
Combinators for Bi-Directional Tree Transformations · App–1

This document is the online-only appendix to:

Combinators for Bi-Directional Tree Transformations:

A Linguistic Approach to the View Update Problem
J. NATHAN FOSTER
University of Pennsylvania
MICHAEL B. GREENWALD
Bell Labs, Lucent Technologies
JONATHAN T. MOORE
University of Pennsylvania
BENJAMIN C. PIERCE
University of Pennsylvania
ALAN SCHMITT
INRIA Rhône-Alpes

1

A. WELL-BEHAVEDNESS, TOTALITY, AND CONTINUITY PROOFS

This appendix contains the proofs for each of the results in our development of
the foundations of lenses as well as representative well-behavedness, totality, and
continuity proofs for several primitive and derived lenses.

3.5 Lemma: If l ∈ C ! A, then l↘ is semi-injective on {(a, c) | (a, c) ∈
A × C ∧ l↗ (l↘ (a, c)) ↓}.

Proof. Let P = {(a, c) | (a, c) ∈ A × C ∧ l↗ (l↘ (a, c)) ↓}, and choose
(a, c) ∈ P and (a′, c′) ∈ P with a′ '= a. Suppose, for a contradiction, that
l↘ (a, c) = l↘ (a′, c′). Then, by the definition of P and rule PutGet, we have
a = l↗ l↘ (a, c) = l↗ l↘ (a′, c′) = a′; hence a = a′, a contradiction.

3.8 Lemma: If l is oblivious and l ∈ C1 ! A1 and l ∈ C2 ! A2, then l ∈
(C1 ∪ C2) ! (A1 ∪ A2).

Proof. Straightforward.

3.9 Lemma: If l ∈ C ⇐⇒ A is oblivious, then l↗ is a bijection from C to A.

Proof. If C = ∅, then, because l is total, A is also empty and l↗ is trivially
bijective. If C is non-empty, then we can choose an arbitrary c ∈ C and define the
inverse of l↗ as f = λa. l↘ (a, c). The fact that (l↗)◦f = id follows directly from
PutGet. The fact that f ◦ (l↗) = id follows because f(l↗ c′) = l↘ (l↗ c′, c) =
l↘ (l↗ c′, c′) (by obliviousness) = c′ (by GetPut).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–2 · J. N. Foster et. al.

3.11 Lemma: ≺ is a partial order on lenses.

Proof. We show that ≺ is reflexive, transitive, and antisymmetric.

Reflexivity:. Immediate.

Transitivity:. Let l, l′, and l′′ be such that l ≺ l′ and l′ ≺ l′′. We have dom(l↗) ⊆
dom(l′↗) ⊆ dom(l′′↗) and dom(l↘) ⊆ dom(l′↘) ⊆ dom(l′′↘). Moreover, for all
c ∈ dom(l↗), we have l↗ c = l′↗ c = l′′↗ c. Finally, for all (a, c) ∈ dom(l↘),
l↘ (a, c) = l′ ↘ (a, c) = l′′ ↘ (a, c). Hence l ≺ l′′.

Antisymmetry:. Suppose l ≺ l′ and l′ ≺ l. Then dom(l↗) = dom(l′↗),
dom(l↘) = dom(l′↘), for every c ∈ dom(l↗) = dom(l′↗) we have l↗ c = l′↗ c,
and for every (a, c) ∈ dom(l↘) = dom(l′↘) we have l↘ (a, c) = l′ ↘ (a, c). Hence
l↗ = l′↗, l↘ = l′↘, thus l = l′.

3.12 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The
lens l defined by

l↘ (a, c) = li ↘ (a, c) if li ↘ (a, c) ↓ for some i

l↗ c = li↗ c if li↗ c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

Proof. Straightforward.

3.14 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and
let C0 ⊆ C1 ⊆ . . . and A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of V. Then:

(1) Well-behavedness commutes with limits:
(∀i ∈ ω. li ∈ Ci ! Ai) implies

⊔

n ln ∈ (
⋃

i Ci) ! (
⋃

i Ai).

(2) Totality commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) implies

⊔

n ln ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

Proof. Let l =
⊔

n ln, let C =
⋃

i Ci, and let A =
⋃

i Ai.
We rely on the following property (which we call #g): if l↗ c is defined for some

c ∈ C, then there is some i such that c ∈ Ci and l↗ c = li↗ c. To see this, let
c ∈ C; then there is some j such that ∀k ≥ j. c ∈ Ck. Moreover, by Corollary 3.13,
there exist some j′ such that l↗ c = lj′↗ c. Let i be the max of j and j′; then we
have (by definition of ≺) li↗ c = lj′↗ c = l↗ c and c ∈ Ci.

Similarly, we have the property #p: if l↘ (a, c) is defined for some a ∈ A and
c ∈ C, then there is some i such that a ∈ Ai, c ∈ Ci, and l↘ (a, c) = li ↘ (a, c). To
see this, let a ∈ A and c ∈ C; then there are some j and j′ such that ∀k ≥ j. a ∈ Ak

and ∀k ≥ j′. c ∈ Ck. Moreover, by Corollary 3.13, there exists some j′′ such that
l↘ (a, c) = lj′′ ↘ (a, c). Let i be the max of j, j′, and j′′; then we have (by
definition of ≺) li ↘ (a, c) = lj′′ ↘ (a, c) = l↘ (a, c), with a ∈ Ai and c ∈ Ci.

