
A Language for Bi-Directional Tree Transformations

Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt

University of Pennsylvania

ABSTRACT
We develop a semantic foundation and a core program-
ming language for bi-directional transformations on tree-
stuctured data. In one direction, these transformations,
called lenses, map a complex “concrete” tree into a sim-
plified “abstract” one; in the other, they map a modified
abstract tree, together with the original concrete tree, to a
correspondingly modified concrete tree.

The challenge of understanding and designing these trans-
formations arises from their asymmetric nature: information
is discarded when mapping from concrete to abstract, and
must be restored on the way back. We identify a natu-
ral mathematical space of “well-behaved lenses” whose two
components are constrained to fit together in a sensible
way. We study definedness and continuity in this setting,
show that well-behaved lenses form a complete partial or-
der, and state a precise connection with the classical theory
of “update translation under a constant complement” from
databases.

We then instantiate our semantic framework as a small
programming language, called Hocus Focus, whose ex-
pressions denote well-behaved lenses operating on tree-
structured data. The primitives include familiar constructs
from functional programming (composition, mapping, pro-
jection, recursion) together with some novel primitives for
manipulating trees (splitting, pruning, pivoting, etc.). An
extended example shows how Hocus Focus can be used to
define a lens that translates between a native HTML repre-
sentation of browser bookmarks and a generic form of ab-
stract bookmark structures.

1. INTRODUCTION
We often want to transform a structure into a different (of-
ten smaller, simpler, or more abstract) form, in such a way
that updates to the new structure can be reflected back as
updates to the original structure. The transformed struc-
ture is a view of the original structure in which editing is
more convenient.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

This paper addresses an instance of “editing through a
view” that arises in the context of a larger project called
Harmony. The goal of the Harmony project is to build
a universal synchronization framework for tree-structured
data—a generic tool for propagating updates between dif-
ferent copies, possibly stored in different formats, of a tree
data structure. For example, Harmony might be used to
synchronize the bookmark files of of several different web
browsers (on the same or different machines), allowing book-
marks and bookmark folders to be added, deleted, edited,
and reorganized in any browser and later combining (syn-
chronizing) the changes performed in different browsers.

Views play a key role in Harmony: to synchronize dis-
parate data formats, we define a single common abstract
view as well as lenses that transform each concrete format
into the abstract view. For example, we can synchronize a
Netscape bookmark file with an Opera bookmark file by us-
ing appropriate lenses to transform each into an abstract
bookmark structure and synchronizing the results. How-
ever, we are not done at this point: we need to take the
updated abstract structures resulting from synchronization
and transform them back into correspondingly updated con-
crete structures. To achieve this, a lens must include not one
but two functions—one for extracting an abstract view from
a concrete one, and one for pushing an updated abstract
view back into an updated concrete one. (We call these the
get and put components, respectively. The intuition behind
the terms is that the mapping from concrete to abstract is
often some sort of projection, so the get direction involves
“getting the abstract part” out of a larger concrete structure,
while the put direction amounts to “putting a new abstract
part” into an old concrete structure.)

Not surprisingly, the tricky parts of constructing lenses
arise in the put direction. If the get component of a lens is
a projection—i.e., information is suppressed when moving
from concrete to abstract—then the put component must
restore this information in some appropriate way. (We will
see a concrete example of this shortly.) The difficulty is that
there may, in general, be many ways of doing so.

Our approach to this problem is to design a language in
which any expression that specifies a proper get function
simultaneously defines the corresponding put. All the prim-
itives in this language are designed to “work properly in both
directions,” and the combining forms preserve this property.
We formalize the notion of proper behavior in the semantics
of our language.

To define the semantics of our language, we identify a
natural mathematical space of “well-behaved lenses.” There

is quite a bit to be said at this general level, before fixing
the domain of structures being transformed (trees) or the
syntax for writing down transformations. First, we must
phrase our basic definitions to allow lenses to be partial—
i.e., to capture the fact that there may be structures to which
a given lens cannot sensibly be applied. Second, we need
some laws that express our intuitions about how the get and
put parts of a lens should behave in concert. For example,
if we use the get part of a lens to extract an abstract view
a from a concrete view c and then use the put part to push
the same a back into c, then we should get back to the
original c. These laws must take partiality into account.
Third, we must deal with the fact that we will later want to
define lenses by recursion (because the trees that our lenses
will manipulate may in general have arbitrarily deep nested
structure—e.g., when they represent directory hierarchies,
browser bookmark folders, etc.). This raises familiar issues
of monotonicity and continuity.

Once the semantic foundations are in place, we need some
syntax for constructing lenses for the specific domain of
edge-labeled trees. Our surface language, Hocus Focus, com-
prises a collection of primitive lenses for tree transformations
and powerful lens combinators (composition, repetition, con-
ditionals, mapping, etc.) that allow complex lenses to be
built up from simpler ones. From these basic constructs,
we can build a rich variety of useful “derived lenses”—e.g.,
lenses for manipulating ordered (list-structured) data repre-
sented as trees.

We begin in Section 2 with a small example illustrating the
fundamental ideas. Section 3 develops the semantic founda-
tions of lenses in a general setting and addresses issues of
partiality and continuity. Section 4 instantiates this generic
framework with primitive lenses and lens combinators for
our specific application domain of lenses over trees. Sec-
tion 5 illustrates the use of these constructs in actual “lens
programming” by walking through a substantial example
derived from the Harmony bookmark synchronizer. Sec-
tion 6 surveys a variety of related work from both the pro-
gramming languages and the database literature and states
a precise correspondence (amplified in [26]) between our
“well-behaved lenses” and the closely related idea of “update
translation under a constant complement” from databases.
Section 7 sketches some directions for future research. For
brevity, proofs are omitted; these can be found in an accom-
panying technical report [17].

2. A SMALL EXAMPLE
Suppose our concrete data source c is a small address book
giving coordinates for two friends, represented as the follow-
ing tree (we draw trees sideways to save space):

c =

Pat 7→

{
Phone 7→ 333-4444

URL 7→ http://pat.com

Chris 7→
{
Phone 7→ 888-9999

URL 7→ http://chris.org

Each curly brace denotes a node, and each “X 7→ ...”
on the right of the curly brace denotes a child labeled X.
To avoid clutter, when an edge leads to an empty tree,
we omit the opening brace, the 7→ symbol and the final
childless node—e.g., “333-4444” above actually stands for
“{333-4444 7→ {”. Throughout the paper, we work with un-
ordered, edge-labeled trees in which each node has at most

one child of a given name—i.e., a tree is just a partial func-
tion from character strings to trees. We will use the word
“view” instead of “tree” from now on to emphasize the fact
that our “concrete” and “abstract” structures are funda-
mentally the same sorts of things.1 This terminology will
also facilitate sequential composition of lenses: in the com-
posite lens “l1; l2” the abstract view generated by l1 becomes
the concrete view seen by l2.

Suppose that, for some reason, we want to edit the data
from this concrete view in a simplified format, where each
name is associated directly with a phone number.

a =

{
Pat 7→ 333-4444

Chris 7→ 888-9999

Why would we want this? Perhaps the edits are going to
be performed by synchronizing this abstract view with an-
other replica of the same address book in which no URL
information is recorded, or perhaps there is no synchronizer
involved but the edits are going to be performed by a hu-
man who is only interested in phone information and whose
screen should not be cluttered with URLs.

