.

Recall pattern p1 = (a[], b[] y) x | (a[], b[] x) y from the previous section. It gives rise

to the tree automaton A1 = (S1, T1, B1) where:

S1 = {s1, s2, s3, s4}

T1 = {t1 = s1 → a[s4], s2,

t2 = s1 → a[s4], s3,

t3 = s2 → a[s4], s4,

t4 = s3 → a[s4], s4,

t5 = s4 → ()}

B1 = {t1 7→ {x},

t2 7→ {y},

t3 7→ {y},

t4 7→ {x},

t5 7→ ∅}
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Let us see how this automaton simulates matching of an input value against p1. It starts in

s1 by checking the label of the first element in the input sequence. If it is a, the automaton can

non-deterministically proceed by taking either transition t1 or transition t2. In both cases, the

contents of the first element is sent to s4 where it is verified to be the empty sequence. If t1 is

taken, variable x is bound to the location of the whole input sequence and the tail of the sequence

starting from the second element is sent to s2. If the automaton chooses t2, the location of the

whole input sequence is assigned to y and the rest of the sequence is sent to s3. In states s2 and

s3, the label of the first element is checked to be b, the contents of the first element is tested for

emptiness, and the rest of the sequence is sent to s4 to be tested for emptiness. Variables y and

x are bound respectively to the location of the suffix of the input value starting from the second

element.

Here is a formalization of the acceptance relation. We say that a value v is accepted by a state

s yielding a variable environment Σ, written v ∈ s ⇒ Σ, if this assertion is in the least fixed point

of the following rules:

t = s → () ∈ T Σ =
⋃

x∈B(t) (x 7→ ε)

() ∈ s ⇒ Σ
(TA-Emp)

t = s → a[s1], s2 ∈ T v1 ∈ s1 ⇒ Σ1

v2 ∈ s2 ⇒ Σ2 Σ =
⋃

x∈B(t) (x 7→ ε)

a[v1], v2 ∈ s ⇒ Σ ∪ (0 • Σ1) ∪ (1 • Σ2)
(TA-Lab)

Using A1 with value v1 and variable environments Σ1 and Σ2 defined in the previous section,

we have v1 ∈ s1 ⇒ Σ1 and v1 ∈ s1 ⇒ Σ2.

The following definition associates a tree automaton state s with the variables that are bound

during a run of the automaton starting from the point when it enters s until the end of the run

when the whole input value is accepted.

5.3.2 Definition: Given a tree automaton A = (S, T, B) and a state s ∈ S, function vars(s)

denotes all the variables that may be bound as a result of matching a value against s. It is defined

as the least fixed point of the following equations:

vars(s) =
⋃

{vars(t) | t ∈ T and s is the source state of t}

vars(t = s → ()) = B(t)

vars(t = s → a[s1], s2) = B(t) ∪ vars(s1) ∪ vars(s2)
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Now, like we did in the previous section, we can define deterministic acceptance with respect to

a variable ordering and a binding policy.

5.3.3 Definition: Let v be a value, p a state, V an ordered sequence of vars(s), and L a binding

policy for vars(s). Then v is unambiguously accepted by s with respect to V and L yielding an

environment Σ, written v ∈L
V s ⇒ Σ, if v ∈ s ⇒ Σ, and, for any Σ′ such that v ∈ s ⇒ Σ′, it is the

case that Σ <L
V Σ′.

Again mirroring the developments of the previous section, we define the notion of ordered

binders for tree automaton states and introduce unambiguous acceptance with respect to a binding

policy.

5.3.4 Definition: A state s has ordered binders if, for any value v, whenever v ∈ s ⇒ Σ and

v ∈ s ⇒ Σ′, the environments Σ and Σ′ are compatible. Let v be a value and s a state with ordered

binders. Then, the induced order V = x1 . . . xn on vars(s) is an order satisfying the condition that

for any environment Σ such that v ∈ s ⇒ Σ and for any i, j such that 1 ≤ i < j ≤ n, we have

Σ(xi) ≤ Σ(xj).

Let v be a value, s a state with ordered binders, and L a binding policy for vars(s). Then v is

unambiguously accepted by s with respect to L yielding an environment Σ, written v ∈L s ⇒ Σ, if

v ∈L
V s ⇒ Σ where V is the order over vars(s) induced by v.

In the rest of the chapter we assume that both source patterns and tree automata that we are

dealing with have ordered binders.

5.4 Matching Automata with Binders

This section extends matching automata with binding operations. Unlike tree automata, we only

consider deterministic matching automata with binders building on the SNBF model described in

Section 4.5.

Other than binding operations, there are two aspects that distinguish matching automata of

this section from the matching automata of Chapter 4. The first one is that we only consider

matching automata in simple non-backtracking form omitting a more general account. The second

is that we have a different form of subroutine transitions: instead of allowing just one subroutine

call per transition and having non-final subroutine states that may have other subroutine states

as descendants, we require subroutine states to be final and allow subroutine transition to employ

multiple subroutine calls each associated with its own result conversion relation. This approach
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def p1 = a[]*, a[]? x

def p2 = (a[],a[])*, a[]? x

def p3 = a[]*, a[]? y

def p4 = (a[],b[])*, a[]? y

match u with

| a[p1],p3 | a[p2],p4 → 1

| a[p1],p4 → 2

A = (S, q1, T, X, L)
S = {q1, q2}

T = {q1(u) : a[v], w
I
→ q2,

q2
σ
→ {A1(v@0) 7→ σ1, A2(w@1) 7→ σ2}

X = {q1 7→ u}
L = {x 7→ left, y 7→ left}
I = {1, 2}
σ = {1 7→ 1, 2 7→ 1, 3 7→ 2}
σ1 = {1 7→ 1, 1 7→ 3, 2 7→ 2}
σ2 = {1 7→ 1, 2 7→ 2, 2 7→ 3}

(a) (b)

Figure 5.1: A match expression (a) and the corresponding matching automaton with binders (b)

allows us to avoid index converters (Section 4.4.3) and gives us a more convenient framework for

dealing with binding.

5.4.1 Definition: A deterministic matching automaton with binders is a tuple (S, q, T, X, L),

where S is a set of states, q ∈ S is a start state, T is a set of transitions, X is a mapping from

states to registers, and L is a binding policy.

There are three kinds of transitions: final, simple and subroutine. They have the following

structure:

q → B (final)

q(r) : p
I
→ q2 (simple)

q
σ
→ {A1(r1@π1) 7→ σ1 . . . Ak(rk@πk) 7→ σk} (subroutine)

A final transition contains a source state q, a register r associated with q via the mapping X ,

and a partial mapping from results to variable environments B. A simple transition contains a

source state q, the associated register r, a target language pattern p—which can be of the form ()

or a[r1], r2—a set of integer results I , and a destination state q2. A subroutine transition contains

a source state q, a binary relation on results σ, and a set of subroutine calls each containing a

subroutine matching automaton’s name, a register paired with the location of the register’s contents

in the original input value, and a binary relation on results.

To illustrate matching automata with binders, let us consider a somewhat contrived example

shown in Figure 5.1. It contains a XtaticLite fragment defining patterns p1, p2, p3, and p4 and a
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match expression based on them. The patterns of both clauses have ordered binders—x is always

bound before y in the document order—therefore, unambiguous pattern matching as introduced in

Definition 5.2.4 is possible.

Let v1 = a[], and let v2 = a[],a[]. Evaluating the match expression with the value a[v1],v2

results in a successful match for the patterns of both clauses. The pattern of the first clause yields

the following potential answers:

Σ1 = {x 7→ 0, y 7→ 11}

Σ2 = {x 7→ 0, y 7→ 111}

Σ3 = {x 7→ 01, y 7→ 11}

Σ4 = {x 7→ 01, y 7→ 111}

Let L be the binding policy in which both x and y are mapped to left. According to L, the

disambiguated answer is Σ1. The pattern of the second clause yields two potential answers Σ2 and

Σ4; so, according to L, the disambiguated answer is Σ2.

The matching automaton shown in Figure 5.1(b) is an implementation of the displayed match

expression. It starts in the initial state q1 where it inspects the input value stored in register u.

It verifies that the first element is a-labeled and decomposes the input by storing the contents

of the first element in v and the suffix of the sequence starting from the second element in w.

The matching automaton then transitions into q2 where subroutine matching automata A1 and

A2 are invoked on v and w respectively. Matching automaton A1 checks its input against p1 and

p2 and, depending on which of them matches, returns results 1 and 2 together with the variable

environments obtained as a result of matching against the successful pattern. Matching automaton

A2 performs similar operations for patterns p3 and p4. When calls to the subroutine matching

automata return, we combine the results using result relations σ1, σ2, and σ to obtain the final

result. Here is a formalization of matching automata acceptance rules.

5.4.2 Definition: Let E be a register environment—a mapping from registers to values. We

write E↓r for an environment which agrees with E on r and is undefined on all other registers, and

E\y for an environment which is undefined on y and otherwise equal to E. Let M be a mapping

from names to subroutine matching automata. We say that a register environment E is accepted by

a state q yielding a result j and a variable environment Σ, written E ∈ q ⇒ j⊗Σ, if the concluding

assertion is in the least fixed point defined by the following rules. To ensure determinism, we require

that transitions be disjoint—each state can only be the source of either several non-overlapping

simple transitions, a single final transition, or a single subroutine transition.

80



q → B ∈ T k ∈ dom(B) Σ = B(k)

E ∈ q ⇒ k ⊗ Σ
(MA-Fin)

q(r) : ()
I
→ q2 ∈ T E(r) = () k ∈ I

E′ = E\r E′ ∈ q2 ⇒ k ⊗ Σ

E ∈ q ⇒ k ⊗ Σ
(MA-Emp)

q(r) : a[r1], r2
I
→ q2 ∈ T E(r) = a[v1], v2 k ∈ I

E′ = (E\r)[v1/r1, v2/r2] E′ ∈ q2 ⇒ k ⊗ Σ

E ∈ q ⇒ k ⊗ Σ
(MA-Lab)

q
σ
→ {A1(r1@π1) 7→ σ1 . . . Am(rm@πm) 7→ σm} ∈ T

Envs = {Σ′ |
∀ i ∈ {1 . . .m}. (E↓ri ∈ M(Ai) ⇒ ji ⊗ Σi and (ji, h) ∈ σi)

Σ′ = (π1 • Σ1) ∪ . . . ∪ (πm • Σm)
and (h, k) ∈ σ}

∀Σ1Σ2 ∈ Envs. Σ1 is compatible with Σ2 Σ = minL(Envs)

E ∈ q ⇒ k ⊗ Σ

(MA-Sub)

Returning to our example, let us see how these rules derive the assertion E ∈ q1 ⇒ 1⊗Σ1 where

Σ1 is the variable environment mentioned above in the context of the XtaticLite program, and E

is the register environment mapping u to the value a[v1],v2 with v1 = a[] and v2 = a[],a[]. The

above assertion follows by MA-Lab from E1 ∈ q2 ⇒ 1 ⊗ Σ1 where E1 = {v 7→ v1, w 7→ v2}. This

assertion is derived from two pairs of subroutine assertions. The first pair is E2 ∈ M(A1) ⇒ 1⊗∆1

and E3 ∈ M(A1) ⇒ 1 ⊗ ∆2 where:

E1 = {v 7→ v1}

E2 = {w 7→ v2}

∆1 = {x 7→ ε}

∆2 = {y 7→ 1}

Combining ∆1 and ∆2 as specified by the rule MA-Sub, we obtain the variable environment

Σ1. The result mapping relations σ1, σ2, and σ serve as identities in this case mapping 1 to itself.

The second pair of subroutine assertions that can be used to derive the above assertion for q2

contains E2 ∈ M(A1) ⇒ 2 ⊗ ∆3 and E3 ∈ M(A1) ⇒ 2 ⊗ ∆4 where E1 and E2 are as before and

the resulting variable environments are as follows:
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∆3 = {x 7→ ε}

∆4 = {y 7→ 11}

Combining ∆3 and ∆4 produces the variable environment Σ2. Notice how 2 returned by A1 is

mapped to itself by σ1; similarly, 2 returned by A2 is mapped to itself by σ2, and, finally, the 2

obtained from these two mappings is converted to the overall answer 1 by the global result converter

σ.

Now, since Σ1 and Σ2 are compatible, we can find the smaller of the two according to bind-

ing policy L. This produces Σ1 as the variable environment used in the concluding assertion

of MA-Sub.

5.5 Compilation Algorithm

This section describes an algorithm for generating matching automata with binders. It is an

extension of the compilation algorithm presented in Chapter 4. Here, we give a staged presentation

in which the algorithm maintain an incomplete version of the matching automaton with some states

represented by configurations. It gradually expands these configurations replacing them with newly

generated ordinary states and possibly more configurations. When this process terminates, the

resulting matching automaton—composed entirely of ordinary states—is an implementation of the

original matching problem.

First, we give a revised definition of configurations (Section 4.5) extended with variable binding.

5.5.1 Definition: A configuration over a tree automaton with binders comprises a tuple of dis-

tinct registers associated with locations (r1@π1 . . . rn@πn) and a set of tuples {(s11 . . . s1n, Σ1, j1)

. . . (sm1 . . . smn, Σm, jm)}, each associating a collection of TA’s states to a variable environment

and a result. We depict a configuration as follows:

C =

x1 . . . xn

s11 . . . s1n j1

. . .

sm1 . . . smn jm

Given such a configuration C, we define these auxiliary functions:
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registers(C) = {r1 . . . rn}

envs(C) = {Σ1 . . . Σm}

results(C) = {j1 . . . jm}

vars(C) =
⋃

i∈{1...m}(dom(Σi) ∪ vars(si1) ∪ . . . ∪ vars(sin))

We say that a register environment E is accepted by C yielding a result jr and a variable

environment Σ, written E ∈ C ⇒ jr ⊗Σ, if there exist variable environments Σr1 . . .Σrn such that

E(ri) ∈ sri ⇒ Σri for all i ∈ {1 . . . n} and Σ = Σr ∪ (π1 • Σr1) ∪ . . . ∪ (πn • Σrn).

The acceptance relation introduced above is non-deterministic since it is defined in terms of

the non-deterministic acceptance relation for tree automata with binders. Let us go through the

familiar steps of arriving at a deterministic relation. First, we define acceptance with respect to a

variable ordering and a binding policy.

5.5.2 Definition: Let C be configuration, E a register environment on C’s registers, L a binding

policy for vars(C), and V an ordered sequence of vars(C). Then E is unambiguously accepted by C

with respect to L and V yielding a result j and a variable environment Σ, written E ∈L
V C ⇒ j⊗Σ,

if E ∈ C ⇒ j ⊗ Σ and, for any Σ′ such that E ∈ C ⇒ j ⊗ Σ′, it is the case that Σ <L
V Σ′.

The next step is to identify a subset of configurations with ordered binders and define deter-

ministic acceptance with respect to a binding policy.

5.5.3 Definition: A configuration of the above form has ordered binders if, for any result j and

register environment E defined on r1 . . . rn, whenever E ∈ C ⇒ j ⊗ Σ and E ∈ C ⇒ j ⊗ Σ′, the

environments Σ and Σ′ are compatible. Let E be a register environment defined on r1 . . . rn and k

a result. The induced order V = x1 . . . xn on vars(C) is an order satisfying the condition that, for

any environment Σ with E ∈ C ⇒ k ⊗ Σ and i, j with 1 ≤ i < j ≤ n, we have Σ(xi) ≤ Σ(xj).

Let C be configuration with ordered binders, k a result, E a register environment on registers(C),

and L a binding policy for vars(C). Then E is unambiguously accepted by C with respect to L

yielding a result k and a variable environment Σ, written E ∈L C ⇒ k ⊗ Σ, if E ∈L
V C ⇒ k ⊗ Σ

where V is the order over vars(C) induced by E and k.

We now introduce a version of matching automata in which configurations can appear as pseudo-

states. We will use such matching automata during intermediate steps of the compilation algorithm

as “incomplete” results. We will formalize the process of pseudo-state/configuration expansion that

allows us to convert the current incomplete matching automaton into a slightly less incomplete

matching automaton.
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5.5.4 Definition: An incomplete deterministic matching automaton with binders over a tree au-

tomaton A is a tuple (S, K, q, T, X, L), where S is a set of states, q is a start state, T is a set

of transitions, X is a mapping from states to registers, and L is a binding policy as in matching

automata (Definition 5.4.1). Additionally, K is a set of pseudo-states represented by configura-

tions with ordered binders over A. The start state s can be either an ordinary state s ∈ S or a

pseudo-state s ∈ K.

The form of transitions is similar to that of matching automaton transitions except that simple

transitions can have pseudo-states as their destinations and subroutine transitions can refer to

incomplete matching automata. Pseudo-states cannot appear as sources of transitions.