We can now show that l satisfies the typing conditions (Get and Put) of well-
behaved lenses. Choose c ∈ C. If l↗ c is defined, then by #g there is some i such
that c ∈ Ci and l↗ c = li↗ c. As li is in Ai ! Ci, we have li↗ c ∈ Ai ⊆ A.
Conversely, let (a, c) ∈ A×C; then if l↘ (a, c) is defined, then by #p there is some
i such that (a, c) ∈ Ai × Ci and l↘ (a, c) = li ↘ (a, c). As li ∈ Ai ! Ci, we have
li ↘ (a, c) ∈ Ci ⊆ C.

We next show that l satisfies GetPut and PutGet. Using #g and #p, we
calculate as follows:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–3

GetPut:. Suppose c ∈ C. If l↘ (l↗ c, c) = ⊥, then we are done. Otherwise
there is some i such that c ∈ Ci and li↗ c = l↗ c = a ∈ Ai ⊆ A. Hence there is
some j such that a ∈ Aj and lj ↘ (a, c) = c′. Let k be the max of i and j, so we
have a ∈ Ak and c ∈ Ck. By definition of ≺, we have lk↗ c = a and lk ↘ (a, c) = c′.
As GetPut holds for lk, we have c′ = c, hence GetPut holds for l.

PutGet:. Suppose a ∈ A and c ∈ C. If l↗ l↘ (a, c) = ⊥, then we are done.
Otherwise there is some i such that a ∈ Ai, c ∈ Ci, and li ↘ (a, c) = l↘ (a, c) =
c′ ∈ Ci ⊆ C. Hence there is some j such that c′ ∈ Cj and lj↗ c′ = a′. Let k be
the max of i and j, so we have a ∈ Ak and c ∈ Ck. By definition of ≺, we have
lk ↘ (a, c) = c′ and lk↗ c′ = a′. As PutGet holds for lk, we have a′ = a, hence
PutGet holds for l.

Finally, we show that l is total if all the li are. If c ∈ C, then there is some i
such that c ∈ Ci, hence li↗ c is defined, hence l↗ c is defined. If a ∈ A and c ∈ C,
then there is some i such that a ∈ Ai and c ∈ Ci, hence li ↘ (a, c) is defined, thus
l↘ (a, c) is defined.

3.15 Theorem: Let L be the set of well-behaved lenses from C to A. Then (L, ≺)
is a cpo with bottom.

Proof. First, recall that ⊥l is the smallest well-behaved lens. Second, if l0 ≺ l1 ≺
. . . ≺ ln ≺ . . . is an increasing chain of well-behaved lenses, then by Lemma 3.14,
it has a least upper bound that is well behaved.

3.17 Corollary: Suppose f is a continuous function from lenses to lenses.

(1) If l ∈ C ! A implies f(l) ∈ C ! A for all l, then fix (f) ∈ C ! A.

(2) Suppose ∅ = C0 ⊆ C1 ⊆ . . . and ∅ = A0 ⊆ A1 ⊆ . . . are increasing chains of
subsets of V. If l ∈ Ci ⇐⇒ Ai implies f(l) ∈ Ci+1 ⇐⇒ Ai+1 for all i and l,
then fix (f) ∈ (

⋃

i Ci) ⇐⇒ (
⋃

i Ai).

Proof. (1) First recall that f0(⊥l) = ⊥l ∈ C ! A for any C and A. From
this, a simple induction on i (using the given implication at each step and the
fact that f is monotonic) yields f i(⊥l) ∈ C ! A and f i(⊥l) ≺ f i+1(⊥l). By
Lemma 3.14(1), (

⊔

i f i(⊥l)) ∈ C ! A. By Theorem 3.16, fix (f) ∈ C ! A.

(2) First note that, since C0 = A0 = ∅, we have f0(⊥l) = ⊥l ∈ C0 ⇐⇒ A0. From
this, a simple induction on i (using the given implication at each step) yields
f i(⊥l) ∈ Ci ⇐⇒ Ai and f i(⊥l) ≺ f i+1(⊥l). By Lemma 3.14(2), (

⊔

i f i(⊥l)) ∈
(
⋃

i Ci) ⇐⇒ (
⋃

i Ai). By Theorem 3.16, fix (f) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

3.19 Lemma: Suppose f is a continuous function from lenses to lenses and
T0, T1, . . . is a sequence of sets of total types with T0 = {(∅, ∅)}. If for all l and i
we have (∀τ ∈ Ti. l ∈ τ) implies (∀τ ∈ Ti+1. f(l) ∈ τ), then for every increasing
instance τ0 ⊆ τ1 ⊆ . . . of T0, T1, . . . we have fix (f) ∈

⋃

i τi.

Proof. Let τ0 ⊆ τ1 ⊆ . . . be an increasing instance of T0, T1, Since T0 =
{(∅, ∅)}, we have f0(⊥l) = ⊥l ∈ τ for all τ ∈ T0. From this, a simple induction on
i (using the given implication at each step) yields f i(⊥l) ∈ τ for all τ ∈ Ti. Thus,
we have f i(⊥l) ∈ τi for all τi. Hence by Lemma 3.14 we have

⊔

n fn
n ∈

⋃

i τi. Using
Theorem 3.16, we conclude that fix (f) ∈

⋃

i τi.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–4 · J. N. Foster et. al.

3.20 Lemma: For any lens l and sets of views C and A: l ∈ C !
Ω A implies

l ∈ C ! A and (2) l ∈ C ⇐⇒Ω A implies l ∈ C ⇐⇒ A.

Proof. Let l ∈ C !
Ω A.

(1) We must prove that for all c ∈ C, l↗ c ∈ A. As l↗ c ∈ AΩ, and since c '= Ω, by
convention we have l↗ c '= Ω. Similarly, let a, c in A × C, then l↘ (a, c) ∈ C.