Now we are ready to make our changes to the abstract
view a, yielding a new abstract view a′ of the same form
but with modified content. For example, let’s change Pat’s
phone number, drop Chris, and add a new friend, Jo.

a′ =

{
Pat 7→ 333-4321

Jo 7→ 555-6666

Note that we are only interested in the final view a′, not the
actual sequence of “edit operations” that may have been
used to transform a into a′. This design choice arises from
the fact that Harmony synchronizes based on the current
states of two replicas, rather than on a trace of modifi-
cations; the tradeoffs between state-based and trace-based
synchronizers are discussed in [27].

Finally, we want to compute a new concrete view c′ re-
flecting the new view a′. That is, we want the parts of c′

that were “kept” when calculating a (e.g., Pat’s phone num-
ber) to be overwritten with the corresponding information
from a′, while the parts of c that were “suppressed” (e.g.,
Pat’s URL) should have their values carried over from c.

c′ =

Pat 7→

{
Phone 7→ 333-4321

URL 7→ http://pat.com

Jo 7→
{
Phone 7→ 555-6666

URL 7→ http://google.com

We also need to “fill in” appropriate values for the parts of c′

(in particular, Jo’s URL) that were created in a′ and for which
c therefore contains no information. Here, we simply set the
URL to a constant default, but in more complex situations
we might want to compute it from other information in a′.

The relation between the concrete views c and c′ and the
abstract views a and a′ can be expressed as a lens l con-
sisting of a pair of functions—a get function that “extracts”
an abstract view from a concrete view plus a put function

1Note that we use the word “view” here in a slightly different
sense than some of the database papers that we cite: there,
a “view” is a function from concrete to abstract states (i.e.,
it is a query that, for each concrete database state, picks out
a view in our sense).

that “inserts” a new abstract view into an old concrete view
to yield a new concrete view. Our goal is to design a pro-
gramming language, Hocus Focus, that allows these lenses
to be described in a concise, natural, and mathematically
coherent manner.

3. SEMANTIC FOUNDATIONS
Although surface language, Hocus Focus, will be specialized
for dealing with tree transformations, its semantic under-
pinnings are better presented in an abstract setting that is
parameterized by the data structures manipulated by lenses.
For the rest of this section, we assume we are given some
set C of concrete views and some set A of abstract views;
in Section 4 we will choose both of these to be the set of
unordered, edge labeled trees.

3.1 Basic structure
A lens is a pair of partial functions: one that gets an ab-
stract view from a concrete view, and one that puts a new
abstract view into an old concrete view to yield a new con-
crete view. Since there may be cases where no old concrete
view is available (as we saw with Jo’s URL in the previous
section), the concrete input to the put function may also be
a special view Ω, pronounced “missing.” (There are other
possible ways of dealing with missing information; the moti-
vation for this design choice will be discussed after we define
the map combinator in Section 4.) We write CΩ for C ∪{Ω}.
3.1.1 Definition [Lenses]: A lens l comprises two partial
functions: a get function from C to A, written l↗, and a
put function from A×CΩ to C, written l↘.

We write dom(l↗) for the subset of C on which l↗ is defined
and dom(l↘) for the subset of A×CΩ on which l↘ is defined,
and similarly ran(l↗) and ran(l↘) for the ranges of the get
and put functions. Note that neither l↗ nor l↘ may return
Ω. We often say “we put view a into view c” instead of “we
apply the put function to (a, c).” The intuition behind the
notations l↗ and l↘ is that the get part of a lens “lifts”
an abstract view out of a concrete one, while the put part
“pushes down” a new abstract view into an existing concrete
view.

3.1.2 Definition [Well-behaved lenses]: A lens is well
behaved iff its get and put functions obey the following laws:

(GetPut) c ∈ dom(l↗) =⇒ l↘ (l↗ c, c) = c

(PutGet) (a, c) ∈ dom(l↘) =⇒ l↗ (l↘ (a, c)) = a

The GetPut law states that if some abstract view obtained
from a concrete view c is unmodified, putting it back into
c will yield the same concrete view. This law also requires
the put function to be defined on (l↗ c, c) whenever l↗ c
is defined. The PutGet law states that the put function
captures all of the information contained in the abstract
view: if putting a view a into a concrete view c yields a
view c′, then the abstract view obtained from c′ is exactly
a. This law also requires that the get function be defined at
least on the range of the put function.

An example of a lens satisfying PutGet but not GetPut
is the following. Let C = string × int and A = string,
and define l as:

l↗ (s, n) = s

l↘ (s′, (s, n)) = (s′, 0)

Then l↘ (l↗ (s, 1), (s, 1)) = (s, 0) 6= (s, 1). Intuitively, this
law fails because the put function has some “side effects”:
it modifies information from the concrete view that is not
contained in the abstract view.

An example of a lens satisfying GetPut but not PutGet
is the following. Let C = string and A = string × int,
and define l as:

l↗ s = (s, 0)

l↘ ((s′, n), s) = s′

Law PutGet fails in this case some information contained
in the abstract view does not get propagated in the new
concrete view. For example, l↗ (l↘ ((s′, 1), s)) = l↗ s′ =
(s′, 0) 6= (s′, 1).

The GetPut and PutGet laws are essential, reflecting
fundamental expectations about the behavior of lenses. Re-
moving one of these two laws significantly weakens the se-
mantic foundation.

We may also optionally consider a third law, called Put-
Put:

(a, c) ∈ dom(l↘) =⇒ l↘ (a′, l↘ (a, c)) = l↘ (a′, c)

This law states that the effect of a sequence of two puts is
just the effect of the second, as long as the first put is defined
(the reader might enjoy checking that the special case where
a = a′ follows from the other two laws).We say that a well-
behaved lens that also satisfies PutPut is very well behaved.
Both well-behaved and very-well-behaved lenses correspond
(modulo some details about partiality) to well-known classes
of “update translators” from the classical database litera-
ture; see Section 6.

The PutPut law intuitively states that a series of changes
to an abstract view may be applied incrementally or all at
once, resulting in the same final concrete view in both cases.
This is a natural and intuitive constraint, and the foun-
dational development in this section is valid for both well-
behaved and very-well-behaved variants of lenses. However,
when we come to defining Hocus Focus in Section 4, we will
drop PutPut because one of our most important lens com-
binators, map, fails to satisfy it. This point is discussed in
more detail in Section 4.2.

3.2 Basic Properties
We now explore some simple consequences of the lens laws.
To begin, we define a notion of injectivity for the put func-
tion. Let f be a partial function from A × CΩ to C. By
abuse of terminology, we say that f is injective iff it is in-
jective in its first argument wherever it is defined—i.e., if,
for all views a, a′, and c such that f(a, c) and f(a′, c) are
defined, we have a 6= a′ =⇒ f(a, c) 6= f(a′, c).

The following lemma provides an easy way to show that
a lens is not well behaved. We used it many times while
designing the Hocus Focus surface language, to quickly gen-
erate and test candidate lenses.

3.2.1 Lemma: The put function of a well-behaved lens is
injective.

Conversely, for each injective put function that satisfies a
simple additional condition, there is exactly one get function
that makes a well-behaved lens.

3.2.2 Lemma: Let l↘ be an injective partial function
from A × CΩ to C such that (a, c) ∈ dom(l↘) =⇒

l↘ (a, l↘ (a, c)) = l↘ (a, c). Then there is exactly one
function l↗ such that l = (l↗, l↘) is a well-behaved lens.