The semantics of transitions is defined as in the matching automaton case, except that, when-

ever a configuration C appears as the destination state of a simple transition, the judgment for

unambiguous configuration acceptance, E ∈L C ⇒ k⊗Σ, is used instead of the judgment for state

acceptance, E ∈ q ⇒ k⊗Σ. Here, for example, is the adaption of the MA-Emp rule for incomplete

matching automata.

t = q(r) : ()
I
→ s ∈ T E(x) = () k ∈ I s ∈ S

E′ = E\r E′ ∈ s ⇒ k ⊗ Σ

E ∈ q ⇒ k ⊗ Σ
(IMA-Emp1)

t = q(r) : ()
I
→ s ∈ T E(x) = () k ∈ I s ∈ K

E′ = E\r E′ ∈L s ⇒ k ⊗ Σ

E ∈ q ⇒ k ⊗ Σ
(IMA-Emp2)

Recalling the example of the previous section, consider this incomplete matching automaton

that may serve as the starting point for generating matching automaton A of Figure 5.1: M1 =

(∅, {C1}, C1, ∅, ∅, L) where L = {x 7→ left, y 7→ left} and C is the following initial configuration:

C1 =

u@ε

a[p1],p3 | a[p2],p4 ∅ 1

a[p1],p4 ∅ 2

For brevity, we display configurations with source patterns instead of tree automaton states; this

allows us to omit discussing the tree automaton corresponding to our example matching problem.

We now refine expansion by label and expansion by state originally defined in Chapter 4 to take

into account binding information.
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5.5.5 Definition: Let A = (S, T, B) be a tree automaton and C a configuration over A consisting

of register-location pairs (r1@π1 . . . rn@πn) and tuples {(s11 . . . s1n, Σ1, j1) . . . (sm1 . . . smn, Σm, jm)}.

Let c be a column in C identified by rc and let p be a target language pattern. An expansion of C

based on c and p, denoted expand(C, c, p), is a configuration C ′ such that

1. if p = (), then

C ′ =

r1@π1 . . . rc−1@πc−1 rc+1@πc+1 . . . rn@πn

sk11 . . . sk1(c−1) sk1(c+1) . . . sk1n Σk1
∪ Σ′

1 jk1

. . .

ski1 . . . ski(c−1) ski(c+1) . . . skin Σki
∪ Σ′

i jki

where {(k1, Σ
′
1) . . . (ki, Σ

′
i)} = {(k, B(t) → πc) | t = skc → () ∈ T} and B(t) → π denotes the

variable environment {x → π | x ∈ B(t)},

2. if p = a[z], y for some label a and registers z, y /∈ registers(C)\{rc}, then

C ′ =

z@0πc y@1πc r1@π1 . . . rc−1@πc−1 rc+1@πc+1 . . . rn@πn

s′11 s′′11 s11 . . . s1(c−1) s1(c+1) . . . s1n Σ1 ∪ Σ′
11 j1

. . .

s′1k1
s′′1k1

s11 . . . s1(c−1) s1(c+1) . . . s1n Σ1 ∪ Σ′
1k1

j1
...

s′m1 s′′m1 sm1 . . . sm(c−1) sm(c+1) . . . smn Σm ∪ Σ′
m1 jm

. . .

s′mkm
s′′mkm

sm1 . . . sm(c−1) sm(c+1) . . . smn Σm ∪ Σ′
mkm

jm

where {(s′i1, s
′′
i1, Σ

′
i1) . . . (s′iki

, s′′iki
, Σ′

iki
)} = {(s′, s′′, B(t) → πc) | t = sic → a[s′], s′′ ∈ T} for

i ∈ {1 . . .m}.

Configuration C1 above can be expanded on its only column using the target language pattern

a[v],w yielding the following residual configuration:

C2 =

v@0 w@1

p1 p3 ∅ 1

p2 p4 ∅ 1

p1 p4 ∅ 2
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Expanding a configuration by all the target language patterns that can be generated from the

tree automaton states of the selected column gives us a procedure for turning a configuration into

an ordinary matching automaton state.

5.5.6 Definition: Let M = (S, K, q0, T, X, L) be an incomplete matching automaton, and let

C ∈ K be a configuration with at least one column. Let c be a column of C corresponding to register

r, and let z and y be some registers such that z, y /∈ registers(C)\{r}. Let {p1 . . . pk} = {() | s ∈

c and s → () ∈ T} ∪ {a[z], y | s ∈ c and ∃ s′, s′′. s → a[s′], s′′ ∈ T}. Let Ci = expand(C, c, pi) and

Ii = results(Ci) for each i ∈ {1 . . . k}. Let q be a fresh matching automaton state such that q /∈ S.

A simple expansion of M with respect to C and c is an incomplete matching automaton in which

the pseudo-state C is replaced by q, the transitions with C as the destination state are replaced

by the corresponding transitions with q as the destination state, and new transitions of the form

q(x) : pi
Ii→ Ci are added for i ∈ {1 . . . k}.

Applying simple expansion to M1 with respect to C1 yields this incomplete matching automaton:

M2 = (S2, K2, q1, T2, X2, L) where:

S2 = {q1}

T2 = {q1(u) : a[v], w
I
→ C2}

X2 = {q1 7→ u}

I = {1, 2}

The following proposition states that simple expansion preserves the semantics of the original

incomplete matching automaton.

5.5.7 Proposition: Let M be an incomplete matching automaton with a matching policy L, let

C be one of M ’s pseudo-states, and let c be one of C’s columns. Let M ′ be the simple expansion

of M with respect to C and c, and let q be a concrete state in M ′ corresponding to pseudo-

state C. Then, for any register environment E, result k, and variable environment Σ, we have

E ∈L C ⇒ k ⊗ Σ iff E ∈ q ⇒ k ⊗ Σ.

Proof: Follows directly from the definitions. Notice that expansion of a configuration with ordered

binders via expand produces a residual configuration with ordered bindings. This guarantees that

an incomplete matching automaton generated by simple expansion is well-defined since all of its

new pseudo-states are configurations with ordered binders. �

The second kind of configuration expansion allows us to expand configurations all of whose

columns contain loop breakers (Section 4.5.3.)
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5.5.8 Definition: Let M = (S, K, q0, T, X, L) be an incomplete matching automaton, and let C ∈

K be a configuration consisting of register-location pairs (r1@π1 . . . rn@πn) and tuples {(s11 . . . s1n,

Σ1, j1) . . . (sm1 . . . smn, Σm, jm)}. Let σ be a result mapping relation {1 7→ j1 . . . m 7→ jm}. Suppose

that column i contains k distinct tree automaton states s1 . . . sk, and let σi be a result mapping

relation that associates a position in this list with the positions of the corresponding state in the

original column. Let Ci be a configuration composed of registers-location pair ri@ε and tuples

{(s1, ∅, 1) . . . (sk, ∅, k)}, and let Ai be the incomplete matching automaton (∅, {Ci}, Ci, ∅, ∅, L). Let

q be a fresh matching automaton state such that q /∈ S.

A subroutine expansion of M with respect to C is an incomplete matching automaton in

which the pseudo-state C is replaced by q, the transitions with C as the destination state are

replaced by the corresponding transitions with q as the destination state, and a new transition

q
σ
→ {A1(r1@π1) 7→ σ1 . . . Ak(rk@πk) 7→ σk} is added.

Incomplete matching automaton M2, for example, can be expanded with respect to C2 yield-

ing matching automaton A displayed in Figure 5.1. In this expansion we assume that subroutine

matching automata A1 and A2 are based on the tree automaton states corresponding to the se-

quences p1,p2 and p3,p4 respectively. Note how σ1 and σ2 are derived from these two sequences

and the positions of the respective tree automaton states in C2’s columns.

The following proposition establishes that subroutine expansion preserves the semantics of the

incomplete matching automaton.

5.5.9 Proposition: Let M be an incomplete matching automaton with a matching policy L, let

C be one of M ’s pseudo-states, and let i be one of C’s columns. Let M ′ be the subroutine expansion

of M with respect to C, and let q be a concrete state in M ′ corresponding to pseudo-state C. Then,

for any register environment E, result k, and variable environment Σ, we have E ∈L C ⇒ k⊗Σ iff

E ∈ q ⇒ k ⊗ Σ.

The third kind of configuration expansion is applicable to configurations with no columns.

5.5.10 Definition: Let M = (S, K, q0, T, X, L) be an incomplete matching automaton and C ∈

K with no columns; i.e., consisting of the empty collection of register-location pairs and a set of

tuples of the form {(Σ1, j1) . . . (Σm, jm)}. Let B be a mapping from results to variable environments

B(k) = minL{Σi | i ∈ {1 . . .m} and ji = k}. Let q be a fresh matching automaton state such that

q /∈ S.

A final expansion of M with respect to C is an incomplete matching automaton in which the

pseudo-state C is replaced by q, the transitions with C as the destination state are replaced by the

corresponding transitions with q as the destination state, and a new transition q → B is added.
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Like the other two kinds of expansion, final expansion preserves the semantics of the underlying

incomplete matching automaton.

5.5.11 Proposition: Let M be an incomplete matching automaton with a matching policy L,

and let C be one of M ’s pseudo-states with no columns. Let M ′ be the final expansion of M

with respect to C, and let q be a concrete state in M ′ corresponding to pseudo-state C. Then, for

any register environment E, result k, and variable environment Σ, we have E ∈L C ⇒ k ⊗ Σ iff

E ∈ q ⇒ k ⊗ Σ.

Proof: Follows directly from the definitions. �

At the top level, the compilation algorithm proceeds as described in Section 4.5. Given a

collection of tree automaton states s1 . . . sm corresponding to the patterns of some match expression,

the algorithm builds an initial configuration containing these states associated with results 1 . . .m

respectively. This configuration has ordered binders since the underlying tree automaton states

have ordered binders and each column in a configuration is associated with a unique result.

The algorithm constructs an incomplete matching automaton consisting of the initial config-

uration as its start state and its only pseudo-state. The algorithm then repeats the following

sequence of steps: it selects one of the remaining pseudo-states in the current incomplete matching

automaton and applies one of the three expansion techniques depending on the structure of the

selected pseudo-state. If it is a configuration with no columns, the algorithm uses final expansion.

If this is the first expansion step and the selected configuration is initial, the algorithm uses simple

expansion with respect to its first column. Otherwise, if the selected configuration has a column

with no loopbreakers, the algorithm uses simple expansion with respect to the first such column.

Otherwise, the algorithm applies subroutine expansion. The algorithm proceeds in this way until

no more pseudo-states remain.

Like in Section 4.5, we can show that the above algorithm terminates on all inputs. Combining

this termination property with properties 5.5.11, 5.5.7, and 5.5.9, we can conclude that the algo-

rithm generates a deterministic matching automaton equivalent to the original matching problem

and implementing the given matching policy.

5.6 Related Work

The starting point of our research was the treatment of ambiguous pattern matching in XDuce [35,

36, 37]. Different implementations of XDuce chose one of the two approaches with respect to disam-

biguation: one prohibiting ambiguous patterns altogether; the other using the first match semantics
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in which repetition patterns are encoded in terms of recursive patterns and union. The former ap-

proach is not very practical since most patterns are naturally ambiguous and rewriting them into

unambiguous patterns would result in bloated code. The disambiguation semantics used in the

latter approach [30] is not declarative and is difficult to understand. Unlike the disambiguation

semantics proposed in this chapter, XDuce’s approach does not provide an easy way of predicting

the outcome of pattern matching just from looking at the overall structure of the pattern.

XDuce’s implementation is not concerned with the run-time efficiency of its pattern matcher.

In particular, XDuce employs a backtracking interpreter that does not guarantee linear pattern

matching. XDuce’s type checker, however, does a good job of inferring precise types for pattern

variables reflecting the first match disambiguation semantics in the type inference engine. Xtatic,

on the other hand, does not support type inference.

CDuce [19, 4] also features the first match disambiguation semantics. In additional to simple

variable binding operators as described here, CDuce supports more sophisticated binders that

may appear inside repetition and comprehension patterns. As a result, CDuce’s implementation

binding is quite intricate.

In a related development [18], Alain Frisch formalizes CDuce’s disambiguation approach in

the framework of pattern matching with heterogeneous values rather than homogeneous element

sequences. More specifically, Frisch shows how a flat sequence value can be matched—in linear

time—against a pattern producing as a result a structured value reflecting the disambiguation

choices made during pattern matching.

Probably the most closely related project is described by Ville Laurikari [49]. He presents a

linear one-pass pattern matching algorithm that implements the POSIX disambiguation semantics

for strings. The formalism described in this work is developed for string regular expression matching

and subsequent addressing of the matched fragments. As such, it is not directly applicable to our

problem of compiling match expressions.

Stijn Vansummeren gives a thorough overview [65] of unambiguous pattern matching. He for-

mally defines the POSIX and first/longest match disambiguation semantics both for strings and for

trees and presents sound and complete type inference algorithms for all four situations. His work

focuses on type inference and is not concerned with efficient pattern matching algorithms.
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Chapter 6

Type-Based Optimization

A significant challenge in compiling languages with regular patterns is understanding how to trans-

late regular pattern matching expressions into a low-level target language efficiently and compactly.

One powerful class of techniques that can help achieve this goal relies on using static type infor-

mation to generate optimized pattern matching code. The work described here aims to integrate

type-based optimization techniques with the high-performance, but type-insensitive, compilation

methods described in Chapter 4.

A simple example shows the benefits of using type information during compilation. Figure 6.1

shows how a high-level source program (a) can be compiled into a low-level target program (b)

without taking the input type into account. The first source pattern, Any,a[], matches sequences

composed of an arbitrary prefix matching Any followed by an a-tagged element with the empty

contents matching a[]. In a low-level target language, this pattern can be implemented by a

recursive function that walks the input sequence from the beginning to the end and checks the tag

and the contents of the last element. This is precisely the behavior of the procedure in Figure 6.1(b).

The second clause of the case expression, for example, uses the pattern a[x],y to check whether

the first element in the input sequence is tagged by a; then, it employs two nested case expressions

to ensure that both the contents of the first element and the rest of the sequences are empty. If

either is non-empty, the same procedure is invoked recursively on the rest of the input sequence.

However, suppose we know that the input type to the match expression is T = a[],(a[]|b[]);

i.e., only two-element sequences whose first element is tagged by a and has the empty contents, and

whose second element is tagged by either a or b and also has the empty contents can be used as

pattern matching input. The program shown is Figure 6.1(b) works correctly for this input type,

but we can do much better. First, there is no longer any need for the recursive loop, since the input
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fun f(Any x) : Any =

match x with

| Any, a[] → 1

| Any → 2

fun f(Any x) : Any =

case x of

| () → 2

| a[x],y →
case x of

| () →
case y of

| () → 1

else f(y)

else f(y)

| ~[_],y → f(y)

fun f(T x) : Any =

case x of

| ~[_],y →
case y of

| a[_],_ → 1

else 2

(a) (b) (c)

Figure 6.1: A source program (a); an equivalent target program (b); a target program for a restricted
input type T = a[],(a[]|b[]) (c)

sequence is known to contain exactly two elements, and we can simply skip the first element and

examine the second. Furthermore, it is unnecessary to check whether the contents of the second

element is empty, since this is prescribed by the input type. The optimal (in terms of both size

and speed) target program corresponding to input type T is shown in Figure 6.1(c).

The contributions of this chapter are as follows:

• In Section 6.2, we present the efficient type-based compilation algorithm and some pre-

liminary measurements that demonstrate the algorithm’s effectiveness (compared with the

type-insensitive compilation method).

• In Section 6.3, we introduce and justify an optimality criterion that lets us formally compare

the efficiency of pattern matching code in target language programs. In Section 6.4, we

demonstrate that optimal compilation is possible, in principle, for matching problems with

non-recursive patterns, by presenting a refinement of the above algorithm that produces

optimal target code for this case. (The refined algorithm is too inefficient for use in a real

compiler; finding a lower bound on the complexity of optimal compilation is left as future

work.) In Section 6.5, we generalize this algorithm to the case with recursive patterns.

Section 6.6 discusses related work, in particular the non-uniform automata [16] used in Frisch’s

implementation of CDuce [4].
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6.1 Background

The purpose of this section is to recapitulate some of the essential definitions from previous chapters.

It talks about values, regular patterns, tree automata, matching automata, and configurations.

6.1.1 Values

A value is either the empty sequence () or a non-empty sequence of elements, a1[v1] . . . ak[vk],

each consisting of a label and a nested child value. Values represent fragments of XML documents.

For example, the XML fragment <person><name><john/> </name><age><two/></age></person>

is encoded by the value person[name[john[]],age[two[]]].

In the rest of the chapter, it will be convenient to view values as binary trees. The empty

sequence value () corresponds to the empty binary tree ε. A non-empty sequence value a[v1],v2

corresponds to the labeled binary tree a(t1, t2) whose root label and left and right subtrees cor-

respond to the label of the first element, the child value of the first element, and the rest of the

sequence respectively.

We use environments mapping variables to values. We write E[v1/x, v2/y] to denote an envi-

ronment mapping x to v1 and y to v2 and agreeing with E on all other variables and E\y to denote

an environment which is undefined on y and otherwise equal to E.

It is possible to determine the outcome of many matching problems without traversing the whole

input value. The fewer the number of nodes that must be inspected to arrive at the result, the

more efficient the corresponding matching automaton can be. To reason about such concerns more

easily, we introduce extended values whose nodes are labeled by + or − to indicate whether they

are traversed or skipped.