(2) By convention, CΩ ⊆ dom(l↗) implies C ⊆ dom(l↗), and A × CΩ ⊆ dom(l↘)
implies A × C ⊆ dom(l↘), as required.

4.1 Lemma [Well-behavedness]: ∀C⊆V. id ∈ C !
Ω C

Proof.
Get: (id)↗ c = c ∈ C.

Put: (id)↘ (a, c) = a ∈ C.

GetPut: (id)↘ ((id)↗ c, c) = (id)↘ (c, c) = c.

PutGet: (id)↗ (id)↘ (a, c) = (id)↗ a = a.

4.2 Lemma [Totality]: ∀C⊆V. id ∈ C ⇐⇒Ω C

Proof. Immediate: both the get and putback directions of (id) are total func-
tions.

4.3 Lemma [Well-behavedness]:
∀A, B, C⊆V. ∀l ∈ C !

Ω B. ∀k ∈ B !
Ω A. l; k ∈ C !

Ω A

Proof.
Get: If k↗ l↗ c = (l; k)↗ c is defined, then l↗ c ∈ B by Get for l, so (l; k)↗ c ∈
A by Get for k.

Put: If l↘ (k↘ (a, l↗ c), c) = (l; k)↘ (a, c) is defined, then l↗ c ∈ BΩ by Get
for l and our convention on treatment of Ω by get functions, so k↘ (a, l↗ c) ∈ B
by Put for k, so l↘ (k↘ (a, l↗ c), c) ∈ C by Put for l.

GetPut: Assume that (l; k)↗ c is defined. Then:

(l; k)↘
(

(l; k)↗ c, c
)

= (l; k)↘ (k↗ (l↗ c), c) by definition (of the underlined expression)

= l↘
(

k↘ (k↗ (l↗ c), l↗ c), c
)

by definition

2 l↘ (l↗ c, c) by GetPut for k
2 c by GetPut for l

PutGet: Assume that (l; k)↘ (a, c) is defined. Then:

(l; k)↗
(

(l; k)↘ (a, c)
)

= (l; k)↗ (l↘ (k↘ (a, l↗ c), c)) by definition

= k↗
(

l↗ (l↘ (k↘ (a, l↗ c), c))
)

by definition

2 k↗ (k↘ (a, l↗ c)) by PutGet for l
2 a by PutGet for k

4.4 Lemma [Totality]:
∀A, B, C⊆V. ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–5

Proof. Let c ∈ C; then l↗ c is defined (by totality of l) and is in B, hence
k↗ l↗ c = (l; k)↗ c is defined (by totality of k). Conversely, let a ∈ A and c ∈ CΩ;
then l↗ c is defined and is in BΩ. Thus, k↘ (a, l↗ c) is defined and is in B, and
so l↘ (k↘ (a, l↗ c), c) = (l; k)↘ (a, c) is defined.

4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to
lenses. Then the function λl. (F (l); G(l)) is continuous.

Proof. We first argue that λl. (F (l); G(l)) is monotone. Let l and l′ be two lenses
with l ≺ l′. We must show that F (l); G(l) ≺ F (l′); G(l′). For the get direction, let
c ∈ V, and assume that (F (l); G(l))↗ c is defined. We have:

(F (l); G(l))↗ c
= G(l)↗ (F (l)↗ c)
= G(l)↗ (F (l′)↗ c) by F (l) ≺ F (l′), since F (l)↗ c is defined
= G(l′)↗ (F (l′)↗ c) by G(l) ≺ G(l′)
= (F (l′); G(l′))↗ c.

For the putback direction, let (a, c) ∈ V × VΩ, assume that (F (l); G(l))↘ (a, c) is
defined, and calculate as follows:

(F (l); G(l))↘ (a, c)
= F (l)↘ (G(l)↘ (a, F (l)↗ c), c)
= F (l)↘ (G(l)↘ (a, F (l′)↗ c), c) by F (l) ≺ F (l′)
= F (l)↘ (G(l′)↘ (a, F (l′)↗ c), c) by G(l) ≺ G(l′)
= F (l′)↘ (G(l′)↘ (a, F (l′)↗ c), c) by F (l) ≺ F (l′)
= (F (l′); G(l′))↘ (a, c).

Thus λl. (F (l); G(l)) is monotone. We must now prove that it is continuous.
Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of well-behaved lenses. Let

l =
⊔

i li. We have, for c ∈ V,

(F (l); G(l))↗ c = v
⇐⇒ G(l)↗F (l)↗ c = v by definition of ;
⇐⇒ G(l)↗F (

⊔

i li)↗ c = v by definition of l
⇐⇒ G(l)↗ (

⊔

i F (li))↗ c = v by continuity of F
⇐⇒ ∃i1.G(l)↗F (li1)↗ c = v by Corollary 3.13 (Get)
⇐⇒ ∃i1.G(

⊔

i li)↗F (li1)↗ c = v by definition of l
⇐⇒ ∃i1.(

⊔

i G(li))↗F (li1)↗ c = v by continuity of G
⇐⇒ ∃i2, i1.G(li2)↗F (li1)↗ c = v by Corollary 3.13 (Get)

⇐⇒ ∃i.G(li)↗F (li)↗ c = v by

{

i = max(i1, i2)
and F and G monotone

⇐⇒ ∃i.(F (li); G(li))↗ c = v by definition of ;
⇐⇒ (

⊔

i(F (li); G(li)))↗ c = v by Corollary 3.13 (Get)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–6 · J. N. Foster et. al.