This lemma shows that we can define a lens simply by
giving a suitable put function. However, in most cases, we
have found it more convenient to write out both get and put
functions explicitly and directly check all laws.

3.3 Recursion
Since our lens framework is going to be instantiated with
trees, and since trees in many interesting application do-
mains may have unbounded depth (e.g., a bookmark item
can be either a link or a folder containing a collection of
bookmark items), we will need to be able to define lenses by
recursion. Our final task for this foundational section, then,
is to set up the necessary structure for interpreting recursive
definitions in the surface language.

The development follows familiar lines. We introduce an
information ordering on lenses and show that the set of
lenses equipped with this ordering is a complete partial or-
der (cpo). We then apply standard tools from domain the-
ory, giving us interpretations of a variety of common syn-
tactic forms from programming languages—in particular,
functional abstraction and application (i.e., “higher-order
lenses”) and lenses defined by (single or mutual) recursion.

We say that a lens l′ has more information than a lens
l, written l ≺ l′, if the put function of l′ is an extension of
the put function of l—that is, if l′↘ is defined on a larger
domain than l↘ and if the two put functions are equal on
their common domain, dom(l↘). This relation is a partial
order.

A cpo is an ordered set in which every increasing chain of
elements has a least upper bound in the set. If l0 ≺ l1 ≺
. . . ≺ ln ≺ . . . is an increasing chain of elements, we write⊔

n∈ω ln for its least upper bound. A cpo with bottom is a
cpo that contains an element, ⊥, that is smaller than every
other element. In our setting, ⊥l is the lens whose put and
get function are undefined everywhere.

3.3.1 Theorem: Let L be the set of well-behaved lenses
between C and A. Then (L, ≺) is a cpo with bottom.

We can now apply standard domain theory (as described,
for example, in [31]) to interpret a variety of constructs for
defining continuous lens combinators. In particular, every
continuous function on well-behaved lenses has a least fixed
point that is a well behaved lens.

4. TRANSFORMING TREES
We now describe our surface language, Hocus Focus. We
first formally define the set of edge-labeled trees. We then
present some primitive lenses and lens combinators, which
we assemble to create several derived lenses. We finally
describe an encoding of lists as trees and introduce some
specialized derived lenses for manipulating them. We give
intuitions and small examples along the way; an extended
example using most of the lenses together appears in Sec-
tion 5.

This collection of primitive lenses is not “complete” in any
strong sense. Our Harmony prototype defines a few other
primitives, and we expect to add a few more as we address
a broader range of applications. However, as we shall see,
the lenses described here form a core language of surprising
expressive power.

4.1 Views
From now on, we choose both C and A to be the set of un-
ordered, edge-labeled trees, which we call views. The edge
labels are drawn from some infinite set of names—e.g., char-
acter strings.

4.1.1 Definition [Views]: A view is a finite partial func-
tion from names to views.

We write V for the set of views, and VΩ for V ∪{Ω} where
Ω 6∈ V . The special view Ω is a placeholder to indicate
that a concrete view is missing. We write dom(c) for the
domain of a view c. To make some lens definitions shorter,
we assume that dom(Ω) = ∅. The metavariables a, c, d, and
v range over views; by convention, we use a for views that
are thought of as abstract and c or d for concrete views.

Note that our trees are different from (and simpler than)
XML trees, which are node labeled and ordered. We present
in Section 5 a straightforward encoding of XML/HTML
trees into our views.

We now introduce some notations involving views. Let v
be the view that associates v1 to n1, v2 to n2, . . . , and vk to
nk. We write v as {n1 7→ v1 . . . nk 7→ vk} when it appears in
running text, and as an opening brace and a vertical list of
name/subview pairs (dropping the closing curly brace) when
it appears in a displayed figure. We write “{}” (in running
text) or “{” (in displays) for the empty view, and v(n) for
the view associated to name n in v.

We often define views by extension. For instance, let v be
a view and p be a set of names such that p ⊆ dom(v); we
may define a view w as w = {n 7→ v(n) | n ∈ p}. When p
is a set of names (not necessarily included in dom(v)), we
write v|p for the view {n 7→ v(n) | n ∈ p ∩ dom(v)}. By
convention, we take Ω|p = Ω for any p (this shortens some
definitions below), and we write p for the complement of the
set p.

We now define a notion of concatenation for views. Let

v, v′ ∈ V × V . We write v + v′ (in running text) or

{
v

v′

(in displays) for the view{
n 7→ v(n) n ∈ dom(v)

n 7→ v′(n) n ∈ dom(v′)

where dom(v) ∩ dom(v′) = ∅.
A value is a view of the special form {k 7→ {}}. For

instance, a phone number {333-4444 7→ {}} in the example
of Section 2 is a value. We sometimes simply write 333-444

for such a value.
The only restriction we impose on the set of views is the

finiteness of their width, in order to prove the continuity of
the map lens. In practice, we might want to impose some
additional restrictions, so that views only represent “well-
formed” trees, corresponding for instance to schemas or con-
sistency constraints. Our current Harmony implementation
actually enforces such constraints (for reasons having to do
with the way the synchronization algorithm works), but we
will not discuss them further in this paper.

4.2 Primitive Lenses
In this section we define several atomic lenses and lens com-
binators (we will often just say “lenses” for both). We begin
with a few generic lenses that do not depend on the structure

of views: the identity lens, the constant lens, and sequen-
tial composition of lenses. We then introduce several lenses
that inspect and manipulate tree structures—three atomic
lenses (rename, hoist, and pivot) and two lens combinators
(xfork and map).

All lenses introduced in this section, with the exception of
the const lens, preserve all information when building the
abstract view in the get direction. Most lenses thus do not
need to use the concrete view in the put direction.

Every atomic lens defined in this section is well-behaved,
and every lens combinator is continuous. In fact, most lenses
(all but map) are very-well-behaved.

In order to lighten the presentation, we assume that a lens
defined in terms of other lenses is undefined wherever these
other lenses are undefined (i.e., application of lens combina-
tors is strict).

Generic Lenses
The simplest lens is the identity. It does nothing in the
get direction and copies the whole abstract view in the put
direction.

id↗ c = c
id↘ (a, c) = a

Another simple lens is the constant lens, const v d, which
transforms any view into the provided constant v in the
get direction. In the put direction, it is defined iff the ab-
stract view is equal to the constant one (by the PutGet
law, this is the only thing it can do: if const v d↘ (a, c)
is defined, then const v d↗ (const v d↘ (a, c)) = a = v).
In this case, the put function of const simply restores the
old concrete view if it is available. If the old concrete view
is missing, then there is no information as to which view
should be returned; for this case, we supply the lens with a
default view d.

(const v d)↗ c = v
(const v d)↘ (a, c) = c if a = v and c 6= Ω

d if a = v and c = Ω
undef. otherwise

The lens composition combinator l; k places two lenses l
and k in sequence.

(l; k)↗ c = k↗ l↗ c
(l; k)↘ (a, c) = l↘ (k↘ (a, l↗ c), c) if c 6= Ω

l↘ (k↘ (a, Ω), Ω) if c = Ω

The get direction applies the get function of l to yield a first
abstract view, on which the get function of k is applied.
In the put direction, if a concrete view is available, the put
functions are applied in turn. First, the put function of k is
used to put a into the concrete view that the get of k was
applied to, i.e., l↗ c. The result of this put is then put into
c using the put function of l. If the concrete view is missing,
then k is used to put a into the missing view and then l to
put the result again into the missing view.