An annotated value can be of the form ε∗ or a∗(v1, v2) where v1 and v2 are annotated subvalues,

l is an element label, and ∗ ∈ {+,−}. We say that a value is annotated consistently, if for every

node of the form a−(v1, v2), both v1 and v2 have all their nodes annotated by −. A value is fully

traversed if all its nodes are annotated by +. The erasure of an annotated value v written |v| is

an ordinary value of the same structure with all the annotations eliminated.

Let v1 and v2 be consistently annotated values. We say that v1 is less traversed than v2, written

v1 ≤ v2, if |v1| = |v2| and, for any node in v1 labeled by +, the corresponding node in v2 is also

labeled by +. We say that v1 is strictly less traversed than v2, written v1 < v2, if v1 ≤ v2 and

v1 6= v2.

An annotated value environment is a mapping from variable names to annotated values. An

environment is fully traversed if its range contains only fully traversed values. The erasure operation
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on annotated value environments |E| producing an ordinary environment is defined pointwise. The

< and ≤ relations on annotated values are extended point-wise to annotated environments.

6.1.2 Regular Patterns

Regular patterns are described by the following grammar:

p ::= () | a[p] | p1, p2 | p1|p2 | p∗ | Any | X

These denote the empty sequence pattern, a labeled element pattern, sequential composition, union,

repetition, wild-card, and a pattern variable. Pattern variables are introduced by top-level, mutually

recursive declarations of the form def X = p. Top-level declarations induce a function def that maps

variables to the associated patterns (e.g. the above declaration implies def(X) = p.)

The pattern membership relation v ∈ p is described by the following rules: first, () ∈ (); second,

a[v] ∈ a[p] if v ∈ p; third, v ∈ p∗ if v can be decomposed into a concatenation of v1 . . . vn with each

vi ∈ p; fourth, v ∈ p1, p2 if v is the concatenation of two sequences v1 and v2 such that v1 ∈ p1 and

v2 ∈ p2; fifth, v ∈ Any for any v, and finally, v ∈ p1|p2 if v ∈ p1 or v ∈ p2.

6.1.3 Tree Automata

A non-deterministic top-down tree automaton is a tuple A = (S, T ), where S is a set of states and

T is a set of transitions consisting of empty transitions of the form s → () and label transitions of

the form s → a[s1], s2, where s, s1, s2 ∈ S and a is a label. The acceptance relation on values and

states, denoted v ∈ s, is defined by the following rules:

s → () ∈ T

() ∈ s
(TA-Emp)

s → a[s1], s2 ∈ T v1 ∈ s1 v2 ∈ s2

a[v1], v2 ∈ s
(TA-Lab)

From now on, we will assume that all the regular patterns in the source program have been

converted to states of one global tree automaton, and we will use these states in place of the

corresponding regular types and patterns.

6.1.4 Matching Automata

We now introduce an updated view of matching automata. Two aspects differentiate the following

definition from the one appearing in Section 4.4. First, the formalism is adjusted for annotated

values. Second, to simplify the presentation of this chapter’s material, we associate variables with
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states rather than transitions. While in Chapter 4 matching automaton transitions had destination

pairs containing variables and destination states, here, transitions only have destination states, but

each state is paired with its own variable. (A useful consequence of this change is that the judgment

describing the semantics of states will have exactly the same form as the judgment describing the

semantics of configurations.)

6.1.1 Definition: A matching automaton is a tuple (Q, qs, V, R), where Q is a set of states, qs is

a start state, V is a mapping from states to variables, and R is a set of transitions. There are two

kinds of transitions: simple and subroutine. They have the following structure:

q(x) : p
I
→ {q1 . . . qm} (simple)

q(x) : A
σ
→ {q1 . . . qm} (subroutine)

Both types of transitions have a source state q—associated with some variable x via the mapping

V —and a set of destination states {q1 . . . qm}. A simple transition contains a target language

pattern p—which can be of the form () or a[x], z—and a set of integer results I . A subroutine

transition contains a subroutine automaton name A and a binary relation σ over results.

Let M be a mapping of names to matching automata, and let A = (Q, qs, V, R) be a matching

automaton. The acceptance relation on annotated environments, states, and results, denoted E ∈

q ⇒ k, is defined by the following rules:

q(x) : ()
I
→ {q1 . . . qm} ∈ R E(x) = ε+ k ∈ I

E′ = E\x ∀i ∈ {1 . . .m}. E′ ∈ qi ⇒ k

E ∈ q ⇒ k
(MA-Emp)

q(x) : a[y], z
I
→ {q1 . . . qm} ∈ R E(x) = a+(v1, v2) k ∈ I

E′ = (E\x)[v1/y, v2/z] ∀i ∈ {1 . . .m}. E′ ∈ qi ⇒ k

E ∈ q ⇒ k
(MA-Lab)

q(x) : B
σ
→ {q1 . . . qm} ∈ R E ∈ M(B) ⇒ j (j, k) ∈ σ

E is fully traversed E ′ = E\x ∀i ∈ {1 . . .m}. E′ ∈ qi ⇒ k

E ∈ q ⇒ k
(MA-Sub)

An annotated environment E is accepted by matching automaton A with result k, written E ∈

A ⇒ k, if it is accepted by the automaton’s start state: E ∈ qs ⇒ k.
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A concrete implementation of pattern matching deals with ordinary rather than annotated

values. Initially, we intended annotations to be returned as a result of a matching automaton run

indicating which parts of the unannotated input value were inspected. We discovered, however,

that we can develop a simpler formalism with annotations as part of input values. So, when we say

that one automaton accepts a+(ε+, ε+) and another a+(ε−, ε+), we mean that they both accept

the same sequence a[] but the former performs more inspections than the latter.

The rule MA-Emp says that a state q accepts an environment E yielding a result k if: 1) q is

the source state for a transition of the form q(x) : ()
I
→ {q1 . . . qm}; 2) the variable x associated with

q contains the empty sequence ε+, and 3) each destination state accepts the environment obtained

from E by removing x’s binding yielding the same result k.

The rule MA-Lab describes how a state can accept an environment if the associated variable

contains a non-empty sequence value. It is similar to MA-Emp except that the environments used

with the destination states are extended with bindings of fresh variables y and z to the left and

right subtrees of the input.

For an environment to be accepted by a state with the help of a subroutine transition, it has to

be fully traversed. The intent of this requirement is that once a subroutine matching automaton

is invoked, we do not attempt to track which nodes are touched by the subroutine automaton,

and it is assumed that any part of any input value that has not been processed yet by the current

matching automaton may be inspected. According to MA-Sub, an environment is accepted by a

state q yielding a result k if: 1) there is a subroutine transition of the form q(x) : B
σ
→ {q1 . . . qm},

the subroutine matching automaton accepts E yielding a result j such that (j 7→ k) is in the

transition’s result mapping relation σ, and the destination pairs are checked as in MA-Emp.

The result mapping relations in subroutine transitions serve two purposes. First, they allow us

to reduce the number of subroutine automata since we can avoid building isomorphic automata that

only differ in their indices. Second, and more importantly, they are essential for creating matching

automata that represent non-backtracking target programs.

Figure 6.2 shows a source program, an equivalent matching automaton, and a corresponding

target program. Matching automaton states are depicted with their associated variables inside and

their names above the circle. Observe the correspondence between the matching automaton and

the target program: states correspond to case expressions and transitions to case clauses.

6.1.5 Configurations

During execution of a matching automaton, the current state is faced with an environment mapping

variables to values. The following data structure will help us describe the types of values stored in
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fun f(T x) : Any =

match x with

| a[a[]], b[] → 1

| a[b[]], c[] → 2

| a[c[]], b[] → 3

x

q1

z

q2
y

q3

{1,2,3}

a[y],z

c[_],_

b[_],_

c[_],_

a[_],_

{2}

{1,3}

{3}

{1}

fun f(T x) : Any =

case x of

| a[y],z →
case z of

| b[_],_ →
case y of

| a[_],_ → 1

| c[_],_ → 3

| c[_],_ → 2

(a) (b) (c)

Figure 6.2: Matching automaton illustration: a source program (a); an equivalent matching au-
tomaton (b); an equivalent target program (c); input type T = a[a[]],b[] | a[b[]],c[] |

a[c[]],b[]

the environment and will be used in the matching automaton generation algorithm.

6.1.2 Definition: A configuration over a tree automaton comprises a tuple of distinct variables

(x1 . . . xn) and a set of tuples {(s11 . . . s1n, j1) . . . (sm1 . . . smn, jm)}, each associating a collection of

the tree automaton’s states to a result. We depict a configuration by a matrix as follows:

C =

x1 . . . xn

s11 . . . s1n j1

. . .

sm1 . . . smn jm

Two auxiliary functions are defined on configurations: vars(C) = {x1 . . . xn} and results(C) =

{j1 . . . jm}. We say that an ordinary environment E is accepted by C yielding a result jr, written

E ∈ C ⇒ jr, if E(xi) ∈ sri for all i ∈ {1 . . . n}. An environment E is accepted by a configuration

C, written E ∈ C, if there exists a result j such that E ∈ C ⇒ j.

A configuration describes the work that remains to be done to determine the outcome of pattern

matching in a match expression. The variables contain subtrees that have yet to be examined. The

integer results correspond to the different clauses of the match expression.

The notions of boolean operations and subtyping for regular types and tree automaton states

can be extend to configurations. Let C and C0 be a configuration and an input configuration,

respectively. For example, we say that C ′ = C∩C0 is a configuration such that, for any environment

E, if E ∈ C0 and E ∈ C ⇒ j, then E ∈ C ′ ⇒ j.

Unlike the acceptance relation for matching automaton states, the acceptance relation for con-

figurations is defined with respect to ordinary rather than annotated environments. This is because
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fun f(T1 x) : Any =

match x with

| Any, a[] → 1

| Any → 2

fun f(T2 x) : Any =

match x with

| a[b[]],a[Any] → 1

| a[Any] → 2

(a) (b)

x

a[],a[] 1
a[],(a[]|b[]) 2

x y

() a[] 1
() a[]|b[] 2

y

a[] 1
a[]|b[] 2

x

a[b[]],a[Any] 1
a[Any] 2

x y

b[] a[Any] 1
Any () 2

(c) (d) (e) (f) (g)

fun f(T1 x) : Any =

case x of

| a[x],y →
case y of

| a[x],y → 1

| b[x],y → 2

fun f(T2 x) : Any =

case x of

| a[x],y →
case y of

| a[x],y → 1

| () → 2

(h) (i)

Figure 6.3: Two source programs (a, b); configurations used in code generation (c - g); and the
obtained target programs (h, i). Input types are: T1 = a[],(a[]|b[]) and T2 = (a[b[]],a[Any])

| a[Any]

configuration acceptance is expressed in terms of tree automaton state acceptance, and tree au-

tomaton states, unlike matching automaton states, traverse input values fully.

6.2 Xtatic Pattern Compiler

This section presents an efficient type-based compilation algorithm that is used in the current

Xtatic compiler. It outlines a general compilation strategy of starting with an initial configuration

and gradually expanding it into a completed matching automaton. We describe an effective heuristic

for selecting a column on which expansion is based.

The second part of this section summarizes the results of performance experiments for several

Xtatic programs. We ran them in the current implementation of Xtatic, recording the size and

running time of the generated target programs.
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6.2.1 Heuristic Algorithm

The goal of the compiler is to construct a matching automaton that implements pattern matching

in a given match expression.

It starts with an initial configuration containing the patterns of the match expression intersected

with the input type. From this point on, the input type is not taken into account. Figures 6.3(c)

and 6.3(f) are examples of initial configurations for the source programs shown in (a) and (b).

A configuration describes the work that must still be done before the outcome of pattern match-

ing can be determined. The variables contain subtrees that have yet to be examined. Pattern

matching will succeed with the result given at the end of some row if all of the row’s patterns

match the subtrees stored in the corresponding variables.

When faced with a configuration, the compiler has a choice of which subtree (i.e., which column)

to examine next. We use the following heuristic. Let P be a set of patterns. A partition of P into

a number of subsets is disjoint if for any two patterns p1,p2 ∈ P, if p1 ∩ p2 6= ∅, then both p1 and

p2 are in the same subset. We say that the branching factor of a column is the number of subsets

in the largest disjoint partition of the column’s patterns. The maximal branching factor heuristic

then tells us to select the column with the largest branching factor. The motivation behind this

heuristic is to arrive at single-result configurations as fast as possible. Such configurations need no

further pattern matching, since the result has already been determined.

Figure 6.3 shows two examples. In the first one, the initial configuration (c) contains patterns

matching non-empty a-labeled trees. From this configuration, the compiler generates the pattern

a[x],y of the outer case and proceeds to the next configuration (d). The first column of this con-

figuration is then eliminated by the optimization technique described in Section 4.5.4 The resulting

configuration (e) is used to generated the clauses of the inner case. In the second example, we get

to employ the maximal branching heuristic for configuration (g). The branching factor of its first

column is one, since its patterns are overlapping; the branching factor of the second column, on

the other hand, is two. Hence, the inner case in Figure 6.3(i) examines y rather than x.

Further optimizations are possible. The pattern variables that are not referenced can be replaced

by _. The last case clause can be replaced by a default else clause if its pattern does not bind

any variables and if there is not already a default clause. A label in a pattern can be replaced

by the wild card ~ if the case has neither a default clause nor any other label pattern. Applying

these simplifications to the first program (h), for example, results in the optimal program shown

in Figure 6.3(a).

Since our heuristic selects the second column of configuration (e), the generated target program

is able to skip the subtree stored in x completely. This demonstrates an advantage of our approach

98



over the strictly left-to-right type propagation approaches used in some versions of XDuce and

CDuce.

For some examples the heuristic approach falls short of optimality (both informally and in the

precise sense defined in Section 6.3). Consider this configuration:

x y z

a[] a[] a[]|b[] 1

a[]|b[] b[] a[]|b[] 2

a[]|b[] a[]|b[] b[] 3

As we will see in Section 6.4, it is more beneficial to examine the y and z columns before

examining the x column. The heuristic method defined above, however, considers all three columns

equal, since they all have a branching factor of 1. So, the heuristic algorithm can potentially

generate a suboptimal matching automaton.

Our experience shows that the maximal branching factor heuristic results in high-quality target

code for most source programs, since intersection of the input type with match patterns and the sim-

ple configuration optimizations described above seem to account for most type-based optimization

opportunities.

6.2.2 Experiments

To give a sense of the impact of type-based optimization, we compare the performance of three

Xtatic programs with and without type-based optimization. The first, addrbook, is a small 60

line application that filters an address book and converts the result into a phone book format.

The default input for this program is a 31Kb file containing 1,000 address records. We iterate

the processing part of the program 10 times to obtain stable results. The second program, cwn,

converts raw XML newsgroup data into a formatted HTML presentation. The source program

contains 400 lines of code; the default input is a 7.7Kb file with seven newsgroup articles. This

program is also iterated 10 times. The third program, bibtex, is a 700 line program that reads a

bibtex file formatted as XML, filters and sorts its contents, and outputs the result as an HTML

page. The default input for bibtex is a 560Kb file with approximately 1,500 bibtex entries. This

processing step of this program is run only once.

Note that Xtatic’s compiler is quite efficient even when its type-based optimization is turned

off. It employs a variety of other optimizations that go a long way toward producing efficient

code. In fact, a previous version of Xtatic’s compiler that did not have type-based optimization

compared favorably with several other XML processing languages [21].
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addrbook cwn bibtex
no tb tb no tb tb no tb tb
710 569 19200 17600 35300 26800

addrbook cwn bibtex
no tb tb no tb tb no tb tb

n = 1 13 12 300 290 3100 900
n = 2 17 16 420 390 4000 1900
n = 3 23 21 660 510 4900 2900
n = 4 31 28 640 590 11500 4000
n = 5 39 35 770 690 27400 20300

(a) (b)

Figure 6.4: Size (a) and speed in ms (b) of three source programs with and without type-based
optimization; n is a size factor w.r.t. the default input size

Figure 6.4 displays our measurements. Table (a) lists sizes of the output programs in terms

of the number of nodes in their ASTs. Table (b) contains running times of the programs for the

default input as well as duplicated inputs whose sizes are factors 2, 3, 4, and 5 of the default

input’s size. Both size and running time measurements are listed for the case when the program

was compiled without (“no tb”) and with (“tb”) type-based optimization as described above.

Overall, these examples illustrate a steady benefit of type-based optimization. It gives us a 10%

to 25% improvement in the size of the target program and a similar—or in case of bibtex even

more dramatic—improvement in the running time. Let us take a closer look at these examples

individually.

The addrbook program demonstrates a modest improvement in size and speed when compiled

with type-based optimization. Figure 6.5(a) shows a slightly simplified version of addrbook’s core

fragment. The regular types on the left describe the program’s input. Each address book en-

try contains a person element with a Name, an optional Tel, and a list of Emails. Function

mkTelbook inspects each Person entry and checks whether it has a Tel subelement. Just using

simple configuration optimizations, the Xtatic compiler generates a fairly efficient output code for

this program(b). For instance, the produced program does not check the outer person label for

each input record since from the match patterns alone it can be seen that no other label can be

expected in this position. The only benefit of type-based analysis here is the ability to infer that

the first child of a person element must be a Name, and, therefore, that there is no need to check

for the presence of the name label (c). This is precisely what accounts for the better measurements

when addrbook is compiled with type-based optimization.