and

(F (l); G(l))↘ (a, c) = v
⇐⇒ F (l)↘ (G(l)↘ (a, F (l)↗ c), c) = v by definition of ;
⇐⇒ F (l)↘ (G(l)↘ (a, F (

⊔

i li)↗ c), c) = v by definition of l
⇐⇒ F (l)↘ (G(l)↘ (a, (

⊔

i F (li))↗ c), c) = v by continuity of F
⇐⇒ ∃i1.F (l)↘ (G(l)↘ (a, F (li1)↗ c), c) = v by Corollary 3.13 (Get)
⇐⇒ ∃i1.F (l)↘ (G(

⊔

i li)↘ (a, F (li1)↗ c), c) = v by definition of l
⇐⇒ ∃i1.F (l)↘ ((

⊔

i G(li))↘ (a, F (li1)↗ c), c) = v by continuity of G
⇐⇒ ∃i2, i1.F (l)↘ (G(li2)↘ (a, F (li1)↗ c), c) = v by Corollary 3.13 (Put)
⇐⇒ ∃i2, i1.F (

⊔

i li)
↘ (G(li2)↘ (a, F (li1)↗ c), c) = v by definition of l

⇐⇒ ∃i2, i1.(
⊔

i F (li))
↘ (G(li2)↘ (a, F (li1)↗ c), c) = v by continuity of F

⇐⇒ ∃i3, i2, i1.F (li3)
↘ (G(li2)↘ (a, F (li1)↗ c), c) = v by Corollary 3.13 (Put)

⇐⇒ ∃i.F (li)↘ (G(li)↘ (a, F (li)↗ c), c) = v by

{

i = max(i1, i2, i3)
and F and G monotone

⇐⇒ ∃i.(F (li); G(li))↘ (a, c) = v by definition of ;
⇐⇒ (

⊔

i(F (li); G(li)))↘ (a, c) = v by Corollary 3.13 (Put).

Hence the lenses
⊔

i(F (li); G(li)) and F (l); G(l) are equal.

5.1 Lemma [Well-behavedness]:
∀C, A⊆T with C = C!, A = A!, doms(C) = doms(A).
∀m ∈ (Πn∈N . C(n) !

Ω A(n)).
wmap m ∈ C !

Ω A

Proof.
Get: Suppose c ∈ C and m(n)↗ c(n) is defined for each n ∈ dom(c). Then,
by the (dependent) type of m, we have m(n)↗ c(n) ∈ A(n) for each n. Since
dom(A) = dom(C), there exists a non-empty subset of A whose elements all have
domain D = dom(c). Also, the tree

{∣

∣n 4→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

is an element
of the set

{∣

∣n 4→ A(n) | n ∈ D
∣

∣

}

, which is itself a subset of A since A is shuffle closed.
Hence, (wmap m)↗ c ∈ A.

Put: Let a ∈ A and c ∈ C. For all n ∈ dom(a), we have m(n)↘ (a(n), c(n)) ∈
C(n) (with c(n) possibly being Ω). Hence, by a similar argument as above, since
dom(A) = dom(C) and C = C!, we have (wmap m)↘ (a, c) ∈ C.

GetPut: Assume that (wmap m)↗ c is defined. Then

(wmap m)↘ ((wmap m)↗ c, c)
= (wmap m)↘

({∣

∣n 4→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

, c
)

=
{∣

∣n 4→ m(n)↘ (m(n)↗ c(n), c(n)) | n ∈ dom(c)
∣

∣

}

2
{∣

∣n 4→ c(n) | n ∈ dom(c)
∣

∣

}

by GetPut for each m(n)
= c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–7

PutGet: Assume that (wmap m)↘ (a, c) is defined. Then

(wmap m)↗((wmap m)↘ (a, c))
= (wmap m)↗

{∣

∣n 4→ m(n)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

=
{∣

∣n 4→ m(n)↗(l↘ (a(n), c(n))) | n ∈ dom(a)
∣

∣

}

2
{∣

∣n 4→ a(n) | n ∈ dom(a)
∣

∣

}

by PutGet for each m(n)
= a.

7.2 Lemma: Let S, T⊆T . Then

(1) (S ::T) = (S ::T)!

(2) [T] = [T]!.

Proof. We prove each part of the lemma directly.

(1) We calculate (S ::T)!. From the definition of cons cells, the set doms(S ::T) of
possible domains of trees in (S ::T) is {{*h, *t}}. We then calculate (S ::T)!

as:

(S ::T)! =
⋃

D∈doms(S::T)

{∣

∣n 4→ (S ::T)(n) | n ∈ D
∣

∣

}

=
{∣

∣*h 4→ S, *t 4→ T
∣

∣

}

which is equal to S ::T .

(2) We calculate [T]!. From the definition of lists, the set doms([T]) of domains
of trees in [T] is {∅, {*h, *t}}. We then calculate [T]! as:

[T]! =
⋃

D∈doms([T])

{∣

∣n 4→ [T](n) | n ∈ D
∣

∣

}

= {||} ∪
{∣

∣*h 4→ T, *t 4→ [T]
∣

∣

}

which is equal to [T].

7.3 Lemma [Well-behavedness]:
∀C, A⊆T . ∀l ∈ C !

Ω A. list map l ∈ [C] !
Ω

[A]

Proof. Note that list map l is the fixed point of the function:

f = λk. wmap {*h 4→ l, *t 4→ k}

We use Corollary 3.17(1), which states that if, assuming that k ∈ [C] !
Ω

[A], we
can prove f(k) ∈ [C] !

Ω

[A], then fix (f) ∈ [C] !
Ω

[A].
We assume that k ∈ [C] !