Atomic Lenses
The rename lens changes the names of the immediate chil-
dren of a view following some bijection b on names. In ex-
amples, we use the notation

{’h3’ = ’name’ ’dl’ = ’contents’}

for the bijection that maps ’h3’ to ’name’, ’name’ to ’h3’,
’dl’ to ’contents’, and ’contents’ to ’dl’.

(rename b)↗ c =
{

b(n) 7→ c(n)

(rename b)↘ (a, c) =
{

b−1(n) 7→ a(n)

The lens hoist n is used to remove superfluous edges. In
the get direction, it expects a view that has only one child,
which must be named n. It returns this child, removing the
edge n. In the put direction, the value of the concrete view
is ignored and a new view is created, with a single edge n
pointing to the given abstract view.

(hoist n)↗ c = v if c =
{

n 7→ v

undef. otherwise

(hoist n)↘ (a, c) =
{

n 7→ a

The lens pivot n rearranges the structure at the top of a
view. {

n 7→
{

k 7→ {
v

becomes
{

k 7→ v

Intuitively, the value {k 7→ {}} under n represents a key k
(a name uniquely identifying the view) for the rest of the
view v. The get function of pivot returns a view where k
points directly to v. The put function performs the reverse
transformation, ignoring the old concrete view.

(pivot n)↗ c =
{

k 7→ v if c =

{
n 7→

{
k 7→ {

v
undef. otherwise

(pivot n)↘ (a, c) =

{
n 7→

{
k 7→ {

v
if a =

{
k 7→ v

undef. otherwise

Lens Combinators
The lens combinator xfork is used to apply different lenses
to different parts of a view. Intuitively, it splits a view into
two parts according to the names of its immediate children.
It then applies one lens to the first part and a second lens to
the other part and concatenates the results. Formally, xfork
takes two predicates on names and two lenses as arguments.
The get direction of xfork pc pa l1 l2 can be visualized as
follows (the concrete view is at the bottom):

������� ??
??

??
?

pa pa

������� pa

;;

??
??

??
?

pa

cc

������� pc

(l1↗)

OO

??
??

??
?

pc

(l2↗)

OO

������� ??
??

??
?

pc pc

dd ::

The triangles labeled pc denote views whose immediate chil-
dren have names satisfying pc; dotted arrows represent split-
ting or concatenating views. The result of applying l1↗ to
c|pc must satisfy the predicate pa, and similarly for l2—that
is, the lenses l1 and l2 are allowed to change the sets of
names in the views they are given, but they must map from
their own part of pc to their own part of pa. Conversely, in
the put direction, l1 must map from pa to pc and l2 from pa
to pc.

(xfork pc pa l1 l2)↗ c =
(l1↗ c|pc) + (l2↗ c|pc) if (1)
undef. otherwise

(xfork pc pa l1 l2)↘ (a, c) =
(l1↘ (a|pa, c|pc)) + (l2↘ (a|pa, c|pc)) if (2)
undef. otherwise

(1) dom(l1↗ c|pc) ⊆ pa
∧ dom(l2↗ c|pc) ⊆ pa

(2) dom(l1↘ (a|pa, c|pc)) ⊆ pc
∧ dom(l2↘ (a|pa, c|pc)) ⊆ pc

We now define our last primitive lens and only iterator,
map, which is a combinator that, in the get direction, applies
a given lens l one level deeper in the view, leaving the top
of the view intact.

n1 7→ v1

. . .

nk 7→ vk

becomes

n1 7→ l↗ v1

. . .

nk 7→ l↗ vk

We thus have dom((map l)↗ c) = dom(c).
We now study the put direction. In the case where a and

c have same domains, the definition is straighforward:

(map l)↘

n1 7→ v1

. . .

nk 7→ vk

,

n1 7→ v′1
. . .

nk 7→ v′k

 =

n1 7→ l↘ (v1, v′1)
. . .

nk 7→ l↘ (vk, v′k)

We now consider the general case. We remark that if
(map l)↘ (a, c) is defined, by rule PutGet, we should then
have (map l)↗ ((map l)↘ (a, c)) = a. Thus we necessarily
have dom((map l)↘ (a, c)) = dom(a). We consider what be-
comes of children of a and c according to their names. Chil-
dren bearing names that occur both in dom(a) and dom(c)
are dealt with as before. Children bearing names that only
occur in dom(c) are dropped. Children of a that have names
that only appear in dom(a) need to be put into some view.
Since no view is available, as there is no corresponding child
in c, they are put into the missing view Ω (in the fol-
lowing views, n1, . . . , nk ∈ dom(c) ∩ dom(a), r1, . . . , rp ∈
dom(c) \ dom(a), and m1, . . . , mq ∈ dom(a) \ dom(c)):

(map l)↘

n1 7→ v1

. . .

nk 7→ vk

m1 7→ z1

. . .

mq 7→ zq

,

n1 7→ v′1
. . .

nk 7→ v′k
r1 7→ w′1
. . .

rp 7→ w′p

=

n1 7→ l↘ (v1, v′1)
. . .

nk 7→ l↘ (vk, v′k)

m1 7→ l↘ (z1, Ω)

. . .

mq 7→ l↘ (zq, Ω)

We now give the concise formal definition of map l. We
recall that if any application of l to a child is undefined,
then the whole lens map l is undefined.

(map l)↗ c =
{

n 7→ l↗ c(n) n ∈ dom(c)

(map l)↘ (a, c) =

n 7→ l↘ (a(n), c(n))

n ∈ dom(a) ∩ dom(c)

n 7→ l↘ (a(n), Ω)

n ∈ dom(a) \ dom(c)

The map combinator does not obey the PutPut law. Con-
sider a lens l and (a, c) ∈ dom(l↘) such that l↘ (a, c) 6=
l↘ (a, Ω). We have

(map l)↘ ({n 7→ a}, ((map l)↘ ({}, {n 7→ c})))
= (map l)↘ ({n 7→ a}, {})
= {n 7→ l↘ (a, Ω)}
6= {n 7→ l↘ (a, c)}
= (map l)↘ ({n 7→ a}, {n 7→ c}.)

Intuitively, there is a difference between modifying a child n
and removing then adding it, as in the first case the initial
value of the child is used if available, while it disappears in
the second case after the child is removed.

Another interesting point is the relation between the map

lens combinator and the missing view Ω. The put function
of every other lens combinator only results in a put into
the missing view if the combinator itself is called on Ω. In
the case of map l, calling its put function on some a and
c where c is not the missing view may result in the appli-
cation of the put of l to Ω if a has some children that are
not in c. In order to deal with such missing children, we
first tried providing a default concrete view for map, which
would be used when no concrete view was available. How-
ever, we discovered through experimentation that in many
cases it is difficult to find one default concrete view that
fits all possible abstract views, especially because of xfork

(where different lenses are applied to different parts of the
view) and recursion (where the depth of a view is unknown).
We thus decided to parameterize this default concrete view
by the abstract view and the lens. We then discovered that
most primitive lenses ignore the concrete view when defining
the put function, as enough information is available in the
abstract view. The natural choice for a concrete view pa-
rameterized by a and l was thus l↘ (a, Ω), for some special
view Ω. The only lens for which the put funtion needs to
be defined on Ω is const, as it is the only lens that discards
information. To this end, the const lens expects a default
view d. This approach is much more local, as one only needs
to provide a default view where information is discarded.