In the case of cwn, type-based optimization matters less. The only difference of any significance

occurs in a function that performs a character-for-character traversal of its input in order to locate

a particular substring. Either a match is found in the beginning of the input or the first character
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def Name = name[pcdata]

def Tel = tel[pcdata]

def Email = email[pcdata]

def Person = person[Name,Tel?,Email*]

fun mkTelbook (Person* ps) : Any =

match ps with

| person[name[Any],tel[Any],Any], Any

→ 1

| person[Any], Any → 2

| () → 3

(a)

fun mkTelbook (Person* ps) : Any =

case ps of

| () → 3

| ~[x],y →
case x of

| name[z],w →
case w of

| tel[u], _ → 1

else 2

else 2

fun mkTelbook (Person* ps) : Any =

case ps of

| () → 3

| ~[x],y →
case x of

| ~[z],w →
case w of

| tel[u],_ → 1

else 2

(b) (c)

Figure 6.5: A fragment from addrbook example: source program (a); corresponding target language
code generated without (b) and with (c) type-based optimization

is skipped and the same process is repeated from the next character. Since the input type to this

function is pcdata—a sequence of character-labeled elements without attributes—there is no need

to check for the absence of attributes in every element.

The bibtex program gives us the most revealing example of the benefits of type-based opti-

mization. Most of the improvement arises from function do xml that examines the current entry

in a bibtex document and determines its type. Figure 6.6(a) shows the regular types associated

with this program. There are fourteen kinds of bibtex entries described by regular type entry.

The structure of each kind of entry is described by the corresponding regular type (article e.g.)

Figure 6.6(b) contains a skeleton of do xml—a dispatch function that branches to different subtasks

depending on the kind of the current entry.

Because of the default fall-through case in the match expression, a naive compilation strategy

that does not take the input type into account results in a huge target program that meticulously

checks whether the structure of the current element completely matches one of the bibtex entry

types. In the case of an article element, for example, the target program checks whether its

contents starts with an author element containing pcdata and followed by a bib title, journal,

and year elements, and then potentially followed by a volume element etc. Using the input type
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def article =

article[author, bib title, journal,

year, volume?, number?, pages?,

month?, note?, fields]

def author = author[pcdata]

def bib title = bib title[pcdata]

def entry =

article | book | booklet | conference |

inbook | incollection | inproceedings |

manual | mastersthesis | misc |

phdthesis | proceedings | techreport |

unpublished

(a)

fun do xml(entry x) : Any =

match x with

| article → 1

| inproceedings → 2

| unpublished → 3

| incollection → 4

| phdthesis → 5

| techreport → 6

| book | inbook | manual

| mastersthesis | proceedings → 7

| Any → 8

fun do xml(entry x) : Any =

case x of

| article[_],_ → 1

| inproceedings[_],_ → 2

| unpublished[_],_ → 3

| incollection[_],_ → 4

| phdthesis[_],_ → 5

| techreport[_],_ → 6

| book[_],_ → 7

| inbook[_],_ → 7

| manual[_],_ → 7

| mastersthesis[_],_ → 7

| proceedings[_],_ → 7

else 8

(b) (c)

Figure 6.6: A fragment from bibtex example: source program types (a); source language processing
function (b); optimal corresponding target program compiled with type-based optimization (c)

information, however, the compiler realizes that, since only valid entry elements can be given as

arguments to do xml, and since each entry type has a distinct outer label, checking that outer label

is sufficient to determine the type of the entry. Figure 6.6(c) shows a compact and efficient target

program that is the result of compiling do xml with type-based optimization.

6.3 Optimality Criterion

We have stated in Section 6.2.1 that Xtatic’s heuristic algorithm is not always “optimal”. What

exactly did we mean by that? This section addresses this by presenting a formal view of optimality.

We start by observing that “full optimality”—i.e., running at least as fast as any other matching

automaton on every input—is not possible. We then define an optimality criterion according to

which a program is optimal if there does not exist an equivalent strictly more efficient program.

We conclude this section by discussing several limitations of the proposed criterion.
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fun f(T x) : Any =

match x with

| a[b[]], c[] → 1

| a[b[]], d[] → 2

| a[d[]], c[] → 3

fun f(T x) : Any =

case x of

| ~[y], z →
case y of

| b[_], _ →
case z of

| c[_], _ → 1

else 2

else 3

fun f(T x) : Any =

case x of

| ~[y], z →
case z of

| c[_], _ →
case y of

| b[_], _ → 1

else 3

else 2

(a) (b) (c)

Figure 6.7: Perfect optimality is unreachable: a source program (a) with input type T = a[b[]],c[]

| a[b[]],d[] | a[d[]],c[]; a target program that is fast for the third case (b); a target program
that is fast for the second case (c)

We now turn to a formal discussion of what it means for one target program (or matching

automaton) to be better than another one.

Ideally, we would like to perform the minimal number of tests for any input value. Figure 6.7

demonstrates that this is not always possible. The source program shown in Figure 6.7(a) contains

a match expression with three clauses. The clause patterns match sequences starting from a-labeled

elements. To determine the outcome, the pattern matcher can first investigate the contents of the

first element—as in Figure 6.7(b)—or else look at the rest of the sequence—as in Figure 6.7(c). In

the former case, two tests are required to determine results 1 and 2, but only one test to determine

result 3. In the latter case, it takes two tests to determine outcomes 1 and 3 and one to determine

result 2. It is not possible for any target language pattern matcher to be as fast as the first program

for the input matching the third clause and as fast as the second program for the input matching

the second clause.

Consequently, we must settle for near-optimality and, for any pattern matching task, try to

build a matcher that is not clearly bested by any other but may not be necessarily the best one.

First, we recall the formalities of matching automata.

Comparing matching automata is only meaningful with respect to the type of the input values:

matching automaton A may be more efficient than matching automaton B for some set of values

but not more efficient—or even not equivalent—for a larger set of values. Intuitively, one matching

automaton A is more efficient than another matching automaton B if it needs to traverse a smaller

or equal part of an input value to arrive at the same result. This must be the case for any input—A

cannot be more efficient than B if it requires more traversal even for one value.

6.3.1 Definition: Let M1 = (Q1, q1, V1, R1) and M2 = (Q2, q2, V2, R2) be matching automata,

103



fun f(T x) : Any =

match x with

| a[a[]], b[]|c[] → 1

| a[b[]], c[] → 2

| a[c[]], b[] → 3

fun f(T x) : Any =

case x of

| ~[y],z →
case z of

| b[_],_ →
case y of

| a[_],_ → 1

| c[_],_ → 3

| c[_],_ →
case y of

| a[_],_ → 1

| b[_],_ → 2

fun f(T x) : Any =

case x of

| ~[y],_ →
case y of

| a[_],_ → 1

| b[_],_ → 2

| c[_],_ → 3

(a) (b) (c)

Figure 6.8: An illustration of optimality criterion: a source program (a) with input type T =
(a[a[]], b[]|c[]) | a[b[]],c[] | a[c[]],b[]; a suboptimal target program (b); an optimal
target program (c)

and let C be an input configuration. We say that q ∈ Q1 is more efficient than q′ ∈ Q2 for C,

written C ` q ≤ q′, if, for any E such that |E| ∈ C and E ∈ q′ ⇒ j, there exists E′ ≤ E such that

E′ ∈ q ⇒ j. We say that q is strictly more efficient than q′ for C, written C ` q < q′ if C ` q ≤ q′

and, for some E such that |E| ∈ C and E ∈ q ⇒ j, it is not the case that E ∈ q′ ⇒ j. We say that

M1 is more efficient than M2 for C, written C ` M1 < M2, if C ` q1 < q2.

Consider the example in Figure 6.8. It shows a source program and two possible translations

into the target language. The target program in Figure 6.8(b) is suboptimal. It tests the right

subtree of the input value, and, regardless of the result, inspects the left subtree as well. The

program in Figure 6.8(c) is better—it never inspects the right subtree. This program is more

efficient than the suboptimal one since, for any annotated value accepted by the latter, the former

accepts a less traversed value producing the same result. It is strictly more efficient since, for

example, a+(b−(ε−, ε−), c+(ε−, ε−)) is accepted by it but not by the suboptimal program.

Note that the proposed measure of optimality does not precisely reflect the amount of work

performed by a matching automaton. Consider Figure 6.9, which shows a source program and two

ways of compiling it to the target language. Target program (b) starts by inspecting the right

subtree of the input; if it finds a c leaf, it can select the first match clause; otherwise, it checks

whether the root of left subtree is labeled by b, and selects the first or the second clause depending

on that. Target program (c) checks only the left subtree: if its root is b-labeled, it selects the first

clause; otherwise the second. The latter program performs fewer than or the same number of node

tests as the former for any input. It is not, however, any more efficient according to our definition

104



fun f(T x) : Any =

match x with

| a[b[Any],Any],

a[Any] → 1

| a[Any],a[b[d[]]]

→ 2

fun f(T x) : Any =

case x of

| ~[y],z →
case z of

| ~[w],_ →
case w of

| c[_],_ → 1

else

case y of

| b[_],_ → 1

else 2

fun f(T x) : Any =

case x of

| ~[y],_ →
case y of

| b[_],_ → 1

else 2

(a) (b) (c)

Figure 6.9: Optimality criterion limitation: a source program (a); with input type T = (a[b[]],

a[b[c[]]]) | (a[Any], a[b[d[]]]); an optimal target program (b); a better optimal target pro-
gram (c)

since, for the values matching a[Any], a[b[c[]]], program (b) completely skips the left subtree,

while program (c) inspects its root node.

A more precise measure of optimality would involve counting the number of node tests performed

by a matching automaton regardless of where in the input value they occur. According to such a

measure, program (c) of Figure 6.9 would be more efficient than program (b). It is difficult, however,

to reason about this kind of a measure. For instance, performing various boolean operations such

as intersection and difference on regular patterns does not shed any light on how many node tests

may be necessary to match a value against them. We leave investigation of this kind of optimality

measures for future work.

6.4 Optimal Compilation for Finite Patterns

Is it possible to generate an optimal matching automaton for a given match expression? This section

positively answers this questions for a particular class of matching problems—those involving finite

(non-recursive) patterns. Building on the intuitions given in Section 6.2.1—where we informally

presented Xtatic’s not-always-optimal pattern compiler—we give a formal account of key aspects

of the optimal algorithm.

In Section 6.4.1, we start by introducing an extended version of matching automata—incomplete

matching automata—in which pairs of configurations can appear as pseudo-states. We then for-

malize the process of configuration expansion, briefly sketched in Section 6.2.1, and show how using

expansion, we can convert a pseudo-state into an ordinary matching automaton state—thus going
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from the current incomplete matching automaton to a slightly less incomplete matching automa-

ton. Iterating the expansion step will eventually lead to a conventional matching automaton which

implements the original pattern matching task.

Section 6.4.2 pays special attention to a particular way of selecting the expansion column for

the current pair of configurations during each iteration of the algorithm. The proposed method is

precisely what ensures optimality of the generated matching automata. Section 6.4.3 concludes by

establishing the optimality property.

6.4.1 Incomplete Matching Automata

First, let us introduce an abridged form of configurations without the result column. We will refer

to such configurations as input configurations. They can be used as a precise specification of the

input type for multiple values. Note that an input configuration gives us more information than a

simple type assignment. Consider the following configuration:

y z

T1 T2

T3 T4

It specifies inputs in which y and z can have respectively either types T1 and T2 or types T3 and

T4. Compare that with the type assignment {y 7→ T1|T3, z 7→ T2|T4}, which, in addition to the

above two scenarios, allows y to be in T1 while z is in T4 and y in T3 while z is in T2.

Now, we are ready to extend matching automata with pseudo-states. Each pseudo-state is a pair

of configurations—one ordinary describing the remaining tests necessary to determine the outcome

of pattern matching; the other an input configuration describing the type of the input environment.

The initial state can be either a conventional state or a pseudo-state configuration pair.

6.4.1 Definition: An incomplete matching automaton is a tuple (Q, K, i, V, R), where Q, V , and

R are a set of states, a mapping from states to variables, and a set of transitions respectively

just as in matching automata (Definition 6.1.1). Additionally, K is a set of pairs of configurations

constituting pseudo-states, and i is the initial state which is either an ordinary state i ∈ Q or a

pseudo-state i ∈ K.

The form of transitions is similar to that of matching automaton transitions except that simple

transitions can have pseudo-states in addition to states as their destinations. Pseudo-states cannot

appear as sources of transitions.

The semantics of simple transitions is defined as in the matching automaton case except that

whenever a configuration pair C, D appears in the destination set of a transition, the judgment for
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x

~[a[Any]],Any 1
Any,c[] 2

~[c[],Any],Any 3

C1

x

q1

{1,2,3}

a[y],z
y z

a[Any] Any 1
Any Any,c[] 2

c[],Any Any 3

C2

x

q1

z

q2

{1,2,3}

a[y],z

b[_],_

{1,3}

{2}

c[_],_ y u v

Any () () 2
Any Any Any,c[] 2

y u v

a[Any] Any Any 1
c[],Any Any Any 3

C3

C4

(a) (b) (c)

x

q1

z

q2
y

q3

{1,2,3}

a[y],z

c[_],_

b[_],_

c[_],_

a[_],_

{2}

{1,3}

{3}

{1}

y z

() Any 3

y z

Any () 1

C5

C6

(d)

Figure 6.10: An illustration of a gradual expansion of an input configuration into a matching
automaton

configurations |E| ∈ C ⇒ k is used instead of the judgment for states E ∈ q ⇒ k:

q(x) : ()
I
→ {q1 . . . qm, (C1, D1) . . . (Cj , Dj)} ∈ R E(x) = ε+ k ∈ I

E′ = E\x ∀i ∈ {1 . . .m}. E′ ∈ qi ⇒ k ∀i ∈ {1 . . . j}. |E′| ∈ Ci ⇒ k

E ∈ q ⇒ k
(IMA-Emp)

q(x) : a[y], z
I
→ {q1 . . . qm, (C1, D1) . . . (Cj , Dj)} ∈ R E(x) = a+(v1, v2) k ∈ I

E′ = (E\x)[v1/y, v2/z] ∀i ∈ {1 . . .m}. E′ ∈ qi ⇒ k ∀i ∈ {1 . . . j}. |E′| ∈ Ci ⇒ k

E ∈ q ⇒ k

(IMA-Lab)

Figure 6.10 displays several incomplete matching automata in which we omit input configura-

tions from pseudo-states for space reasons. The first example (a) shows an incomplete matching

automaton with a single pseudo-state, which is also the initial state. The second (b) is an in-

complete matching automaton with an ordinary initial state and a pseudo-state. The automaton

contains one transition from the ordinary state to the pseudo-state. We will return to this example

below to illustrate the matching automaton generation algorithm.

Now we have all the necessary tools to specify the skeleton of the generation algorithm. The

goal is to construct a matching automaton that implements pattern matching in a particular match

expression. We start with an incomplete matching automaton consisting of one pseudo-state: a
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pair of an initial configuration C and an initial input configuration D. The former contains a

single column composed of the tree automaton states corresponding to the patterns of the match

expression. The latter contains a single column whose only row has the tree automaton state

corresponding to the input type.

Consider the following match expression with the input type T = a[a[]],b[] | a[b[]],c[] |

a[c[]],b[] and the corresponding pair of initial configurations:

fun f(T x) =

match x with

| ~[a[Any]],Any → 1

| Any,c[] → 2

| ~[c[],Any],Any → 3

x

~[a[Any]],Any 1

Any,c[] 2

~[c[],Any],Any 3

x

a[a[]],b[] | a[b[]],c[] | a[c[]],b[]

The left configuration describes the pattern matching work that must still be done for the outcome

to be determined. The input configuration specifies the type of values stored in the still-to-be-

explored variables.

This pair of configurations can be turned into a matching automaton state by the process of

expansion. For a pseudo-state to become a state, we must determine the variable associated with

the new state and all the transitions originating in it. The former is selected among the variables of

the configuration and specifies which subtree will be examined next. At this point, we will elide the

details of how the selection is made, but we will return to this issue in Section 6.4.2. The selected

variable is indicated by a vertical arrow in the picture. For now, let us concentrate on generating

the transitions.

Having selected the column in the current pair of configurations, we can construct all possible

target language patterns that match the input type of the selected variable, and, for each pattern,

derive a pair of residual configurations that describe the remaining pattern matching work and the

types of the still uninspected variables. The example above gives rise to one such target language

pattern a[y],z, since all the sequences specified by the input type must be non-empty and must

start with an a-labeled element. The corresponding residual configuration and input configuration
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are as follows:

y z

a[Any] Any 1

Any Any,c[] 2

c[],Any Any 3

y z

a[] b[]

b[] c[]

c[] b[]

This expansion step is illustrated in Figure 6.10(a,b). The obtained incomplete matching au-

tomaton (b) is equivalent to the initial incomplete matching automaton (a) and, therefore, correctly

implements the original match expression.