Ω

[A] and show that f(k) has type [C] !
Ω

[A]
directly, using the type of wmap. We write m for the total function from names to
lenses described by {*h 4→ l, *h 4→ k}; i.e., m maps *h to l, *t to k, and every

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–8 · J. N. Foster et. al.

other name to id. We first show that m ∈ Πn∈N . C(n) !
Ω A(n):

m(*h) = l ∈ [C](*h) !
Ω

[A](*h)
i.e., C !

Ω A
by the type of l;

m(*t) = k ∈ [C](*t) !
Ω

[A](*t)
i.e., [C] !

Ω

[A]
by assumption;

m(n) = id ∈ [C](n) !
Ω

[A](n) ∀n '∈ {*h, *t}
i.e., ∅ !

Ω ∅
vacuously.

Hence, m has the correct type. The type of wmap also requires that both [C]
and [A] be shuffle closed and that doms([C]) = doms([A]). The first condition
follows from Lemma 7.2(2); the second condition is immediate as both doms([C])
and doms([A]) are the set {{*h, *t}, ∅}.

Using the type of wmap, we conclude that f(k) ∈ [C] !
Ω

[A] and by Corol-
lary 3.17, that fix (f) = list map l ∈ [C] !

Ω

[A].

7.4 Lemma [Totality]: ∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

Proof. We pick these two chains of types:

C0 = A0 = ∅
Ci+1 = [Ci]
Ai+1 = [Ai]

Next, we show by induction on i that l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1

for all i.
We calculate the type of f(l) directly from the type of wmap. As above, we write

m for the function that maps *h to l, *t to k and every other n to id. We analyze
two subcases.

For the base case, i = 0, we have

m(n) ∈ C1(n) ⇐⇒Ω A1(n)
i.e., [](n) ⇐⇒Ω [](n)
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Also, we trivially have that ∅ is shuffle closed and doms(∅) = doms(∅). Using the
type of wmap we conclude that f(k) ∈ C1 ⇐⇒Ω A1.

For the induction step, we assume that i > 0 and k ∈ Ci ⇐⇒Ω Ai. From these

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–9

facts we have

m(*h) = l ∈ [Ci](*h) ⇐⇒Ω [Ai](*h)
i.e., C ⇐⇒Ω A

by i > 0 and the type of l;

m(*t) = k ∈ [Ci](*t) ⇐⇒Ω [Ai](*t)
i.e., [Ci−1] ⇐⇒Ω [Ai−1]

by i > 0;
i.e., Ci ⇐⇒Ω Ai

by induction hypothesis;

m(n) = id ∈ [Ci+1](n) ⇐⇒Ω [Ai+1](n) ∀n '∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

As above, both [Ci] and [Ai] are shuffle closed and have equal domains. Using
the type of wmap, we conclude that f(k) ∈ Ci+1 ⇐⇒Ω Ai+1 which finishes the case
and the inductive proof.

By Corollary 3.17(2) we have that

list map l ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., (∅ ∪
⋃

i [C
i]) ⇐⇒Ω (∅ ∪

⋃

i [A
i])

i.e., [C] ⇐⇒Ω [A],

which finishes the proof.

7.5 Lemma [Well-behavedness]: ∀D⊆T . rotate ∈ [D] !
Ω

[D]

Proof. First, note that rotate is the fixed point of the function:

f = λl. acond ([] ∪ (D ::[])) ([] ∪ (D ::[]))
id
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h} id (rename tmp *h; l; plunge *t))

Let C = A = [D]. We assume that l ∈ C !
Ω A and prove that f(l) ∈ C !

Ω A.
Using Corollary 3.17(1), we conclude that fix (f) = rotate m ∈ C !

Ω A.
We calculate the type of f(l), working top down. The outermost lens is an acond

instance. Using the type of acond, we must prove that the first branch has this
type:

id ∈ C ∩ ([] ∪ (D ::[]))) !
Ω A ∩ ([] ∪ (D ::[])))

i.e., [D] ∩ ([] ∪ (D ::[]))) !
Ω

[D] ∩ ([] ∪ (D ::[])))
i.e., [] ∪ (D ::[]) !

Ω

[] ∪ (D ::[])

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–10 · J. N. Foster et. al.

which is immediate from the type of id. Similarly, we must show that the second
branch has this type:

rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h}id (rename tmp *h; l; plunge *t)
∈ C \ ([] ∪ (D ::[])) !

Ω A \ ([] ∪ (D ::[]))
i.e., [D] \ ([] ∪ (D ::[])) !

Ω

[D] \ ([] ∪ (D ::[]))
i.e., D ::D ::[D] !

Ω D ::D ::[D]

From the type of rename, we have

rename *h tmp ∈ D ::D ::[D] !
Ω

{∣

∣tmp 4→ D, *t 4→ D ::[D]
∣

∣

}

Moreover, using the type of hoist nonunique, we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 4→ D, *t 4→ D ::[D]
∣

∣

}

!
Ω

{∣

∣*h 4→ D, tmp 4→ D, *t 4→ [D]
∣

∣

}

Next we show that the fork lens has type

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [D]
∣

∣

}

!
Ω D ::D ::[D]

We prove that the first arm has type:

id ∈
{∣

∣*h 4→ D
∣

∣

}

!
Ω

{∣

∣*h 4→ D
∣

∣

}

and that the second arm has type:

rename tmp *h; l; plunge *t ∈
{∣

∣tmp 4→ D, *t 4→ [D]
∣

∣

}

!
Ω

{∣

∣*t 4→ [D]
∣

∣

}

The first typing follows from the type of id and the second using the types of
rename, plunge, and the composition operator, as well as the type of l we have by
hypothesis. Hence, the entire fork has the type calculated above. By the type of
the composition operator we conclude that the second branch has the correct type.