4.3 Derived Lenses
In this section, we define some useful lenses derived from the
primitive ones of the previous section. Most of the lenses of
this section and of section 4.4 are used in the example of
section 5. We recall that these derived lenses are all well
behaved by construction.

In many uses of xfork, the definition of where to split
the concrete view and where to split the abstract view are
identical. We define the simpler fork as:

fork p l1 l2 = xfork p p l1 l2

We may now define a lens that only retains the child of a
view satisfying a predicate p:

filter p d = fork p id (const {} d)

In the get direction, this lens takes a concrete view, keeps
the part of the view whose children have names in p (using
the lens id), and throws away the rest of the view (using the
lens const {} d). The default view d is used when putting
an abstract view into a missing concrete view. It provides
a default for the information that does not appear in the
abstract view and is necessary to build a concrete view.

Another way to filter, or prune, a view is to explicitly
specify a name that should be removed from the view:

prune n d = fork {n} id (const {} {n 7→ d})
This lens is very similar to filter, with two differences:

the name given is the one to be removed, thus the predicate
“all other names” {n} must be built, and the default view
is the one to go under n if the concrete view is missing.

The following lens is useful to focus on a single child n:

focus n d = (filter {n} d); (hoist n)

In the get direction, it filters away all other children, then
removes the edge n to return the corresponding view. As
usual, the default view is only used in case of creation. It is
used as a default for the children filtered away.

It is often useful to restrict the use of map to a subset of
all children of a view using a predicate p.

mapp p l = fork p (map l) id

This lens splits the view in two according to the predicate
p, applies map to the first half, and does not modify the rest.

In order to apply different lenses to different parts of the
view, and concatenate the results, we define the recursive
lens dispatch, which takes a list of tuples each containing
a concrete predicate, an abstract predicate, and a lens, as:

dispatch [] = id

dispatch (pc, pa, l) :: rest = xfork pc pa l (dispatch rest)

In the get direction, dispatch considers the first tuple pc,
pa, l. It splits the concrete view accoring to pc and applies
l to it. It recurses with the rest of the tuples and the rest
of the view, and concatenates the results back together. A
typical use of dispatch is as a conditional, assuming all the
lenses it uses return the empty view when given the empty
view (see for instance the item lens in Figure 3).

4.4 Lists
Many data formats make heavy use of ordered data, or

lists. We describe in this section how we represent lists, us-
ing the usual cons cell encoding, and introduce some derived
lenses to manipulate them.

4.4.1 Definition: A view v is a list iff it is the empty view
or if it has exactly two children, one named ∗h and another
named ∗t, such that v(∗t) is a list.

In the following, we use the lighter notation [v1 . . . vn]
(writing, in displays, v1 through vn vertically and dropping

the closing bracket) for the view

*h 7→ v1

*t 7→

*h 7→ v2

*t 7→
{

. . . 7→
{
*h 7→ vn

*t 7→ {

We now define some lenses to work on lists. The first ones
extract the head or the tail of the list.

hd d = focus {*h} {*t 7→ d}
tl d = focus {*t} {*h 7→ d}

The lens hd expects a default view which will be the tail
of the created view if the concrete view is missing. In the
get direction, the lens hd returns the view under name *h.
Lens tl works similarly, with two exceptions: it expects
the default view that will be put under the head in case of
creation, and it returns the tail of the list, which is a list.

We define a lens that iterates over a list, applying its ar-
gument to every element of the list.

map list l = mapp {*h} l; mapp {*t} (map list l)

This lens simply applies l to every child named *h, and re-
curses on every child named *t.

We now define a lens which transforms a list into a “bush,”
flattening it. Such a lens may only be defined on lists of
views that have pairwise-disjoint domains. Depending on
whether the order matters if creation occurs, two such lenses
may be defined. One lens, flatten, does not care about the
order when putting an abstract view into a missing concrete
view, and the resulting list has an arbitrary order. The
other lens, hoist list, expects a list of (pairwise-disjoint)
predicates describing the domains of the views in the list.
If an abstract view is put into a missing concrete view, the
resulting list will obey the order specified by the predicate
list. We now define hoist list.

hoist list [] = id

hoist list p :: rest = xfork {*h} p
(hoist {*h})
(hoist {*t}; hoist list rest)

5. A BOOKMARK LENS
In this section, we develop an extended example of program-
ming in Hocus Focus. The example comes from a demo ap-
plication of our universal data synchronization framework,
Harmony [1], in which bookmark information from diverse
browsers, including Internet Explorer, Netscape, OmniWeb,
Safari, and others is synchronized by transforming each for-
mat from its concrete “native” representation into a common
abstract form. We show here a slightly simplified form of
the Mozilla lens, which handles the HTML-based bookmark
format used by Netscape and its relatives.

The overall path taken by the bookmark data through
the Harmony system can be described as follows. Harmony
first uses a generic HTML reader to transform the HTML
bookmark file into an isomorphic concrete view. This con-
crete view is then transformed, using the get direction of the
bookmark lens, into an abstract “generic bookmark view.”
The abstract view is synchronized with some other abstract
bookmark view (obtained from some other bookmark file by
transforming its native format using an appropriate lens, not

{’’ ->

[{html -> {’’ ->

[{head -> {’’ -> [{title ->

{’’ ->

[{PCDATA -> Bookmarks}]}}]}}

{body -> {’’ ->

[{h3 -> {’’ ->

[{PCDATA -> ’Bookmarks Folder’}]}}

{dl -> {’’ ->

[{dt -> {’’ ->

[{a -> {’’ -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> http://www.google.com}}]}}

{dd -> {’’ ->

[{h3 -> {’’ -> [{PCDATA ->

’Conferences Folder’}]}}

{dl -> {’’ ->

[{dt -> {’’ ->

[{a ->

{’’ -> [{PCDATA -> ICFP}]

add_date -> 1032528670

href -> http://www.it.uu.se/pli03/

}}]}}]}}]}}]}}]}}]}}]}

Figure 1: Bookmarks (concrete view)

{name -> ’Bookmarks Folder’

contents ->

[{link -> {name -> Google

url -> http://www.google.com}}

{folder ->

{name -> ’Conferences Folder’

contents ->

[{link ->

{name -> ICFP

url -> http://www.it.uu.se/pli03/}}]}}]}

Figure 2: Bookmarks (abstract view)

shown here), yielding a new abstract view, which is trans-
formed into a new concrete view by passing it back through
the put direction of the bookmark lens (supplying the origi-
nal concrete view as the second argument). Finally, the new
concrete view is written back out to the filesystem as an
HTML file. We now discuss these transformations in more
detail.

Abstractly, bookmark data has the following recursive
structure: an item is either a link, with a name and a url,
or a folder with a name and a contents, which is a list of
items.