Proceeding in the same way, we can pick out an unexpanded pseudo-state, expand it, and

replace it with the obtained state, transitions, and residual configuration pairs. Eventually, this

process will terminate when no more pseudo-states are left. The result will be a complete matching

automaton.

Note that threading input configurations throughout the generation process allows us to track

what types of values can flow into the currently generated matching automaton state; based on

that, we will be able to construct optimal matching automata.

Before we present an outline of the algorithm, we give a formal definition of configuration

expansion. The same can be applied for input configurations by dropping result columns.

6.4.2 Definition: Let A = (S, T ) be a tree automaton, and let C be a configuration over A

consisting of variables (x1 . . . xn) and tuples of tree automaton states {(s11 . . . s1n, j1) . . . (sm1 . . .

smn, jm)}. Let c be a column in C identified by xc, and let p be a target language pattern. An

expansion of C based on c by p, denoted expand(C, c, p), is a configuration C ′ such that: if p = (),

C ′ =

x1 . . . xc−1 xc+1 . . . xn

sk11 . . . sk1(c−1) sk1(c+1) . . . sk1n jk1

. . .

ski1 . . . ski(c−1) ski(c+1) . . . skin jki

where {k1 . . . ki} = {k | skc→() ∈ T} or, if p = l[z],y for some label l and variables z, y /∈

vars(C)\{xc},
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C ′ =

z y x1 . . . xc−1 xc+1 . . . xn

t′11 t′′11 s11 . . . s1(c−1) s1(c+1) . . . s1n j1

. . .

t′1k1
t′′1k1

s11 . . . s1(c−1) s1(c+1) . . . s1n j1
...

t′m1 t′′m1 sm1 . . . sm(c−1) sm(c+1) . . . smn jm

. . .

t′mkm
t′′mkm

sm1 . . . sm(c−1) sm(c+1) . . . smn jm

where {(t′i1, t
′′
i1) . . . (t′iki

, t′′iki
)} = {(t′, t′′) | sic→l[t′],t′′ ∈ T} for i ∈ {1 . . .m}.

The following definition formalizes the skeleton of the matching automaton generation algo-

rithm. It is not a complete algorithm, since it does not specify a method for selecting expansion

columns in configurations. In the following section, we will discuss how to do optimal column

selection. A step in the following algorithm consists of choosing an unexpanded configuration pair,

selecting a column in the configurations, expanding the configurations based on the selected col-

umn, generating a fresh matching automaton state and a collection of transitions from it to the

residual configurations obtained as results of expansion. This step is iterated until there are no

more configuration pairs to be expanded; at that point the current incomplete matching automaton

is a proper matching automaton.

6.4.3 Definition: Let M = (Q, K, i, V, R) be an incomplete matching automaton, and let (C, D) ∈

K be a configuration pair in M where C and D are configurations over tree automaton A = (S, T )

sharing the same tuple of variables. C is a ordinary configuration; D is an input configura-

tion. Let c be a column of C identified by x and let d be the corresponding column in D. Let

{p1 . . . pk} = {() | s ∈ d and s→() ∈ T}∪{l[z],y | s ∈ d and ∃ t′, t′′. s→l[t′],t′′ ∈ T} for some

z, y /∈ vars(C)\{x}. Let Ci = expand(C, c, pi) and Di = expand(D, d, pi) and Ii = results(Ci ∩ Di)

for each i ∈ {1 . . . k}. Let q be a fresh matching automaton state such that q /∈ Q.

A one-step expansion of M using the configuration pair (C, D) is an incomplete matching au-

tomaton M ′ = (Q′, K ′, i′, V ′, R′) where Q′ = Q∪{q}, and K ′ = K\(C, D)∪{(C1 , D1) . . . (Ck, Dk)},

and i′ = i if i ∈ Q, or i′ = q if i ∈ K, and V ′ = V ∪ {q 7→ x}, and R′ = R ∪ {q(x) : p1
I1→

{(C1, D1)} . . . q(x) : pk
Ik→ {(Ck, Dk)}}. A complete expansion of M is a matching automaton

obtained by recursively expanding the configuration pairs generated by the previous one-step ex-

pansions until there is no more unexpanded configuration pairs.
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Returning to the example in Figure 6.10, we can see the algorithm at work. The end result is

the same matching automaton as the one shown in Figure 6.2. Observe that configurations C4, C5,

and C6 are single-result configurations and hence need not be expanded any further. This example

also employs the simplification technique of removing a column all of whose patterns are equivalent,

as, for instance, the u and v columns of C3 do not carry over to the residual configurations C5 and

C6. Finally, note that we also drop the rows that contain pattern that are incompatible with the

input type. This is why C3 does not have the row with result 2 and C4 does not have the rows

with results 1 and 3.

6.4.2 Optimal Column Selection

The algorithm we have outlined does not specify how to select expansion columns in configurations

for optimal performance. We now complete the algorithm’s description by addressing this question.

To motivate our column selection approach, we first present a series of examples.

Consider the following configuration with two columns and three results.

y z

a[Any] Any 1

Any Any,c[] 2

c[],Any Any 3

Would it be better to test the contents of y or z? Testing y is sufficient to determine the outcome:

depending on whether its root node is labeled by a, b, or c, the answer is 1, 2, or 3 respectively. We

say that the first column determines all three results. The second column determines only result

2: if the root node of the value stored in z is labeled by c, we can conclude 2; if it is labeled by b,

however, we cannot determine the result without testing the contents of y.

It would seem that testing y first would result in more efficient pattern matching, but, in fact,

neither column is preferable as far as the optimality measure proposed above is concerned. The

reason that expanding on the first column does not lead to a more efficient matching automaton than

expanding on the second is that the latter matching automaton can output 2 without considering

the contents of y at all. We say that neither column is a better distinguisher than the other.

If, however, the first row pattern in the second column were changed from b[] to b[]|c[],

then the second column would not determine any result and, in that case, testing y first would

be more efficient. The first column in this case would be a better distinguisher than the second

column. (Figure 6.8 shows the two target programs that correspond to choosing y or z for the

initial inspection.)
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z

a[]|b[] 2
b[] 3

C6

y

a[] 1
b[] 2

C4

y

a[] 1
b[] 2

a[]|b[] 3

C5

x y z

a[] a[] a[]|b[] 1
a[]|b[] b[] a[]|b[] 2
a[]|b[] a[]|b[] b[] 3

y z

b[] a[]|b[] 2
a[]|b[] b[] 3

y z

a[] a[]|b[] 1
b[] a[]|b[] 2

a[]|b[] b[] 3

C2
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a[_],_

b[_],_

a[_],_

b[_],_

b[_],_

b[_],_

b[_],_

b[_],_

{2,3}

{1,2,3}

{1,2}

{1,2,3}

a[_],_

{2,3}

{3}

{1}

{2}

{1,3}

{2,3}

{2}

{2,3}

a[_],_

a[_],_

a[_],_

Figure 6.11: Wrong selection of a column in configuration C1 leads to a suboptimal matching
automaton

Sometimes, no single column determines any result. Consider the following configuration.

y z

a[] a[] 1

a[]|b[] b[] 2

b[] a[]|b[] 3

It is not possible to arrive at the result by testing the contents of either column alone. Of course,

testing the contents of both y and z is sufficient to find the answer. In this case, it does not matter

which column is tested first. So, as in the previous example, neither column is a better distinguisher

than the other.

The following example shows that even when no column alone determines any result, it is still

possible for some column to be better than another. Consider this configuration.

C =

x y z

a[] a[] a[]|b[] 1

a[]|b[] b[] a[]|b[] 2

a[]|b[] a[]|b[] b[] 3

As in the previous example, testing any of the three columns alone is not sufficient to determine

any result. Unlike the previous example, however, it does matter which variable we test first. In

particular, it can be shown that testing z or y first is more beneficial than testing x first.

Figure 6.11 shows a potential run of the compilation algorithm for the above configuration. The

x column is selected for expansion in the first step. When the contents of x matches a[], the list

112



z

a[]|b[] 1
b[] 3

C4

x y z

a[] a[] a[]|b[] 1
a[]|b[] b[] a[]|b[] 2
a[]|b[] a[]|b[] b[] 3

x z

a[]|b[] a[]|b[] 2
a[]|b[] b[] 3

x z

a[] a[]|b[] 1
a[]|b[] b[] 3

C2

C3

C1

a[_],_

b[_],_

a[_],_

b[_],_

b[_],_

{2,3}

{1,2,3}

{1,3}

a[_],_

{2,3}

{3}

{2}

b[_],_

{1}

a[_],_

{1,3}

Figure 6.12: Correct column selection results in a matching automaton that is strictly more efficient
than the matching automaton of Figure 6.11

of potential pattern matching outcomes cannot be narrowed and further tests must be performed

on both y and z. The matching automaton generated by the algorithm tests z first since C2 is

expanded on the z column. Configuration C3 describes the state of the matching automaton that

is reached when x matches b[]. In this case, potential outcomes are reduced to 2 and 3, and it is

possible to conclude 3 by testing whether y matches a[] and skipping z completely. If y matches

b[], however, z must be tested to complete pattern matching.

The matching automaton shown in Figure 6.11 is suboptimal. This can be seen by comparing

it with a more efficient matching automaton shown in Figure 6.12. In it, testing y first allows us

not only to conclude 3 without testing z as in the previous example but also to arrive at two other

outcomes by only testing y and z—and not x—thus outperforming the matching automaton of

Figure 6.11. Similarly, for any other matching automaton that starts by testing x, we can always

build a strictly more efficient matching automaton that starts by testing one of the other two

variables.

For this configuration, we say that both y and z are better distinguishers than x. We would like

to have a formal criterion that allows us to determine whether one column is a better distinguisher

than another. Furthermore, we would like this criterion to be semantic so that we can find an

optimally distinguishing column without generating and comparing all possible matching automata

that can arise from the current configuration.

We will satisfy the above concerns as follows. First, we will introduce decision trees, which have

the same semantics as matching automata but are higher level. We will define what it means for one

decision tree to be strictly more efficient than another. Then, after establishing a correspondence

between decision trees and configurations, we will derive the notion of an optimal expansion column.
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6.4.4 Definition: A decision tree is a tree whose nodes are labeled by variables, whose edges are

labeled by regular types, and whose leaves are sets of integer results. A path from the root to a leaf

may not contain duplicate variables. We say that an environment E is accepted by a decision tree

t with result j, written E ∈ t ⇒ j, if there exists a path x1
p1

→ x2
p2

→ . . . xk
pk→ J from the root to

a leaf, where x1 . . . xk are the variables labeling nodes of the path starting from the root, p1 . . . pk

are the regular types labeling the edges of the path, and J is the leaf result set, such that j ∈ J

and E(xi) ∈ pi for all i ∈ {1 . . . k}.

One decision tree is strictly more efficient than another if it accepts any environment by test-

ing a subset of the variables that must be tested by the other decision tree to accept the same

environment.

6.4.5 Definition: A decision tree t1 is strictly more efficient than an equivalent decision tree t2

if, for any path x1
p1

→ x2
p2

→ . . . xk
pk→ J in t2, there exists a path y1

q1

→ y2
q2

→ . . . ym
qm

→ J in t1 such

that, for any i ∈ {1 . . .m}, there exists j ∈ {1 . . . k} with yi = xj and qi = pj , and, furthermore,

there exists a t2 path for which the corresponding t1 path is strictly shorter.

A configuration can give rise to a finite number of decision trees. To help identify the set of all

decision trees corresponding to a configuration, we first introduce an auxiliary notion of a partition

of a set of regular types.

6.4.6 Definition: Let T be an input regular type and S = {p1 . . . pm} a set of regular types such

that T is a subtype of p1 ∪ . . . ∪ pm. A partition of S is a set of mutually disjoint regular types

{t1 . . . tk} such that T ∩ (p1 ∪ . . . ∪ pm) is a subtype of t1 ∪ . . . ∪ tk and, for any i ∈ {1 . . . k} and

j ∈ {1 . . .m}, if ti ∩ pj is non-empty, then ti is a subtype of pj .

The idea is to use the elements of a partition to indicate which of the original patterns match

a given input value. For example, {a[], b[]} is a partition for the input type T = a[]|b[] and

the collection of patterns S = {a[],b[],a[]|b[]}. If a value v is in a[], then it is in the first and

third but not in the second patterns of S; if v is in b[], then it is in the second and third but not

in the first patterns of S.

A partition of S with respect to T can be obtained by taking all the non-empty types of the

form T ∩ p′1 ∩ . . .∩ p′m where each p′i is either pi or T\pi. We say that this is the minimal partition

of S with respect to T .

6.4.7 Definition: A decision tree t is said to correspond to a configuration C with respect to some

input configuration C0 if two conditions hold: 1) edges from a node x are labeled by regular types
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Figure 6.13: A configuration (a) and two optimal corresponding decision trees (b) and (c)

each of which is a union of some types from the minimal partition of C’s column corresponding to x

with respect to the union of types in x’s column in C0; and 2) t and C are semantically equivalent;

i.e. for any environment E ∈ C0, we have E ∈ t ⇒ j iff E ∈ C ⇒ j.

Given a configuration Cand an input configuration C0, it is possible—albeit very time consuming—

to generate all decision trees that satisfy the first condition. It is then easy to check whether any

such decision tree is semantically equivalent to C. Combining these two steps, we can obtain an

algorithm that produces all of C’s decision trees.

6.4.8 Definition: Let C be a configuration, C0 an input configuration, and c one of C’s columns

associated with variable x. This column is said to be an optimal distinguisher if there exists a

decision tree corresponding to C with respect to C0 whose root is labeled by x such that there does

not exist a strictly more efficient decision tree corresponding to C with respect to C0.

Figure 6.13 shows a configuration discussed earlier and two optimal decision trees corresponding

to it. The columns associated with z and y are both optimal distinguishers for this configuration.

The matching automaton shown in Figure 6.12 was generated using decision tree (b) as a witness

of its optimality.
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6.4.3 Optimality

Since the compilation algorithm introduced above can be viewed as an instantiation of the type-

insensitive algorithm presented in Section 4.5—here the method of selecting expansion columns is

specified while there it was left unspecified—the same correctness and termination arguments can

be carried over for the algorithm of this paper. Additionally, we can show that the column selection

principle introduced above ensures generation of optimal matching automata.

6.4.9 Lemma: Let C be a configuration and C0 an input configuration over finite regular types.

Let q be the complete expansion of C with respect to C0, and let M be the associated matching

automaton. Then there does not exist a matching automaton with a state that is equivalent to C

with respect to C0 and is strictly more efficient than q.

Proof: Assume that there exists a matching automaton M ′ with a state q′ that is equivalent

to C with respect to C0 and is strictly more efficient than q. If both q and q′ use the same test

variable, follow the equivalent transitions in both M and M ′ until a pair of states with different

test variables is found. Otherwise, q and q′ use different test variables. In any case, let q1 and q′1

be the corresponding states with different test variables where q1 is in M and q′1 is in M ′ and q′1 is

strictly more efficient than q1 for q1’s input configuration D0.

Suppose x and y are q1’s and q′1’s test variables respectively. Let t be the decision tree with x

at the root that was used to identify the column associated with x as the expansion column and

to generate the transitions originating in q1 and all the subsequent states of M reachable from q1.

Since q′1 is strictly more efficient than q1, we can convert the fragment of M ′ starting at q′1 into

a decision tree t′ with y at the root that is strictly more efficient than t for input D0. This is a

contradiction, since according to the column selection principle, there cannot be a strictly more

efficient equivalent decision tree than t. �

The following monotonicity property is a corollary of the above lemma. It states that for any

matching problem, given a more specific input type, our compilation algorithm generates a matching

automaton that is not worse than the one it generates for the same matching problem with a less

specific input type.

6.4.10 Corollary: Let C be a configuration, and let C ′ and C ′′ be input configurations such that

C ′ is a subconfiguration of C ′′. Let q′ and q′′ be the complete expansion of C with respect to C ′

and C ′′ respectively. Then q′′ is not strictly more efficient than q′ for C ′.
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Proof: By the correctness property of the compilation algorithm, q′′ is equivalent to C with

respect to C ′′. Since C ′ is a subconfiguration of C ′′, it is also the case that q′′ is equivalent to C

with respect to C ′. Then, by Lemma 6.4.9, q′′ cannot be strictly more efficient than q′ for C ′. �

6.5 Compilation of Recursive Patterns

The algorithm described in the previous section works only for finite patterns; for recursive pat-

terns, it can go into an infinite loop since expansion may not necessarily produce “smaller” residual

configurations. Section 4.5 introduced the notion of loop breakers—those tree automaton states that

may lead to infinite expansion. For configurations with loop breakers, our algorithm used a dif-

ferent expansion technique that produced subroutine transitions and guaranteed termination. The

algorithm described in that section was type-insensitive; as a result, it generated a conservatively

large set of loop breakers and less efficient matching automata with many subroutine transitions.

Here, we address several issues of type-based optimization in the presence of recursive patterns.