We conclude that the acond lens has type C !
Ω A, and so, by Corollary 3.17(1),

that fix (f) = rotate has the same type.

7.6 Lemma [Totality]: ∀D⊆T . rotate ∈ [D] ⇐⇒Ω [D]

Proof. To prove that rotate is total, we use Corollary 3.17(2). Let

C0 = A0 = ∅
Ci+1 = Ai+1 = [Di]

be two chains of types. Again, note that rotate is the fixed point of the function
f described in the well-behavedness proof. We prove, by induction on i, that if
l ∈ Ci ⇐⇒Ω Ai then f(l) ∈ Ci+1 ⇐⇒Ω Ai+1.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–11

For the base case, i = 0, we must show that the f(l) has type C1 ⇐⇒Ω A1. The
outermost lens in f(l) is an acond. We prove that each branch has the correct type:

id ∈ C1 ∩ ([] ∪ D ::[]) ⇐⇒Ω A1 ∩ ([] ∪ D ::[])
i.e., [] ∩ ([] ∪ D ::[]) ⇐⇒Ω [] ∩ ([] ∪ D ::[])
i.e., [] ⇐⇒Ω []

rename *h tmp;
hoist nonunique *t {*h *t};
fork {*h} id (rename tmp *h; l; plunge *t)

∈ C1 ∩ ([] ∪ D ::[]) ⇐⇒Ω A1 ∩ ([] ∪ D ::[])
i.e., [] \ ([] ∪ D ::[]) ⇐⇒Ω [] \ ([] ∪ D ::[])
i.e., ∅ ⇐⇒Ω ∅

The first fact is immediate by the type of id; the second holds vacuously. By the
type of acond, we have f(l) ∈ C1 ⇐⇒Ω A1, which finishes the case.

For the induction step, we assume that i > 0 and that l ∈ Ai ⇐⇒Ω Ci. Again,
we unwind the definition of f(l), revealing an acond lens and prove that the each
branch has the correct type. For the first branch, we calculate the type as follows:

id ∈ Ci+1 ∩ ([] ∪ D ::[]) ⇐⇒Ω Ai+1 ∩ ([] ∪ D ::[])
i.e., [Di] ∩ ([] ∪ D ::[]) ⇐⇒Ω [Di] ∩ ([] ∪ D ::[])
i.e., D ::[] ⇐⇒Ω D ::[] if i = 1

∅ ⇐⇒Ω ∅ otherwise

which follows from the type of id in either case.
For the second branch we must prove that:

rename *h tmp;
hoist nonunique *t {*h *t};
fork {*h} id (rename tmp *h; l; plunge *t)
∈ Ci+1 \ ([] ∪ D ::[]) ⇐⇒Ω Ai+1 ∩ ([] \ D ::[])

i.e., [Di] \ ([] ∪ D ::[]) ⇐⇒Ω [Di] ∩ ([Di] \ D ::[])
i.e., D ::D ::[Di−2] ⇐⇒Ω D ::D ::[Di−2]

We analyze two subcases.
Case i = 1 Since [Di−2] = ∅, the type D ::D ::[Di−2] is also empty. Hence, the

second branch has the required lens type ∅ ⇐⇒Ω ∅ vacuously.
Case i > 1: From the type of rename, we have that

rename *h tmp ∈ D ::D ::[Di−2] ⇐⇒Ω
{∣

∣tmp 4→ D, *t 4→ D ::[Di−2]
∣

∣

}

Using the type of hoist nonunique, we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 4→ D, *t 4→ D ::[Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ D, tmp 4→ D, *t 4→ [Di−2]
∣

∣

}

To show that the composite lens formed from these lenses has the desired type, we
must show that

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [Di−2]
∣

∣

}

⇐⇒Ω D ::D ::[Di−2]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–12 · J. N. Foster et. al.

To show this fact using the type of fork, we must show that the first branch has
type

id ∈
{∣

∣*h 4→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ D
∣

∣

}

and that the second branch has type

rename tmp *h; l; plunge *t ∈
{∣

∣tmp 4→ D, *t 4→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*t 4→ [Di−2]
∣

∣

}

The first typing follows from the type of id and the second using the types of
rename, plunge, and the composition operator, together with the type of l we have
by induction hypothesis. Hence, the entire fork has the total type stated above.
By the type of the composition operator, the entire second branch has the correct
type calculated above.

Thus, from the type of acond, we have f(l) ∈ Ci+1 !
Ω Ai+1, which finishes the

case and the inductive proof.
By Corollary 3.17(2), we conclude that

fix (f) = rotate ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ⇐⇒Ω [D]

which finishes the proof.

7.7 Lemma [Well-behavedness]: ∀D⊆T . list reverse ∈ [D] !
Ω

[D]

Proof. First, note that list reverse is the fixed point of the function:

f = λl. wmap {*t 4→ l}; rotate

Let C = A = [D]. In outline, the proof proceeds as follows. We assume that
l ∈ C !

Ω A and prove that f(l) ∈ C !
Ω A. Using Corollary 3.17(1), we conclude

that fix (f) = list reverse ∈ C !
Ω A.

The outermost lens combinator is the composition operator. Thus, we must show
that the wmap instance has type C !

Ω B and that rotate ∈ B !
Ω A for some type

B. We will prove these facts for B = [D]. Let m be the total function from
names to lenses that maps *t to l and every other name to id. We first show that
m ∈ Πn ∈ N . C(n) !