In HTML, a bookmark item is represented by a <dt> ele-
ment containing an <a> element whose href attribute gives
the link’s url and whose content defines the name. The
<a> element also includes an add_date attribute, which we
have chosen not to reflect in the abstract form because it is
not supported by all browsers. A bookmark folder is repre-
sented by a <dd> element containing an <h3> header (giving
the folder’s name) followed by a <dl> list containing the
sequence of items in the folder. The whole HTML book-

link = rename {’dt’ = ’link’);

map (hoist ’’;

hd {};

hoist ’a’;

rename {’href’ = ’url’ ’’ = ’name’};

prune ’add_date’ {today};

mapp {’name’} (hd {}; hoist ’PCDATA’))

folder = rename {’dd’ = ’folder’};

map (hoist ’’; folder_contents)

folder_contents =

hoist_list [{’h3’} {’dl’}];

rename {’h3’ = ’name’ ’dl’ = ’contents’};

mapp {’name’} (hoist ’’; hd {}; hoist ’PCDATA’);

mapp {’contents’} (hoist ’’; map_list item)

item =

dispatch [({’dd’},{’folder’},folder)

({’dt’},{’link’},link)]

bookmarks =

hoist ’’; hd {}; hoist ’html’; hoist ’’;

tl {’head’ -> {’’ -> [{’title’ -> {’’ ->

[{’PCDATA’ -> ’Bookmarks’}]}}]}};

hd {}; hoist ’body’; hoist ’’;

folder_contents

Figure 3: Bookmark lenses

mark file follows the standard <head>/<body> form, where
the contents of the <body> have the format of a bookmark
folder, without the enclosing <dd> tag.

The generic HTML reader and writer know nothing about
the specifics of the bookmark format; they simply transform
between HTML syntax and views in a mechanical way, map-
ping an HTML element named tag, with attributes attr1

to attrm and sub-elements subelt1 to subeltn

<tag attr1="val1" ... attrm="valm">

subelt1 ... subeltn

</tag>

into a view of the following form:

tag 7→

attr1 7→ val1

...

attrm 7→ valm

’’ 7→

〈subelt1〉

...

〈subeltn〉
Note that the sub-elements are placed in a list under a child
named ’’ (empty string). This preserves their ordering from
the original HTML file. (The ordering of sub-elements is
sometimes important—e.g., in the present example, it is
important to maintain the ordering of the items within a
bookmark folder. Since the HTML reader and writer are
generic, they always record the ordering from the the origi-
nal HTML in the view, leaving it up to whatever lens is ap-
plied to the view to throw away ordering information where

Lens expression Resulting abstract view (from ’get’)
id {dt -> {’’ ->

[{a -> {’’ -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> http://www.google.com}}]}}
rename {’dt’ = ’link’} {link -> {’’ ->

[{a -> {’’ -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> http://www.google.com}}]}}
rename {’dt’ = ’link’};

map (hoist ’’)

{link -> [{a -> {’’ -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> http://www.google.com}}]}
rename {’dt’ = ’link’};

map (hoist ’’;

hd {})

{link -> {a -> {’’ -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> http://www.google.com}}}
rename {’dt’ = ’link’};

map (...; hd {};

hoist ’a’)

{link -> {’’ -> [{PCDATA -> Google}]

add_date -> 1032458036

href -> http://www.google.com}}}
rename {’dt’ = ’link’};

map (... ; hoist ’a’;

rename {’’ = ’name’, ’href’ = ’url’})

{link -> {name -> [{PCDATA -> Google}]

add_date -> 1032458036

url -> http://www.google.com}}}
rename {’dt’ = ’link’};

map (...; rename {’’ = ’name’, ’href’ = ’url’};

prune ’add_date’ {today})

{link -> {name -> [{PCDATA -> Google}]

url -> http://www.google.com}}}

rename {’dt’ = ’link’};

map (...; prune ’add_date’ {today};

mapp {’name’} (hd {}))

{link -> {name -> {PCDATA -> Google}

url -> http://www.google.com}}}

rename {’dt’ = ’link’};

map (...; mapp {’name’} (hd {};

hoist ’PCDATA’))

{link -> {name -> Google

url -> http://www.google.com}}}

Figure 4: Building up a link lens incrementally.

it is not needed; the flatten lens described in Section 4.4
provides one convenient way to do this.) A “leaf” of the
HTML document—i.e., a “parsed character data” element
containing a text string str—is converted to a view of the
form {PCDATA -> str}. Figure 1 shows a view representing
a small bookmark file.

The transformation from this concrete view to the ab-
stract bookmark view shown in Figure 2 is implemented by
means of the collection of lenses shown in Figure 3. Most of
the work of these lenses (in the get direction) involves strip-
ping out various extraneous structure, and then renaming
certain branches to have the desired ’field names.’ The put
direction, then, restores the original names and rebuilds the
necessary structure.

Notation: In the definitions of the lenses, names are en-
closed in quotes to distinguish them from variables. When
displaying views (here, as in the rest of the paper), we often
drop these quotes for readability.

Normally we develop these lenses incrementally, slowly
massaging the views into the correct shape. Figure 4 shows
this process in developing the link lens above by transform-
ing the representation of the HTML <dt> element containing
a link into the desired abstract form. At each level of the
structure, tree branches are relabeled with rename, unde-
sired structure is removed with prune, hoist, and/or hd,
and then work is continued at a lower level via map or mapp.

Similarly, the folder lens renames the <dd> tag to folder,
then proceeds to separate out the folder name and its con-
tents, stripping out undesired structure where necessary.
(We have separated out the content processing into the

folder contents lens for code reuse, since the top-level
bookmark file itself looks almost like a folder.) Note the use
of hoist list instead of flatten to access the <h3> and
<dl> tags containing the folder name and contents respec-
tively; although the order of these two tags does not matter
to us, it matters to Mozilla, so we want to ensure that the
put direction of the lens restores them to their proper place.
Finally, we use map list to iterate over the contents.

The item lens processes one element of a folder’s con-
tents; this element might be a link or another folder, so
we want to either apply the link lens or the folder lens.
Fortunately, we can distinguish them by whether they are
contained within a <dd> element or a <dt> element, and we
use dispatch to call the correct sublens.

Finally, the main lens is bookmarks, which (in the get
direction) takes a whole concrete bookmark view, strips off
the boilerplate header information using a combination of
hoist, hd, and tl, and then invokes folder_contents to
deal with the rest.

6. RELATED WORK
Hocus Focus is the product of a long odyssey through a large
design space, driven by the practical needs of the Harmony
system as it evolved. Our foundational structures (lenses
and their laws) are not new: closely related structures have
been studied for decades in the database community. How-
ever, our “programming language treatment” of these struc-
tures led to a formulation that is arguably simpler (trans-
forming states rather than “update functions”) and more
refined in its treatment of partiality. Our formulation is

also novel in considering the issue of continuity (which was
not addressed in earlier work), thus supporting a rich va-
riety of surface language structures including definition by
recursion.

The idea of defining a programming language for con-
structing bi-directional transformations has also been ex-
plored previously. However, we appear to be the first to
have connected it with a formal semantic foundation, choos-
ing primitives that can be combined into composite lenses
whose well-behavedness is guaranteed by construction.

6.1 Foundations of View Update
The foundations of view update translation were studied
intensively by database researchers in the late ’70s and ’80s.
This thread of work is closely related to our semantics of
lenses in Section 3.

Dayal and Bernstein [12] gave a seminal formal account
of the theory of “correct update translation.” Their notion
of “exactly performing an update” corresponds to our Put-
Get law. Their “absence of side effects” corresponds to our
GetPut and PutPut laws. Their requirement of preserva-
tion of semantic consistency corresponds to the partiality of
our put functions.