First, we demonstrate that using the input type is beneficial for reducing the number of loop break-

ers. We then point out that selecting a proper set of loop breakers among a number of candidate

sets can make a substantial difference in the efficiency of the resulting matching automaton.

6.5.1 Input Types and Loop Breakers

Computing loop breaker sets without regard for the input type can result in an unnecessarily large

number of loop breakers. This can lead to generating superfluous subroutine transitions in cases

where simple transitions present a more efficient alternative. Consider, for instance the following

configuration that is generated by the match expression of the program shown in Figure 6.1.

x

Any,a[] 1

Any 2

The pattern in the first row is recursive; so, if we were to generate a matching automaton that

emulates the above configuration for arbitrary input, we would have to treat that pattern as a loop

breaker and resort to using subroutine transitions. Knowing that input values values are restricted

to the a[],(a[]|b[]), however, allows us to avoid recursion. This can be seen if we intersect the

input type with the original patterns thus obtaining the following non-recursive configuration.
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fun f(T x) : Any =

match x with

| a[Any,a[]],Any,a[] → 1

| a[Any],Any → 2

fun f(T x) : Any =

case x of

| ~[y],z →
case y of

| ~[_],u →
case u of

| a[_],_ →
let pr = A(z) in

if π1(pr) then 1

else 2

else 2

fun A(Any x):[bool,bool] =

case x of

| () → [false,true]

| a[y],z →
case y of

| () →
case z of

| () →
[true,true]

else A(z)

else A(z)

| ~[_],z → A(z)

(a) (b) (c)

Figure 6.14: An example with recursive patterns: a source program (a); an equiva-
lent target program with a subroutine call (b); subroutine function (c); input type T =
a[(a[]|b[]),(a[]|b[])],Any

x

a[],a[] 1

a[],(a[]|b[]) 2

In the type-insensitive algorithm, loop breakers were computed once and for all before matching

automaton generation. As we have shown above, such a strategy does not work efficiently in the

framework of the type-propagation algorithm described in Section 6.4 since it leads to unnecessarily

identifying many tree automaton states as loop breakers. In the new setting, the loop breaker

analysis must be done at each iteration of the algorithm right before the current configuration is

expanded. The algorithm computes the intersection of the current configuration and the current

input configuration and then finds an appropriate loop breaker set in the obtained configuration.

Consider the example shown in Figure 6.14. The initial configuration and the initial input

configuration corresponding to the match expression in the source program are as follows:

C1 =

x

a[Any,a[]],Any,a[] 1

a[Any],Any 2

C2 =
x

a[(a[]|b[]),(a[]|b[])],Any

Since initial configuration pairs can only be expanded by label, there is no need to perform loop

breaker analysis at this point yet. The following configurations C3 and C4 are the results of

expanding by label the above configurations C1 and C2 respectively.
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def A = a[] | a[B]

def B = b[] | a[A]

def C = c[] | a[C]

def D = ()

def T = a[A],B | a[C]

fun f(T x) : Any =

match x with

| a[A],B → 1

| a[C] → 2

(a) (b)

fun f(T x) : Any =

case x of

| a[y],z →
let pr1 = AC(y) in

let pr2 = BD(z) in

if π1(pr1) && π1(pr2) then 1

else 2

fun f(T x) : Any =

case x of

| a[_],z →
case z of

| () → 2

else 1

(c) (d)

Figure 6.15: Effect of selecting loop breakers on optimality: source types (a); a target language
processing function (b); an equivalent inefficient target program (c); an optimal target program (d)

C3 =

y z

Any,a[] Any,a[] 1

Any Any 2

C4 =
y z

(a[]|b[]),(a[]|b[]) Any

At first glance, both columns of C3 contain recursive patterns, but if we intersect C3 with the input

configuration C4, we obtain the following configuration in which only the second column contains

loop breakers.

y z

(a[]|b[]),a[] Any,a[] 1

(a[]|b[]),(a[]|b[]) Any 2

The result of expanding this configuration is the program shown in Figure 6.14(b) in which the

contents of z—corresponding to the second column—is passed to the subroutine, and the contents

of y—corresponding to the first column—is inspected inline in the body of f.

6.5.2 Selecting Among Alternative Loop Breaker Sets

Once the current configuration is intersected with the current input configuration and obviously

non-recursive patterns are disregarded as potential loop breakers, there still may be multiple ways

of choosing a loop breaker set among the rest of the patterns. It is essential for the compiler to

choose a loop breaker set that will not lead to an obviously inefficient target program.
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def T = () | ~[T]

def A = () | a[A]

fun f(T x) : Any =

match x with

| A → 1

| Any → 2

fun f(T x) : Any =

case x of

| () → 1

| a[x],_ → f(x)

else 2

fun f(T x) : Any =

case x of

| () → 1

| a[x],_ →
case x of

| () → 1

| a[y],_ → f(y)

else 2

else 2

(a) (b) (c)

Figure 6.16: A source program (a); equivalent target program with one recursive call (b); equivalent
target program with the recursive call unrolled one level (c)

As an example, let us evaluate a recursive configuration that arises from the source program

shown in Figure 6.15(b). (Since the input type in this program equals the union of the match

expression patterns, we will omit discussing input configurations—they are always equivalent to

the current configurations.) After expanding the initial configuration, the compiler will encounter

the following configuration.

y z

A B 1

C D 2

There are two minimal loop breaker sets: {A, C} and {B, C}. If the latter is selected, the above

configuration will not have columns without loop breakers and, hence, must be expanded by state.

This results in the program shown in Figure 6.15(c). A much more efficient program can be

generated if A and C are selected. In this case, the above configuration can be expanded by label on

its second column. This will produce single result configurations that need not be expanded further

hence avoiding subroutine calls altogether (d). Clearly it is beneficial to select loop breakers that

reside in the same column of the current configuration, or, in general, minimize the number of the

resulting recursive columns.

6.6 Related Work

Frisch was the first to publish a description of a type-based optimization approach for a language

with regular pattern matching [16]. His algorithm is based on a special kind of tree automata called

non-uniform automata. Like matching automata, non-uniform automata incorporate the notion of

“results” of pattern matching (i.e., a match yields a value, not just success or failure). Also, like
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matching automata, non-uniform automata support sequential traversal of subtrees. This makes

it possible to construct a deterministic non-uniform automaton for any regular language. Unlike

matching automata, non-uniform automata impose a left to right traversal of the input value.

Whereas it is possible for a matching automaton to scan a fragment of the left subtree, continue

on with a fragment of the right, come back to the left and so on, a non-uniform automaton must

traverse the left subtree fully before moving on to the right subtree.

Frisch proposes an algorithm that uses type propagation. His algorithm differs from the tree au-

tomaton simplification algorithm in that it must traverse several patterns simultaneously (whereas

the latter handles one pattern at a time) and generate result sets that will be used in the transitions

of the constructed automaton. Frisch’s algorithm does not always achieve optimality. In particular,

it generates an automaton that tries to learn as much information from the left subtree as possible,

even if this information will not be needed in further pattern matching.

In his dissertation [17], Frisch presents a more flexible form of non-uniform automata that allow

arbitrary, rather than strictly left-to-right, order of traversal. There is no formal discussion of

optimality however.

Outside of the XDuce family, a lot of work has been done in the area of XPath query optimiza-

tion. Several subsets of XPath have been considered. Wood describes a polynomial algorithm for

finding a unique minimal XPath query that is equivalent to the given query [71]. The minimization

problem is solved for the set of all documents regardless of their schema. When the schema is taken

into account, the problem is coNP-hard. Flesca, Furfaro, and Masciari consider a wider subset of

XPath and show that the minimization problem for it is also coNP-hard [13]. They then identify

an subset of their subset for which an ad-hoc polynomial minimization is possible.

Genevès and Vion-Dury describe a logic-based XPath optimization framework [26] in which a

collection of rewrite rules is used to transform a query in a subset of XPath into a more efficient,

but not necessarily optimal, form.

Optimizing full XPath has also been investigated. Gottlob, Koch, and Pichler observe that

many XPath evaluation engines are exponential in the worst case. They propose an algorithm

that works for full XPath and that is guaranteed to process queries in polynomial time and space.

Furthermore, they define a useful subset of XPath for which processing time and space are reduced

to quadratic and linear respectively [27, 28]. Fokoue [14] describes a type-based optimization

technique for XPath queries. The idea is to evaluate a given query on the schema of the input

value obtaining as a result some valuable information that can be used to simplify the query.

At this point, we hesitate to draw deeper analogies between the above XPath-related work

and our type-based optimization algorithm since the nature of XPath pattern matching is quite
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different from that of regular pattern matching.
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Chapter 7

Run-Time System

This chapter addresses the lower-level issue of how to compile Xtatic values and value-constructing

primitives into C]-based run-time representations. We explore several alternative representation

choices and analyze them with respect to their support for efficient pattern matching, common

Xtatic programming idioms, and safe integration with foreign XML representations such as the

standard Document Object Model (DOM). We describe 1) a lazy data structure for sequences

of XML trees that efficiently supports repeated concatenation on both ends of a sequence; 2) a

representation of textual data (PCDATA) that allows regular pattern matching over character

sequences (i.e., statically typed string grep) to be compiled into calls on native .NET regular

expression libraries; 3) a type-tagging scheme allowing fast dynamic revalidation of XML values

whose static types have been lost, e.g., by upcasting to object for storage in a generic collection;

and 4) a proxy scheme allowing foreign XML representations such as DOM [67] to be manipulated

by Xtatic programs without first translating them to our representation.

We have implemented these designs and measured their performance both against some natural

variants and against other implementations of XML processing languages. The results show that

a declarative statically typed embedding of XML transformation operations into a stock object-

oriented language compares well with existing mainstream XML processing frameworks.

7.1 Representing Trees

We now turn to the design of efficient representations for XML trees. First, we select a tag

representation that supports separate compilation and XML namespaces (Section 7.1.1). Next,

we design a tree representation that supports Xtatic’s view of trees as shared and immutable

structures (Section 7.1.2). The main constraint on the design is that the programming style favored
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by Xtatic involves a great deal of appending (and consing) of sequences. To avoid too much re-

copying of sub-sequences, we enhance the naive design to do this appending lazily (Section 7.1.3).

Finally, Xtatic needs to inter-operate with other XML representations available in .NET, in

particular DOM. We show how DOM structures can masquerade as instances of our Xtatic trees

in a type-safe manner(Section 7.1.4).

7.1.1 Tags

Our implementation defines a class Tag, and every particular XML tag is an object of this class.

A tag object has a string field for the tag’s local name and a field for its namespace URI. We use

memoisation (interning) to ensure that there is a single run-time object for each known tag, making

tag matching a simple matter of physical object comparison. Separate compilation is supported by

allocating these tags at start-up time: each separately compiled library adds its tags to a common

hash table when loaded. Hence, every library associates the same object to a given tag. Moreover,

this tag representation simplifies the recovery of a tag name, needed to print it.

We considered several other run-time representations of tags. One, directly corresponding to

the formal definition of the Xtatic data model [23], encodes XML tags by different classes. This

approach does not work in the context of separate compilation since the same XML tag occurring in

different compilation units would be mapped to distinct classes sharing the same name but residing

in different assemblies. Representing tags by values of an enumeration type offers the ability to

compile pattern-matching into efficient switch statements, but, like the class-based approach, does

not work with separate compilation, since we cannot guarantee that the same tag will correspond to

the same enumeration value in every compilation unit. One might also represent an XML tag by a

single string containing both the namespace and the tag name separated by some special character,

and hash this string using a fixed function carefully chosen as to minimize collisions. This approach,

similar to the one used for the implementation of labels in OCaml [25], is not applicable in our

setting as the name of the tag is no longer available at runtime.

7.1.2 Simple Sequences

Every Xtatic value with a regular type is a sequence of trees. Xtatic’s pattern-matching algo-

rithms, based on tree automata, require access to the label of the first tree in the sequence, its

children, and its following sibling. This access style is naturally supported by a simple singly linked

structure.

Figure 7.1 summarizes the classes implementing sequences. Seq is an abstract superclass rep-

resenting all sequences regardless of their form. As the exact class of a Seq object is often needed
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SeqEmpty

Seq next
Seq contents

SeqObject

Object label
Seq next
Seq contents

SeqInt

int label
Seq next
Seq contents

SeqChar

char label

SeqAppend

Seq fst
Seq snd

Kind kind

Seq

Figure 7.1: Classes used for representing sequences.

by Xtatic-generated code, such as pattern matching, it is stored as an enumeration value in the

field kind of every Seq object. Maintaining this field allows us to use a switch statement (which

should be implemented by a good .NET JIT compiler using a jump table) instead of a chain of

if-then-else statements relying on the “is” operator to test class membership.

The subclass SeqObject includes two fields, next and contents, that point to the rest of the

sequence—the right sibling—and the first child of the node. The field label holds a C] object.

Empty sequences are represented using a single, statically allocated object of class SeqEmpty.

(Using null would require an extra test before switching on the kind of the sequence—in effect,

optimizing the empty-sequence case instead of the more common non-empty case.)

In principle, the classes SeqEmpty and SeqObject can encode all Xtatic trees. But to avoid

downcasting when dealing with labels containing primitive values (most critically, characters), we

also include specialized classes SeqBool, SeqInt, SeqChar, etc. for storing values of base types.

XML data is encoded using SeqObjects that contain, in their label field, instances of the

special class Tag that represent XML tags, as described in Section 7.1.1.

Briefly, pattern matching of labels is implemented as follows. The object (or value) in a label

matches a label pattern when: the pattern is a class C and the object belongs to a subclass of C,

the pattern is a tag and the object is physically equal to the tag, the pattern is a base value v and

the label holds a value equal to v.

7.1.3 Lazy Sequences

In the programming style encouraged by Xtatic, sequence concatenation is a pervasive operation.

Unfortunately, the run-time representation outlined so far renders concatenation linear in the size

of the first sequence, leading to unacceptable performance when elements are repeatedly appended

at the end of a sequence, as in the assignment of res in the addrbook example in Chapter 3.

This observation naturally suggests a lazy approach to concatenation:1 we introduce a new kind

1The problem of efficient list concatenation has, of course, been studied in the functional programming community,
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Seq lazy_norm(Seq node) {

switch (node.kind) {

case Append: return norm_rec(node.fst, node.snd);

default: return node; } }

Seq norm_rec(Seq node, Seq acc) {

switch (node.kind) {

case Append: return norm_rec(node.fst, new SeqAppend(node.snd, acc));

case Object:

switch node.next.kind {

case Empty: return new SeqObject(node.label, node.contents, acc);

default: return new SeqObject(node.label, node.contents,

new SeqAppend(node.next, acc));

}

/* similar cases for SeqInt, SeqBool, ... */ } }

Figure 7.2: Lazy Normalization Algorithm.

of sequence node, SeqAppend, that contains two fields, fst and snd. The concatenation of (non-

empty) sequences Seq1 and Seq2 is now compiled into the constant time creation of a SeqAppend

node, with fst pointing to Seq1, and snd to Seq2. We preserve the invariant that neither field of

a SeqAppend node points to the empty sequence.

To support pattern matching, we need a normalization operation that exposes at least the first

element of a sequence. The simplest approach, eager normalization, just transforms the whole

sequence so that it does not contain any top-level SeqAppend nodes (children of the nodes in the

sequence are not normalized). However, there are cases when it is not necessary to normalize the

whole sequence, e.g. when a program inspects only the first few elements of a long list. To this end

we introduce a lazy normalization algorithm, given in pseudocode form in Figure 7.2.

The algorithm fetches the first concrete element—that is, the leftmost non-SeqAppend node of

the tree—copies it (so that the contexts that possibly share it are not affected), and makes it the

first element of a new sequence consisting of (copies of) the traversed SeqAppend nodes arranged

into an equivalent, but right-skewed tree. Figure 7.3 illustrates this algorithm, normalizing the

sequence starting at node SeqAppend6 to the equivalent sequence starting at node SeqObject′4.

Since parts of sequence values are often shared, it is not uncommon to process (and normalize)

the same sequence several times. As described so far, the normalization algorithm returns a new

sequence, e.g. SeqObject′4, but leaves the original lazy sequence unchanged. To avoid redoing

the same work during subsequent normalizations of the same sequence, we also modify in-place

the root SeqAppend node, setting the snd field to null (indicating that this SeqAppend has been

and a number of techniques have been proposed; see Section 7.5. We describe here our adaptation of these ideas

to the specifics of Xtatic—for example, in-place updates will turn out to be critical for the correctness of pattern

variable binding.
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SeqAppend6

SeqAppend5 Seq3

SeqObject4 Seq2

SeqAppend′
5

SeqAppend′
4

SeqObject′
4

Seq1

SeqAppend5 Seq3

SeqObject4 Seq2

SeqAppend′
5

SeqObject′
4

SeqEmpty1

SeqAppend6

(a) (b)

Figure 7.3: Lazy normalization of lazy sequences. In (a), the leftmost concrete element has a right
sibling; in (b) it does not. Dotted pointers and their source objects are created during normalization.

normalized), and the fst field to the result of normalization:

Seq lazy_norm_in_place(Seq node) {

switch (node.kind) {

case Append:

if (node.snd == null) return node.fst;

node.fst = norm_rec(node.fst, node.snd); node.snd = null;

return node.fst;

default: return node; } }

Interestingly, this in-place modification is required for the correctness of binding of non-tail

variables in patterns. The pattern matching algorithm [35] naturally supports only those pattern

variables that bind to tails of sequence values; variables binding to non-tail sequences are handled

by a trick. Namely, binding a non-tail variable x is accomplished in two stages. The first stage

performs pattern matching and—as it traverses the input sequence—sets auxiliary variables xb

and xe to the beginning and end of the subsequence. The second stage computes x from xb and

xe by traversing the sequence beginning at xb and copying nodes until it reaches xe. In both

stages, the program traverses the same sequence, performing normalization along the way. In-place

modification guarantees that during both traversals we will encounter physically the same concrete

nodes, and so, in the second stage, we are justified in detecting the end of the subsequence by

checking physical equality between the current node and xe.