Ω B(n):

m(*h) = id ∈ C(*h) !
Ω B(*h)

i.e., [D](*h) !
Ω

[D](*h)
i.e., D !

Ω D
by the type of id;

m(*t) = l ∈ C(*t) !
Ω B(*t)

i.e., [D](*t) !
Ω

[D](*t)
i.e., [D] !

Ω

[D]
by assumption;

m(n) = id ∈ C(n) !
Ω B(n) ∀n '∈ {*h, *t}

i.e., [D](n) !
Ω

[D](n)
i.e., ∅ !

Ω ∅
vacuously.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–13

Hence m has the correct type. The type of wmap also requires that C and B be
shuffle closed and that doms(C) = doms(B). The first follows from Lemma 7.2(2)
and since C = B = [D].

Next, using the type we just proved for rotate we have that

rotate ∈ B !
Ω A

i.e., [D] !
Ω

[D]

Finally, by the type of the composition operator, we conclude that f(l) ∈ C !
Ω A.

By Corollary 3.17(1), list reverse has the same type, C !
Ω A.

7.8 Lemma [Totality]: ∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

Proof. The proof, in outline, is as follows. Let C = A = [D]. We first note
that list reverse is the fixed point of the function f , defined above in the well-
behavedness proof. We then identify two increasing chains of types, Ci and Ai such
that C =

⋃

i Ci and A =
⋃

i Ai. We then prove, for all i, that f(l) ∈ Ci+1 ⇐⇒Ω Ai+1

assuming that l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17(2), we conclude that fix (()f) ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai; i.e., that list reverse ∈ C ⇐⇒Ω A.
Let Ci and Ai be increasing chains of types:

C0 = A0 = ∅
Ci+1 = Ai+1 = [Di].

We prove l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction on i.
For the base case, i = 0, we have C1 = A1 = []. The outermost lens in f(l)

is the composition operator. Thus, we must show that the wmap instance has type
C1 ⇐⇒Ω B and that rotate ∈ B ⇐⇒Ω A1 for some type B. Let B = []. We first
prove that m ∈ Πn ∈ N . C1(n) ⇐⇒Ω B(n):

m(n) = id ∈ C1(n) ⇐⇒Ω B(n) ∀n ∈ N
i.e., [](n) ⇐⇒Ω [](n)
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Hence m has the correct type. The type of wmap also requires that C1 and B
be shuffle closed and that doms(C1) = doms(B). Both facts are immediate as
[] = {{||}}.

Next, using the total type we proved for rotate we have

rotate ∈ B ⇐⇒Ω A1

i.e., [] ⇐⇒Ω []

By the type of the composition operator, we conclude that f(l) ∈ C1 ⇐⇒Ω A1.
For the induction step, assume i > 0 and that l ∈ Ci ⇐⇒Ω Ai. Again, outermost

lens in f(l) is the composition operator. Let B = [Di]. We first prove that the wmap
lens has type Ci+1 ⇐⇒Ω B. To show that that m ∈ Πn ∈ N . Ci+1(n) ⇐⇒Ω B(n) we

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–14 · J. N. Foster et. al.

argue as follows:

m(*h) = id ∈ Ci+1(*h) ⇐⇒Ω B(*h)
i.e., [Di](*h) ⇐⇒Ω [Di](*h)
i.e., D ⇐⇒Ω D

as i > 0 and by the type of id;

m(*t) = l ∈ Ci+1(*t) ⇐⇒Ω B(*t)
i.e., [Di](*t) ⇐⇒Ω [Di](*t)
i.e., [Di] ⇐⇒Ω [Di]

as i > 0;
i.e., Ci ⇐⇒Ω Ai

by induction hypothesis;

m(n) = id ∈ Ci+1(n) ⇐⇒Ω B(n) ∀n '∈ {*h, *t}
i.e., [Di](n) ⇐⇒Ω [Di](n)
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Hence m has the correct type. The type of wmap also requires that Ci+1 and
B be shuffle closed and that doms(Ci+1) = doms(B). These facts follow from
Lemma 7.2(2) and since Ci+1 = B = [Di].

Next, using the total type we proved for rotate we have

rotate ∈ B ⇐⇒Ω Ai+1

i.e., [Di] ⇐⇒Ω [Di]

By the type of the composition operator, we conclude that f(l) ∈ Ci+1 ⇐⇒Ω Ai+1.
Finally, by Corollary 3.17(2), we conclude that

fix (f) = list reverse ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ⇐⇒Ω [D]

as required.

7.9 Lemma [Well-behavedness]:
∀D⊆T group ∈ [D] !

Ω

[D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

Proof. First, note that group is the fixed point of the function:

f = λl. acond [][]
id
(acond (D ::[]) ((D ::[]) ::[])

(plunge *h; add *t {||})
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map l)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–15

To shorten the proof, we will use the following abbreviations:

S = (D ::[]) ::[] P = D ::D ::[]
C = [D] A = [P]++([] ∪ S)

In outline, the proof proceeds as follows. We assume that l ∈ C !
Ω A and prove that

f(l) ∈ C !
Ω A. Using Corollary 3.17(1), we conclude that fix (f) = group ∈ C !

Ω A.
The outermost combinator is an acond. Thus, we must show that each branch

has the correct type. For the first, we have

id ∈ C ∩ [] !
Ω A ∩ []

i.e., [D] ∩ [] !
Ω ([P]++([] ∪ S)) ∩ []

i.e., [] !
Ω

[]

using the type of id. For the second we must show that the nested acond has lens
type

C \ [] !
Ω A \ []

i.e., [D] \ [] !
Ω ([P]++([] ∪ S)) \ []

i.e., D ::[D] !
Ω ((P ::[P])++([] ∪ S)) ∪ S

Again, using the type of acond, we must show that each branch of the nested
conditional has the correct type. For the first branch, we must show:

(plunge *h; add *t {||})
∈ (D ::[D]) ∩ (D ::[]) !