Bancilhon and Spyratos [7] developed an elegant seman-
tic characterization of the update translation problem, in-
troducing the notion of complement of a view, which must
include at least all information from the database missing
from the view. When a complement is fixed, there exists
at most one update of the database that reflects the update
on the view while leaving the complement unmodified—i.e.,
that translates updates under a constant complement. In
general, a given view may have many complements, each
corresponding to a possible strategy for translating view up-
dates to database updates. The problem of translating view
updates then becomes a problem of finding, for a given view,
a “suitable” complement.

Gottlob, Paolini, and Zicari [16] offered a more refined
theory based on a syntactic translation of view updates.
They identified a hierarchy of restricted cases of their frame-
work, the most permissive form being their “dynamic views”
and the most restrictive, called “cyclic views with constant
complement,” being formally equivalent to Bancilhon and
Spyratos’s update translators.

In [26] we establish a precise correspondence between our
definition of lenses and the structures studied by Bancilhon
and Spyratos and by Gottlob, Paolini, and Zicari. Briefly,
our set of very-well-behaved lenses is isomorphic to the set of
translators under constant complement in the sense of Bacil-
hon and Spyratos, while our set of well-behaved lenses is iso-
morphic to the set of dynamic views in the sense of Gottlob,
Paolini, and Zicari. To be precise, both of these results must
be qualified by an additional condition regarding partiality.
The frameworks of Bacilhon and Spyratos and of Gottlob,
Paolini, and Zicari are both formulated in terms of translat-
ing update functions on A into update functions on C—i.e.,
their put functions have type (A −→ A) −→ (C −→ C)—
while our lenses translate abstract states into update func-
tions on C—i.e., our put functions have type (isomorphic to)
A −→ (C −→ C). Moreover, in both of these frameworks,
“update translators” (the analog of our put functions) are
defined only over some particular chosen set U of abstract
update functions, not over all functions from A to A. These
update translators return total functions from C to C. Our

put functions, on the other hand, are more general as they
are defined over all abstract states and return partial func-
tions from C to C. Finally, the get functions of lenses are
allowed to be partial, whereas the corresponding functions
(called views) in the other two frameworks are assumed to
be total. In order to make the correspondences tight, the
sets of well-behaved and very-well-behaved lenses need to
be restricted to subsets that are “total” in a suitable sense.
More details can be found in [26].

6.2 Updates for Relational Views
Research on view update translation in the database litera-
ture has tended to focus on taking an existing language (e.g.,
relational algebra) for defining get functions and then con-
sidering how to infer (either automatically or with some pro-
grammer assistance) corresponding put functions. By con-
trast, we have designed a completely new language in which
the definitions of get and put go hand-in-hand. Our ap-
proach can be described both as more demanding (because
we deal with trees) and as more straightforward (because we
do not attempt to deal with joins, a major source of update
ambiguity in the relational world), compared to most of the
classical database work. We briefly review the most relevant
of this work.

Masunaga [21] described an automated algorithm for
translating updates on views defined by relational algebra.
The core idea was to annotate where the “semantic ambi-
guities” arise, indicating they must be resolved either with
knowledge of underlying database semantic constraints or
by interactions with the user.

Keller [19] outlined all possible strategies for handling up-
dates to a select-project-join view, and showed that these
are exactly the set of translations that satisfy a small set of
intuitive criteria. Keller [20] later proposed allowing users
to choose an update translator at view definition time by
engaging in an interactive dialog with the system and an-
swering questions about potential sources of ambiguity in
update translation. Building on this foundation, Barsalou,
Siambela, Keller, and Wiederhold [8] described a scheme
for interactively constructing update translators for object-
based views of relational databases.

Medeiros and Tompa [22] presented a design tool for ex-
ploring the effects of choosing a view update policy. This
tool shows the update translation for update requests sup-
plied by the user; by considering all possible valid concrete
states, the tool predicts whether the desired update would
in fact be reflected back into the view after applying the
translated update to the concrete database.

Atzeni and Torlone [6, 5] describe a tool for translating
views, and observe that if one can translate any concrete
view to and from a meta-model (shared abstract view), one
then gets bi-directional transformations between any pair of
concrete views. They limit themselves to mappings where
the concrete and abstract views are isomorphic.

A variety of complexity results have been shown for dif-
ferent versions of the view update inference problem. In
one of the earliest, Cosmadakis and Papadimitriou [10, 11]
considered the view update problem for a single relation,
where the view is a projection of the underlying relation,
and showed that there are polynomial time algorithms for
determining whether insertions, deletions, and tuple replace-
ments to a projection view are translatable into concrete
updates. More recently, Buneman, Khanna, and Tan [9] es-

tablished a variety of intractability results for the problem
of inferring “minimal” view updates in the relational setting
for query languages that include both join and either project
or union.

Another body of work that is sometimes mentioned in
connection with view update translation is the problem of
incremental view maintainance (e.g., [4])—efficiently recal-
culating an abstract view after a small update to the un-
derlying concrete view. Although the phrase “view update
problem” is sometimes (confusingly) used for work in this
domain, there is little technical connection with our prob-
lem of translating view updates to updates on an underlying
concrete structure.

6.3 Languages for View Update
In the programming languages literature, laws similar to
our lens laws (but somewhat simpler, since they deal only
with total get and put functions) appear in Oles’ category
of “state shapes” [25] and in Hofmann and Pierce’s work on
“positive subtyping” [18]. Another related idea, proposed
by Wadler [30], extended algebraic pattern matching to ab-
stract data types using programmer-supplied in and out op-
erators. This is essentially the special case of our lenses in
which the get and put functions must always form an iso-
morphism.

Abiteboul, Cluet, and Milo [2] defined a declarative lan-
guage for describing correspondences between parts of trees
in a data forest. In turn, these correspondence rules can be
used to translate one tree format into another through non-
deterministic Prolog-like computation; however, this pro-
cess requires an isomorphism between the two data formats
(again, a special case of our lenses).

The same authors [3] later defined a system for bi-
directional transformations based around the concept of
structuring schemas (parse grammars annotated with se-
mantic information). Thus their get involved parsing,
whereas their put consisted of “unparsing.” Again, to re-
solve ambiguous abstract updates, they restrict themselves
to lossless grammars that define an isomorphism between
concrete and abstract views.

Ohori and Tajima [24] develop a statically-typed polymor-
phic record calculus for defining views on object-oriented
databases. They specifically restrict which fields of a view
are updatable, allowing only those with a ground (simple)
type to be updated, whereas our lenses can accomodate
structural updates as well.

6.4 Updates and Trees
There have been many proposals for query languages for
trees (e.g., XQuery [15]), but most of these do not consider
the view update problem, and those that do tend not to
consider ambiguous updates.

For example, Braganholo, Heuser, and Vittori [13] study
the problem of updating relational databases “presented as
XML.” Their solution requires a 1:1 mapping between XML
view elements and objects in the database, to make view
updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [29] describe a mech-
anism for translating updates on XML structures that are
stored in an underlying relational database. In this setting
there is again an isomorphism between the concrete rela-
tional database and the abstract XML view, so updates are
unambiguous—rather, the problem is choosing the most effi-

cient way of translating a given XML update into a sequence
of relational operations.