Because of creation of fresh SeqAppend nodes, the lazy normalization algorithm can allocate

more memory than its eager counterpart. However, we can show that this results in no more than

a constant factor overhead, as follows. A node is said to be a left node if it is pointed by the fst

pointer of a SeqAppend. There are two cases when the algorithm creates a new SeqAppend node:

127



eager concatenations eager normalization lazy normalization
back appending ∞ 1,050 ms 1,050 ms
front appending 950 ms 950 ms 950 ms

Figure 7.4: Running times for two variants of the phone book application.

when it traverses a left SeqAppend node, and when it reaches the leftmost concrete element. In

both cases, the newly created nodes are not left nodes and so will not lead to further creation of

SeqAppend nodes during subsequent normalizations. Hence, lazy normalization allocates at most

twice as much memory as eager normalization.

We now present some measurements quantifying the consequences of this overhead on running

time. Figure 7.4 shows running times for two variants of the phone book application from Chapter 3,

executed on an address book of 250, 000 entries. (Our experimental setup is described below in

Section 7.4.) The first variant constructs the result as in Chapter 3 to the end. The second variant

constructs the result by by appending to the front:

res = person[n,t], res;

This variant favors the non-lazy tree representation from the previous subsection, which serves as

a baseline for our lazy optimizations. Since our implementation recognizes prepending singleton

sequences as a special case, no lazy structures are created when the second program is executed,

and, consequently all concatenation approaches behave the same. For the back-appending pro-

gram, the system runs out of memory using eager concatenation, while both lazy concatenation

approaches perform reasonably well. Indeed, the performance of the lazy representations for the

back-appending program is within 10% of the performance of the non-lazy representation for the

front-appending program, which favors such a representation.

This comparison does not show any difference between the lazy and eager normalization ap-

proaches. We have also compared performance of eager vs. lazy normalization on the benchmarks

discussed below in Section 7.4. Their performance is always close, with slight advantage for one

or the other depending on workload. On the other hand, for programs that explore only part of a

sequence, lazy normalization can be arbitrarily faster, making it a clear winner overall.

Our experience suggests that, in common usage patterns, our representation exhibits constant

amortized time for all operations. It is possible, however, to come up with scenarios where repeat-

edly accessing the first element of a sequence may take linear time for each access. Consider the

following program fragment:

Any res1 = ();
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Any res2 = ();

while true do

res1 = res1, a[];

res2 = res1, b[];

match res2 with

(Tag x)[], Any → ...use x...

Since the pattern matching expression extracts only the first element of res2, only the top-level

SeqAppend object of the sequence stored in res2 is modified in-place during normalization. The

SeqAppend object of the sequence stored in res1 is not modified in-place, and, consequently, is

completely renormalized during each iteration of the loop.

Kaplan, Tarjan and Okasaki [42, 43, 60, 41] describe catenable steques, which provide all the

functionality required by Xtatic pattern-matching algorithms with operations that run in constant

amortized time in the presence of sharing. We have implemented their algorithms in C] and

compared their performance with that of our representation using the lazy normalization algorithm.

The steque implementation is slightly more compact—on average it requires between 1.5 and 2 times

less memory than our representation. For the above tricky example, catenable steques are also fast,

while Xtatic’s representation fails on sufficiently large sequences. For more common patterns of

operations, however, our representation is more efficient. The following table shows running times

of a program that builds a sequence by back-appending one element at a time and fully traverses

the constructed sequence. We ran the experiment for sequences of four different sizes.

Steques Xtatic

n = 10,000 70 ms 6 ms

n = 20,000 140 ms 12 ms

n = 30,000 230 ms 19 ms

n = 40,000 325 ms 31 ms

The implementation using catenable steques is significantly slower than our much simpler repre-

sentation because of the overhead arising from the complexity of the steque data structures.

7.1.4 DOM Interoperability

Xtatic modules are expected to be useful in applications built in other .NET languages with

the use of extensive .NET libraries. The latter already contain support for XML, collected in the

System.Xml namespace. It can greatly enhance the usefulness of Xtatic if its XML manipulation

facilities can be applied to native .NET XML representations and, conversely, if Xtatic XML
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data can be accessed from vanilla C] code. We have explored the former direction of this two-sided

interoperability problem by implementing support for DOM, one popular XML representation

available in .NET.

A straightforward solution for accessing DOM from Xtatic would be to translate any DOM

data of interest into our representation in its entirety. This is wasteful, however, if an Xtatic

program ends up accessing only a small portion of the document. A better idea is to wrap a DOM

fragment in a lazy structure (using another subclass, called SeqDom, of Seq) and investigate its

contents only as needed during pattern matching. However, since DOM structures are mutable, we

need to take some care to maintain type safety. We do this by investigating the underlying DOM

structure just once and copying the parts we have seen into immutable Seq nodes.

Concretely, a SeqDom object has two fields, dom and seq, one of which is always null. When

a SeqDom object is created, its dom field points to a DOM element node, meaning that the object

represents the XML fragment consisting of the DOM node, its following siblings, and its children

nodes. (The DOM element node’s pointers to its parent and previous siblings are not relevant for

the meaning a SeqDom wrapper, since Xtatic never needs to traverse them.)

The actual inspection of the underlying DOM nodes happens during normalization. In the

most common case, normalization of a SeqDom object considers its underlying DOM element node

(call it e) and creates a new SeqObject object with the label field corresponding to e.Name and

fields contents and next pointing to newly created SeqDom objects corresponding to the DOM

nodes e.FirstChild and e.NextSibling. In cases where either of the latter two DOM nodes is

not an element node—i.e. it is either null or a DOM text node—the normalization transforms it

directly to a SeqEmpty or an appropriate Xtatic pcdata representation. Finally, the normalization

modifies the original SeqDom object by setting the dom field to null and pointing the seq field to

the newly created SeqObject.

A SeqDom object can be initially obtained by applying a special library function to a DOM

node. The return type of this function is xml, the least precise XML type. A successful pattern

match of such a value against a pattern more detailed than xml has the side-effect of transforming,

via the normalizations that get invoked along the way, some initial “spine” of the value into our

native Xtatic representation. If the pattern contains subpatterns typed as xml, the corresponding

value fragments may safely be put in SeqDom wrappers; it does not matter if the underlying DOM

structures are later modified, since no assumptions about their actual type have yet been made by

Xtatic code.

As a consequence, the parts of the original DOM structure may be destructively updated at

any time after it was wrapped in DomSeq. The results of such updates are visible to Xtatic
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only if they happen before pattern matching reaches them. (Caveat: This statement applies to a

single-threaded context. It remains true in a multithreaded setup only when methods of the DOM

implementation are thread safe—something that .NET DOM implementation does not guarantee.)

Using SeqDom wrappers in the context of lazy concatenation with subsequent normalization of

the resulting structures into concrete Xtatic sequences is crucial to the efficiency of our approach.

An alternative design that implemented concatenation of DOM wrappers as a DOM wrapper and

at the same time wanted to support shared-structure view of data would have to do extensive deep

cloning of DOM fragments. Otherwise, the doubly-linked nature of DOM structures could lead to

unintended sharing violations.

We plan to address the other direction of the interoperability problem—efficiently exporting

XML trees created by Xtatic for use in native C] code—by implementing one of the System.Xml

access interfaces on top of Xtatic sequences.

7.2 Representing Text

In this section we describe several ways of representing pcdata and weigh the merits of each

approach.

The definition of the type pcdata as <(char)/>* immediately suggests a naive representation

using linked lists of SeqChar objects. For example, the text ‘abcd‘ would be represented as:

SeqChar

′a′

SeqChar

′b′

SeqChar

′c′

SeqChar

′d′

The primary advantage of this representation is that we can directly use our sequence representation

and tree pattern matching algorithms to inspect textual data. The primary disadvantage is also

obvious: extremely inefficient use of memory, as each character is represented by a SeqChar object.

A more compact alternative is to use native C] strings for representing pcdata. We have

explored several variants.

The simplest of these is to extend the Seq class hierarchy with class SeqString, whose objects

store a string value plus a pointer to the next Seq object. Here is one possible representation for

the text ′abcd′:

SeqString SeqString

"ab" "cd"

As the example suggests, a single SeqString node does not have to encapsulate an entire run of

consecutive text. In the case where characters are added to the sequence one by one, this actually

results in memory usage less efficient than the naive SeqChar representation, as a one-character
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string takes more space than a single char. Moreover, the following program illustrates a common

case where the new representation results in worse behavior than the naive representation. It scans

a given chunk of text character by character and replaces every occurrence of consecutive ′a′s by a

′b′.

fun process(pcdata txt) : pcdata =

pcdata res = ();

while true do

match txt with

() →

return res;

‘a‘+, Any rest →

res = res, ‘b‘;

txt = rest;

(char)[] x, Any rest →

res = res, x;

txt = rest;

In each iteration of the loop, the content of rest is a string that needs to be extracted—hence

copied—from the current value of txt, resulting in quadratic space and time behavior. For this

program, the naive SeqChar implementation does not need to allocate any new sequences for rest.

We can avoid this problem by refining the SeqString representation to point to a shared string

buffer and maintain a starting offset and length. The new pcdata representation is encoded by

class SeqSubstring as illustrated in the following figure.

SeqSubstringSeqSubstring

"abcd"

0 2 2 2

There are cases where the SeqSubstring representation is less efficient than the SeqString

scheme because of the two extra memory slots. Therefore, it is advantageous to have the three

schemes coexist and choose adaptively (at instantiation time) which one to use: SeqChar when

we find ourselves appending a single character to a sequence, SeqString when we append a whole

string, and SeqSubstring when we append a piece extracted from an existing string.

An interesting side effect of the string representation is that it allows us to use the .NET regular

expression library System.Text.RegularExpressions for pattern matching over pure PCDATA.

Some advantages for this choice are ease of implementation, leveraging the highly optimized .NET

library (which, for example, translates regular expressions into CLR bytecodes at run time and JIT-

compiles them), and the size reduction of Xtatic-generated C] code that results from delegating
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SeqChar SeqString SeqSubstring Adaptive

process 47 Mb / 2,500 ms ∞ 52 Mb / 4,800 ms 44 Mb / 4,500 ms
addrbook 249 Mb / 250 ms 77 Mb / 180 ms 68 Mb / 180 ms 68 Mb / 180 ms

Figure 7.5: Comparison of pcdata representations.

to library calls all the character matching code that otherwise would have to be generated. One

drawback is that it requires that lazy sequences of characters be coalesced into a single string

object that can be passed to the regular expression engine. When a string is needed for .NET

regular expression matching, the sequence is (eagerly) normalized to eliminate SeqAppends up to

the first non-character representing item and the resulting list of strings is concatenated.

We conclude this section with performance measurements from two experiments (Figure 7.5).

The first is the program process given earlier in this section, evaluated on a 0.5 Mb pcdata file;

the second is the addrbook example run on an XML document containing 250,000 APers elements.

In both experiments, we measure the memory usage and processing time of the program. In the

first experiment, we take a memory checkpoint right after process finished its work and built the

result; in the second, right after the input document is loaded in memory.

In the first experiment, the SeqString representation did not complete because of its quadratic

behavior during suffix extraction. At the time when we take the memory measurement, the docu-

ment is fully fragmented and each character is boxed in a SeqChar or SeqSubstring object. Since

the latter is larger, the SeqChar representation is more compact than the SeqSubstring repre-

sentation for this program. The SeqChar scheme is also faster. The main reason of this is that

suffix extraction does not perform allocation whereas in the SeqSubstring representation, a suffix

is obtained by creating a new SeqSubstring object.

To see how performance of Xtatic’s pattern matching over pcdata compares with performance

of native string manipulation, we hand-coded a C] program that implements the behavior of the

process example. Instead of scanning each character of the input string, this program goes di-

rectly to the next substring matching a+ and concatenates the intermediate substrings using C]’s

StringBuilder. This program completes in 60 ms and uses 3.5 Mb. This shows that Xtatic pays

a heavy price for treating pcdata generically and doing a lot of boxing and for forcing character

for character traversal.

The results of the second experiment contrast with the first. Since addrbook does not pattern

match over pcdata, no fragmentation takes place, and we can benefit from a compact pcdata

representation. As expected, the SeqChar scheme proves to be substantially less efficient than

the others. Observe that SeqSubstring is more memory efficient than SeqString even though
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SeqString objects are smaller. The reason of this is that with SeqSubstring, we load all pcdata

chunks into a single string buffer and avoid creating a large number of string objects.

The approaches presented in this section are in no way exhaustive. We are planning to extend

the Xtatic pattern matching algorithm to experiment with several strategies to directly match

strings and to compare these with the native .NET regular expression approach.

7.3 Calling Hell From Heaven

The homogeneous translation scheme raises some issues related to calls between Xtatic and C].

One is static in nature and is concerned with overloaded methods whose signatures are different in

Xtatic but are mapped to indistinguishable C] signatures. Another is a dynamic issue addressing

efficient retrieval of Xtatic values from homogeneous C] containers. We consider these issues in

turn.

7.3.1 Method Overloading

It is natural for Xtatic to extend C] method overloading to support method signatures that contain

regular types. This conflicts somewhat with our homogeneous translation scheme, which would

translate all such types to Seq, possibly resulting in shortage of signatures that could differentiate

the original methods.

We resolve this problem by generating new names for all methods having arguments of types

more precise than Seq (or, equivalently, [[any]]). (The renaming scheme, however, has to take

into account method signatures so that, e.g., an overriding method receives the same modified name

as the method it overrides). As it follows, this name mangling is not applied to methods whose

regular type arguments are all of class Seq—this is the case that can be handled by C] overloading

itself.

Similar treatment, for identical safety reasons, is applied to class fields.

This approach fits well with the needs of separate compilation, when a pre-compiled Xtatic

library is to be used for programming larger applications, either using Xtatic or pure C]:

• In addition to translating Xtatic code to C] our compiler also preserves in a separate struc-

ture signatures of methods with regular argument types.2 Then, an Xtatic library consists

of this information together with an assembly generated by a C] compiler.

2Currently this structure is a separate file, but we explore if the corresponding information can be stored directly

in .NET assemblies.
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• When an Xtatic program is compiled against the library, the preserved signature information

is used to resolve overloaded method calls into appropriate mangled method names.

• A C] program compiled against the Xtatic library is expected to refer only to non-mangled

method names,3 that is method names with regular type arguments at most as precise as

Seq.

Consequently, if a creator of an Xtatic library needs to expose to pure C] code a method

operating on values of a regular type, say [[Person]], he needs to explicitly create a method

accepting Seq values, casting them to [[Person]], and then performing the intended functionality.

The latter scenario can be contrasted with an entirely different (hypothetical) support for

method overloading that would translate a method with regular type arguments to a method with

Seq arguments, automatically generating appropriate casting code. We believe that our simpler

solution, by exposing to the programmer need to perform potentially expensive cast operations,

can result in better program designs, as well as more customized error reporting and recovery.

7.3.2 Fast Downcasting

Part of the appeal of Xtatic is that it allows programmers to use familiar C] libraries to store

and manipulate XML values; in particular, XML values can be stored in generic collections such

as Hashtable and Stack. However, extracting values from such containers requires a downcast

from object to the intended type of the value. In pure C] this operation incurs only a small

time overhead, but in Xtatic, downcasting to a regular type may involve an expensive structural

traversal of the entire value. To avoid this overhead, we need a way to stamp sequence values with a

representation of their type and perform a run-time type comparison rather than full re-validation

during downcasting. Our design places this stamping under programmer control.

We begin by extending the source language with a stamping construct, written <[[T]]>e

(“stamp e with regular type T”). An expression of this form is well typed if e has static type

T; in this case, the result type of the whole expression is object. At run-time, stamped sequences

are represented by objects of class StampedSeq, with two fields: stamp, of type Typestamp, and

contents, of type Seq. (Giving stamped values type object ensures that, at run-time, such values

will never appear as part of other sequences. This makes sequence operations such as concatenation,

normalization, and prefix extraction simpler and more efficient.)

For each regular type T appearing in a stamp or cast expression in the program, the compiler

generates initialization code that hashes T type to an object of class Typestamp.

3Technically, it is possible to violate safety by finding out the precise mangled names of methods. We are not

aware, however, about protection for mangled methods more substantial than security through obscurity.
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A cast expression of the form ([[T]])e is executed by first checking whether the value of e has

class StampedSeq; if so, it extracts the stamp, checks whether it is identical to the hash of T, and

returns the sequence stored in the contents field of the StampedSeq object; if this fails, it falls

back to the general pattern-matching algorithm, which dynamically re-validates the value.

A small experiment demonstrates the benefits of type-stamping. Consider an obfuscated pro-

gram for reversing sequences belonging to the type APers* introduced in Chapter 3. We traverse

the sequence and put each element in a C] queue. Then we dequeue one element at a time, cast

it to APers, and add it to the result. We ran this program on two XML documents, each con-

taining 30,000 APers elements. In the first document, each APers element has exactly one email

child, in the second, twenty. For each document we tried two versions of the program: one with

type-stamping, and one without.

without type-stamping with type-stamping

1 email 33 ms 28 ms

20 emails 89 ms 28 ms

On the document with single emails, type stamping yields only a small performance improve-

ment, since the overhead of adding and checking the type stamps is roughly equivalent to the cost

of pattern-matching a small APers element. In the other case, the benefits of type-stamping are

clear—the type-stamping version of the program is three times faster.

In this design, the burden of type stamping is placed on the programmer. We have experi-

mented with alternative designs in which stamping is performed silently—either by adding a stamp

whenever a sequence value is upcast to type object or by including a type stamp in every sequence

object. However, we have not found a design in which the performance costs of stamping and stamp

checking seem acceptably predictable. The difficulty is that there are infinitely many equivalent

representations of the static type of a given sequence value. Because the process of stamping is

invisible, the programmer has no way of predicting which of these representations will actually

appear in the stamp. Thus, rather than the simple syntactic-identity check used above, we must

ensure that any representation will produce the same effect—i.e., we must perform full equivalence

checking between stamps at run time. Indeed, to avoid requiring the programmer to calculate the

minimal types of sequence values (because only this type will satisfy an equivalence check), we

would need to perform full subtype testing at run time. This is problematic, since—although com-

mon cases of subtype checking for regular types can be optimized sufficiently to make the compiler’s

front end acceptably fast in practice [37]—in general subtype testing can take time exponential in

the size of the types. Such a potentially costly operation should not be applied automatically.
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7.4 Measurements

This section describes performance measurements comparing Xtatic with some other XML pro-

cessing systems. Our goal in gathering these numbers has been to verify that our current imple-

mentation gives reasonable performance on a range of tasks and datasets, rather than to draw

detailed conclusions about relative speeds of the different systems. (Differences in implementation

platforms and languages, XML processing styles, etc. make the latter task well nigh impossible!)

Our tests were executed on a 2GHz Pentium 4 with 512MB of RAM running Windows XP.

The Xtatic and DOM experiments were executed on Microsoft .NET version 1.1. The CDuce

interpreter (CVS version of November 25th, 2003) was compiled natively using ocamlopt 3.07+2.

Qizx/Open and Xalan XSLTC were executed on SUN Java version 1.4.2. Since this chapter is

concerned with run-time data structures, our measurements do not include static costs of typecheck-

ing and compilation. Also, since the current implementation of Xtatic’s XML parser is inefficient

and does not reveal much information about the performance of our data model, we factor out

parsing and loading of input XML documents from our analysis. Each measurement was obtained

by running a program with given parameters ten times and averaging the results. We selected

sufficiently large input documents to ensure low variance of time measurements and to make the

overhead of just-in-time compilation negligible. The Xtatic programs were compiled using the hy-

brid pcdata encoding described in Section 7.2 and the lazy append with lazy normalization policy

described in Section 7.1.

We start by comparing Xtatic with the Qizx/Open [15] implementation of XQuery. Our test

is a small query named shake that counts the number of distinct words in the complete Shakespeare

plays, represented by a collection of XML documents with combined size of 8Mb.

shake

Xtatic 7,500 ms

Qizx/Open 3,200 ms

The core of the shake implementation in XQuery is a call to a function tokenize that splits

a chunk of character data into a collection of white-space-separated words. In Xtatic, this is

implemented by a generic pattern matching statement that extracts the leading word or white

space, processes it, and proceeds to handle the remainder of the pcdata. Each time, this remainder

is boxed into a SeqSubstring object, only to be immediately unboxed during the next iteration of

the loop. We believe this superfluous manipulation is the main reason why Xtatic is more than

twice slower than Qizx/Open in this example.

We also implemented several XQuery examples from the XMark suite [61], and ran them
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on an 11MB data file generated by XMark (at “factor 0.1”). Xtatic substantially outperforms

Qizx/Open on all of these benchmarks—by 500 times on q01, by 700 times on q02, by six times on

q02, and by over a thousand times on q08. This huge discrepancy appears to be a consequence of

two factors. Firstly, Qizx/Open, unlike its commercial counterpart, does not use indexing, which

for examples such as q01 and q02 can make a dramatic performance improvement. Secondly, we

are translating high-level XQuery programs into low-level Xtatic programs—in effect, performing

manual query optimization. This makes a comparison between the two systems problematic, since

the result does not provide much insight about the underlying representations.

Next, we compare Xtatic with two XSLT implementations: .NET XSLT and Xalan XSLTC.

The former is part of the standard C] library; the latter is an XSLT compiler that generates a

Java class file from a given XSLT template.

We have implemented several transformations from the XSLTMark benchmark suite [9]. The

backwards program traverses the input document and reverses every element sequence; identity

copies the input document; dbonerow searches a database of person records for a particular entry,

and reverser reads a PCDATA fragment, splits it into words, and outputs a new PCDATA fragment

in which the words are reversed. The first three programs are run on a 2MB XML document

containing 10,000 top-level elements; the last program is executed on a small text fragment.

backwards identity dbonerow reverser

Xtatic 450 ms 450 ms 13 ms 2.5 ms

.NET XSLT 2,500 ms 750 ms 300 ms 9 ms

Xalan XSLTC 2,200 ms 250 ms 90 ms 0.5 ms

Xtatic exhibits equivalent speed for backwards and identity since the cost of reversing is

approximately equal to the cost of copying a sequence in the presence of lazy concatenation. The

corresponding XSLT programs behave differently since backwards is implemented by copying and

sorting every sequence according to the position of the elements. The XSLT implementations are

relatively efficient on identity. This may be partially due to the fact that they use a much more

compact read-only representation of XML documents. Xtatic is substantially slower than Xalan

XSLTC on the pcdata-intensive reverser example. We believe the reason for this is, as in the

case of shake in the comparison with Qizx/Open, the overhead of our pcdata implementation for

performing text traversal. Conversely, Xtatic is much faster on dbonerow. As with Qizx/Open,

this can be explained by the difference in the level of programming detail—a single XPath line in

the XSLTC program corresponds to a low-level Xtatic program that specifies how to search the

input document efficiently.

In the next pair of experiments, we compare Xtatic with CDuce [4] on two programs:
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addrbook and split. The first of these was introduced in Chapter 3 (the CDuce version was

coded to mimic the Xtatic version, i.e., we did not use CDuce’s higher-level transform prim-

itive); it is run on a 25MB data file containing 250,000 APers elements. The second program

traverses a 5MB XML document containing information about people and sorts the children of

each person according to gender.

split addrbook

Xtatic 950 ms 1,050 ms

CDuce 650 ms 1,300 ms

Although it is difficult to compare programs executed in different run-time frameworks and written

in different source languages, we can say that, to a rough first approximation, Xtatic and CDuce

exhibit comparable performance. An important advantage of CDuce is a very memory-efficient

representation of sequences. This is compensated by the fact that Xtatic programs are (just-in-

time) compiled while CDuce programs are interpreted.

The next experiment compares Xtatic with Xact [47]. We use two programs that are part of

the Xact distribution—recipe processes a database of recipes and outputs its HTML presentation;

sortedaddrbook is a version of the address book program introduced in Chapter 3 that sorts the

output entries. We ran recipe on a file containing 525 recipes and sortedaddrbook on a 10,000

entry address book.4

recipe sortedaddrbook

Xtatic 250 ms 1,600 ms

Xact 60,000 ms 10,000 ms

For both programs Xtatic is substantially faster. As with XQuery, this comparison is not precise

because of a mismatch between XML processing mechanisms of Xtatic and Xact. In particular,

the large discrepancy in the case of recipe can be partly attributed to the fact that its style of

processing in which the whole document is traversed and completely rebuilt in a different form is

foreign to the relatively high level XML manipulation primitives of Xact but is quite natural to

the relatively low level constructs of Xtatic.

The last experiment compares Xtatic with a C] program using DOM and the .NET XPath

library, again using the addrbook example on the 25MB input file. The C] program employs XPath

to extract all the APers elements with tel children, destructively removes their email children,

and returns the obtained result.

4Because of problems installing Xact under Windows, unlike the other experiments, comparisons with Xact
were executed on a 1GHz Pentium III with 256MB of RAM running Linux.
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addrbook

Xtatic 1,050 ms

DOM/Xpath 5,100 ms

This experiment confirms that DOM is not very well-suited for the kind of functional manipulation

of sequences prevalent in Xtatic. The DOM data model is geared for destructive modification and

random access traversal of elements and, as a result, is much more heavyweight.

7.5 Related Work

We have concentrated here on the runtime representation issues that we addressed while building

an implementation of Xtatic that is both efficient and tightly integrated with C].

There is considerable current research and development activity aimed at providing convenient

support for XML processing in both general-purpose and domain-specific languages. In the latter

category, XQuery [74] and XSLT [68] are special-purpose XML processing languages specified by

W3C that have strong industrial support, including a variety of implementations and wide user

base. In the former, the CDuce language of Benzaken, Castagna, and Frisch [19, 4] generalizes

XDuce’s type system with intersection and function types. The Xen language of Meijer, Schulte,

and Bierman [54, 55] is a proposal to significantly modify the core design of C] in order to integrate

support for objects, relations, and XML (in particular, XML itself simply becomes a syntax for

serialized object instances). Xact [47, 6] extends Java with XML processing, proposing an elegant

programming idiom: the creation of XML values is done using XML templates, which are immutable

first-class structures representing XML with named gaps that may be filled to obtain ordinary XML

trees. XJ [29] is another extension of Java for native XML processing that uses W3C Schema as

a type system and XPath as a navigation language for XML. XOBE [46] is a source to source

compiler for an extension of Java that, from language design point of view, is very similar to

Xtatic. Scala is a developing general-purpose web services language that compiles into Java

bytecode; it is currently being extended with XML support [11].

So far, most of the above projects have concentrated on developing basic language designs; there

is little published work on serious implementations. (Even for XQuery and XSLT, we have been

unable to find detailed descriptions of their run-time representations.) We summarize here the

available information.

Considerable effort, briefly sketched in [4], has been put into making the CDuce’s OCaml-

based interpreter efficient. They address similar issues of text and tree representations and use

similar solutions. CDuce’s user-visible datatype for strings is also the character list, and they also
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implement its optimized alternatives—the one described in the paper resembles our SeqSubstring.

CDuce uses lazy list concatenation, but apparently only with eager normalization. Another dif-

ference is the object-oriented flavor of our representations.

Xact’s implementation, developed independently and in parallel with Xtatic but driven by

similar needs (supporting efficient sharing, etc.) and targeting a similar (object-oriented) runtime

environment, has strong similarities to ours; in particular, lazy data structures are used to support

efficient gap plugging. Our preliminary performance measurements may be viewed as validating

the representation choices of both implementations. Xtatic’s special treatment of pcdata (Sec-

tion 7.2)does not appear to be used in Xact.

The current implementations of XOBE and XJ are based on DOM, although the designs are

amenable to alternative back-ends.

Kay [44] describes the implementation of Version 6.1 of his XSLT processor Saxon. The processor

is implemented in Java and, like in our approach, does not rely on a pre-existing Java DOM library

for XML data representation, since DOM is again too heavyweight for the task at hand: e.g., it

carries information unnecessary for XPath and XSLT (like entity nodes) and supports updates.

Saxon comes with two variants of run time structures. One is object-oriented and is similar in

spirit to ours. Another represents tree information as arrays of integers, creating node objects only

on demand and destroying them after use. This model is reportedly more memory efficient and

quicker to build, at the cost of slightly slower tree navigation. Overall, it appears to perform better

and is provided as the default in Saxon.

In the broader context of functional language implementations, efficient support for list (and

string) concatenation has long been recognized as an important issue. An early paper by Morris,

Schmidt and Wadler [57] describes a technique similar to our eager normalization in their string

processing language Poplar. Sleep and Holmström [63] propose a modification to a lazy evaluator

that corresponds to our lazy normalization. Keller [45] suggests using a lazy representation without

normalization at all, which behaves similarly to database B-trees, but without balancing. We are

not aware of prior studies comparing the lazy and eager alternatives, as we have done here.

More recently, the algorithmic problem of efficient representation for lists with concatenation

has been studied in detail by Kaplan, Tarjan and Okasaki [41, 42, 43, 60]. They describe catenable

steques which support constant amortized time sequence operations. We opted for the simpler

representations described here out of concern for excessive constant factors in running time arising

from the complexity of their data structures (see Section 7.1.3.)

Another line of work, started by Hughes [38] and continued by Wadler [70] and more recently

Voigtlander [66] considers how certain uses of list concatenation (and similar operations) in an
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applicative program can be eliminated by a systematic program transformation, sometimes result-

ing in improved asymptotic running times. In particular, these techniques capture the well-known

transformation from the quadratic to the linear version of the reverse function. It is not clear, how-

ever, whether the techniques are applicable outside the pure functional language setting: e.g., they

transform a recursive function f that uses append to a function f ′ that uses only list construction,

while in our setting problematic uses of append often occur inside imperative loops.

Prolog’s difference lists [64] is a logic programming solution to constant time list concatenation.

Using this technique requires transforming programs operating on regular lists into programs op-

erating on difference lists. This is not always possible. Marriott and Søndergaard [53] introduce a

dataflow analysis that determines whether such transformation is achievable and define the auto-

matic transformation algorithm. We leave a more detailed comparison of our lazy concatenation

approach and the difference list approach for future work.
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Chapter 8

Conclusions and Future Work

This dissertation has described an efficient implementation of Xtatic—a mixture of the general

purpose object-oriented language C] with constructs for type-safe processing of XML documents.

We have introduced the framework of matching automata, developed compilers based on it, and

demonstrated that they generate efficient low-level programs. Along the way, we have discussed an

approach for enhancing matching automata resulting in simple and efficient disambiguation policy

of pattern matching involving patterns with variable binding; an efficient type-based compiler

optimization and a theoretic analysis of the corresponding optimization problem, and a C]-based

run-time system supporting fast and compact operations on XML sequences. We have shown that

Xtatic’s performance is quite competitive compared to the performance of existing mainstream

XML processing frameworks.

The next step in the evolution of Xtatic concerns graduating from being a research project and

moving toward being accepted in a wider community of programmers. For this to become reality,

several criteria must be satisfied.

The first group of requirements deals with linguistic extensions that are necessary for Xtatic

to become a practical general-purpose programming language.

One extension that is of immediate importance involves providing support for full C] including

generics. This would necessitate a substantial redesign of Xtatic’s compiler and run-time environ-

ment. A promising starting point with respect to generics is Hosoya, Frisch, and Castagna’s recent

proposal for adding polymorphism to XDuce [32].

The extended language must have an efficient and robust implementation. For this, further

improvement of the type-based optimization algorithm is essential. In particular, my goal is to

refine the algorithm in order to achieve a more general optimality property. For memory efficiency,
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Xtatic must support a streaming XML parsing model. The current approach used in Xtatic

is not applicable for large data sets since it relies on keeping entire documents in main memory

during processing. To solve this problem, we would like to re-engineer the Xtatic compiler by

combining the non-backtracking compilation algorithm developed in the framework of matching

automata with a streaming parser.

The next group of requirements concerns the aspects of language design that provide for a

smoother integration between native C], XML-related constructs, and existing industry standards.

It is essential that there be a more intuitive correspondence between traditional C] data struc-

tures such as objects and arrays and XML values; Xtatic must provide data binding capabilities

for a well-typed mapping between the two worlds and tools for specifying relationships between

XML schemas and C] types. Other useful tools can help in defining complex XML types from

scratch, importing them from outside sources, and inferring them from existing documents.

To achieve broader acceptance, Xtatic must be well-integrated with existing standards. This

particularly involves bringing closer the Xtatic type system and XML schema standards and

providing easy conversion mechanism between them. A tricky question is what to do with schema

features—such as referential integrity constraints—that do not easily translate to types.

The last kind of extensions is geared toward enhancing the expressive power of Xtatic’s pattern

matching. There are two complimentary directions. The first one involves extending patterns to

match not only XML data but also C] objects and their structure. The second introduces new

pattern matching constructs with better iterative capabilities. There has been some initial investi-

gation of iteration constructs that employ ambiguous patterns and collect all of their bindings [24].

Other approaches may exploit non-linear variables in patterns and new language-level mapping,

filtering, and folding constructs. All these extensions present considerable challenges and design

choices both to the type checker and to the compiler.
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