7. FUTURE WORK
Our interest in bi-directional tree transformations arose

in the context of our data synchronization framework, Har-
mony. We plan to develop many more synchronizers (e.g.,
ones for calendars/appointments, email, structured text,
filesystems, and more) that will further exercise Hocus Fo-
cus’s set of basic operators and perhaps suggest new ones.

This process should shed light on some intriguing follow-
on questions to our work here. For example, is the set of
tree lenses expressible in (some variant or extension of) Ho-
cus Focus “complete” in some natural sense? Can we char-
acterize the complexity of Hocus Focus programs? Is there
an algebraic theory of lens combinators that would underpin
optimization of Hocus Focus programs in the same way that
the relational calculus and its algebraic theory are used to
optimize relational database queries?

From a programming point of view, a static type system
for views and Hocus Focus programs would be very useful,
particularly when building very complicated lenses. Such
a type system would allow the programmer to codify the
well-formedness of certain views (e.g., “this tree should have
exactly one child, named foo (because I want to hoist it)”).

It would be useful to generate lens programs automati-
cally from schemas for concrete and abstract views, or by
inference from a set of pairs of inputs and desired outputs
(“programming by example”). Such a facility could perhaps
do most of the work for a programmer wanting to add syn-
chronization support for a new application (where the ab-
stract form was already defined, for example), leaving just
a few spots to fill in.

A growing body of work deals with the problem of trans-
lating between heterogeneous representations of similar data
to enable different applications to cooperate. Such repre-
sentations (e.g. directed graphs and XML) are a superset of
the concrete views (namely trees) that we handle. Although
much of this work (one way transformations that do not ad-
dress the update problem) is not directly relevant to Hocus
Focus, it may be useful as a set of examples against which
to compare the expressiveness of Hocus Focus. Further, one
class of proposed solutions uses schema matching (as well as
representation mapping and model mapping) to perform all
or part of the translation automatically ([23, 14, 28] include
useful introductions). We may be able to employ the sim-
ilar methods to automatically construct lenses to translate
between two given views.

Finally, it would be intriguing to experiment with instanti-
ating our semantic framework with relations instead of trees,
thereby establishing a closer link with existing research in
the database community.

Acknowledgements
The Harmony project was begun in collaboration with Zhe
Yang; Zhe contributed numerous insights whose generic ma-
terial can be found (generally in much-recombined form) in
this paper. Trevor Jim provided the initial push to start the
project by observing that the next step beyond Unison (a file
synchronization tool on which many of Harmony’s intuitions
are based and of which Trevor was a co-designer) should
be synchronizing XML. Insightful conversations with Steve

Zdancewic, Cyrus Najmabadi, Kate Moore, William Lovas,
Sanjeev Khanna, Zack Ives, and Owen Gunden helped us
sharpen our ideas. Serge Abiteboul, Zack Ives, Dan Su-
ciu, and Phil Wadler pointed us to related work. We would
also like to thank Karthik Bhargavan, Vanessa Braganholo,
Owen Gunden, Michael Hicks, Zack Ives, Trevor Jim, Kate
Moore, Wang-Chiew Tan, Stephen Tse, and Zhe Yang for
very helpful comments on earlier drafts of this paper.

8. REFERENCES
[1] Harmony project. http://www.cis.upenn.edu/

~bcpierce/harmony/.

[2] S. Abiteboul, S. Cluet, and T. Milo. Correspondence
and translation for heterogeneous data. In Proceedings
of 6th Int. Conf. on Database Theory (ICDT), 1997.

[3] S. Abiteboul, S. Cluet, and T. Milo. A logical view of
structure files. VLDB Journal, 7(2):96–114, 1998.

[4] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and
J. L. Wiener. Incremental maintenance for
materialized views over semistructured data. In Proc.
24th Int. Conf. Very Large Data Bases (VLDB), 1998.

[5] P. Atzeni and R. Torlone. Management of multiple
models in an extensible database design tool. In
Proceedings of EDBT’96, LNCS 1057, 1996.

[6] P. Atzeni and R. Torlone. MDM: a multiple-data
model tool for the management of heterogeneous
database schemes. In Proceedings of ACM SIGMOD,
Exhibition Section, pages 528–531, 1997.

[7] F. Bancilhon and N. Spyratos. Update semantics of
relational views. TODS, 6(4):557–575, 1981.

[8] T. Barsalou, N. Siambela, A. M. Keller, and
G. Wiederhold. Updating relational databases through
object-based views. In PODS’91, pages 248–257, 1991.

[9] P. Buneman, S. Khanna, and W.-C. Tan. On
propagation of deletions and annotations through
views. In PODS’02, pages 150–158, 2002.

[10] S. S. Cosmadakis. Translating updates of relational
data base views. Master’s thesis, Massachusetts
Institute of Technology, 1983. MIT-LCS-TR-284.

[11] S. S. Cosmadakis and C. H. Papadimitriou. Updates
of relational views. Journal of the ACM,
31(4):742–760, 1984.

[12] U. Dayal and P. A. Bernstein. On the correct
translation of update operations on relational views.
TODS, 7(3):381–416, September 1982.

[13] V. de Paula Braganholo, C. A. Heuser, and C. R. M.
Vittori. Updating relational databases through XML
views. In Proc. 3rd Int. Conf. on Information
Integration and Web-based Applications and Services
(IIWAS), 2001.

[14] A. Doan. Learning to map between structured
representations of Data. PhD thesis, 2002.

[15] P. Fankhauser, M. Fernández, A. Malhotra, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 Formal
Semantics. http://www.w3.org/TR/
query-semantics/, 2001.

[16] G. Gottlob, P. Paolini, and R. Zicari. Properties and
update semantics of consistent views. TODS,
13(4):486–524, 1988.

[17] M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. A language for bi-directional tree

transformations. Technical Report MS-CIS-03-08,
University of Pennsylvania, 2003.

[18] M. Hofmann and B. Pierce. Positive subtyping. In
POPL’95, 1995.

[19] A. M. Keller. Algorithms for translating view updates
to database updates for views involving selections,
projections, and joins. In PODS’85, 1985.

[20] A. M. Keller. Choosing a view update translator by
dialog at view definition time. In VLDB’86, 1986.

[21] Y. Masunaga. A relational database view update
translation mechanism. In VLDB’84, 1984.

[22] C. M. B. Medeiros and F. W. Tompa. Understanding
the implications of view update policies. In VLDB’85,
1985.

[23] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In VLDB’98,
1998.

[24] A. Ohori and K. Tajima. A polymorphic calculus for
views and object sharing. In PODS’94, 1994.

[25] F. J. Oles. Type algebras, functor categories, and
block structure. In M. Nivat and J. C. Reynolds,
editors, Algebraic Methods in Semantics. Cambrige
University Press, 1985.

[26] B. C. Pierce and A. Schmitt. Lenses and view update
translation. Manuscript; available at http://

www.cis.upenn.edu/~bcpierce/harmony, 2003.

[27] B. C. Pierce and J. Vouillon. Unison: A file
synchronizer and its specification. Technical report;
available through http://www.cis.upenn.edu/

~bcpierce, 2001.

[28] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal,
10(4):334–350, 2001.

[29] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In SIGMOD Conference, 2001.

[30] P. Wadler. Views: A way for pattern matching to
cohabit with data abstraction. In POPL’87. 1987.

[31] G. Winskel. The Formal Semantics of Programming
Languages: An Introduction. MIT Press, 1993.