Ω (((P ::[P])++([] ∪ S)) ∪ S) ∩ ((D ::[]) ::[])
i.e., D ::[] !

Ω (D ::[]) ::[]

which follows from the types of plunge, add and the composition operator. For the
second branch we must prove

rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map l)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)

∈ (D ::[D]) \ (D ::[]) !
Ω (((P ::[P])++([] ∪ S)) ∪ S) \ ((D ::[]) ::[])

i.e., D ::D ::[D] !
Ω (P ::[P])++([] ∪ S)

From the type of rename we have

rename *h tmp ∈ D ::D ::[D] !
Ω

{∣

∣tmp 4→ D, *t 4→ D ::[D]
∣

∣

}

Moreover, using the type of hoist nonunique we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 4→ D, *t 4→ D ::[D]
∣

∣

}

!
Ω

{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [D]
∣

∣

}

To calculate the type of the fork lens, we check the types of each arm. The first
arm is (map l). We prove that

map l ∈
{∣

∣*t 4→ [D]
∣

∣

}

!
Ω

{∣

∣*t 4→ [P]++([] ∪ S)
∣

∣

}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–16 · J. N. Foster et. al.

by checking that l has the correct type:

l ∈
⋂

n∈N

{∣

∣*t 4→ [D]
∣

∣

}

(n) !
Ω

{∣

∣*t 4→ [P]++([] ∪ S)
∣

∣

}

(n)

as follows:

l ∈
{∣

∣*t 4→ [D]
∣

∣

}

(*t) !
Ω

{∣

∣*t 4→ [P]++([] ∪ S)
∣

∣

}

(*t)
i.e., [D] !

Ω

[P]++([] ∪ S)
by assumption;

l ∈
{∣

∣*t 4→ [D]
∣

∣

}

(n) !
Ω

{∣

∣*t 4→ [P]++([] ∪ S)
∣

∣

}

(n) ∀ ∀n '= *t
i.e., ∅ !

Ω ∅
vacuously.

Moreover, the types
{∣

∣*t 4→ [D]
∣

∣

}

and
{∣

∣*t 4→ [P]++([] ∪ S)
∣

∣

}

are both shuffle
closed and have equal domain sets, since every tree in both types has a single-
ton domain {*t}. Hence, by the type of map, the first arm of the fork has the
correct type.

For the second arm of the fork, we first show that

xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h)
∈

{∣

∣*tmp 4→ D, *h 4→ D
∣

∣

}

!
Ω

{∣

∣*h 4→ D, *t 4→
{∣

∣*h 4→ D, *t 4→ {||}
∣

∣

}∣

∣

}

i.e.,
{∣

∣*tmp 4→ D, *h 4→ D
∣

∣

}

!
Ω P

and that

plunge *h ∈ P !
Ω

{∣

∣*h 4→ P
∣

∣

}

With the type of the composition operator we have that the composition of the
xfork and plunge lenses has type

{∣

∣*tmp 4→ D, *h 4→ D
∣

∣

}

!
Ω

{∣

∣*h 4→ P
∣

∣

}

Putting these pieces together we have that the fork lens has type
{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [D]
∣

∣

}

!
Ω

{∣

∣*h 4→ P, *t 4→ [P]++([] ∪ S)
∣

∣

}

i.e.,
{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [D]
∣

∣

}

!
Ω (P ::[P])++([] ∪ S)

Thus, using the types calculated previously for the rename and hoist nonunique
lenses, together with the type of the composition operator, we have that the second
branch of the nested acond has type

D ::D ::[D] !
Ω (P ::[P])++([] ∪ S)

as required.
Hence, using the type for the outer acond, we conclude that f(l) ∈ C !

Ω A and
by Corollary 3.17(1), that fix (f) = group has the same type, C !

Ω A.

7.10 Lemma [Totality]:
∀D⊆T group ∈ [D] ⇐⇒Ω [D ::D ::[]]++([] ∪ ((D ::[]) ::[]))

Proof. The proof, in outline, is as follows. We first note that group is the fixed
point of the function f , defined in the well-behavedness proof above. We then
identify two increasing chains of types, Ci and Ai and prove for all i, that f(l) ∈

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–17

Ci+1 ⇐⇒Ω Ai+1 assuming that l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17(2), we conclude
that fix (f) ∈

⋃

i Ci ⇐⇒Ω
⋃

i Ai.
We use the same abbreviations for S and P as in the well-behavedness proof.

Define two chains of types:

C0 = A0 = ∅
Ci+1 = [Di]

Ai+1 =

{

[P i/2] if i is even
([P $i/2%])++S otherwise

We prove l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction on i.
For the base case i = 0 we must show that the acond lens has type C1 ⇐⇒Ω A1.

The required type for the first branch is

id ∈ C1 ∩ [] ⇐⇒Ω A1 ∩ []
i.e., [] ∩ [] ⇐⇒Ω [] ∩ []
i.e., [] ⇐⇒Ω []

which is immediate by the type of id. For the second branch we must show that
the nested acond lens has type

C1 \ [] ⇐⇒Ω A1 \ []
i.e., [] \ [] ⇐⇒Ω [] \ []
i.e., ∅ ⇐⇒Ω ∅

which holds vacuously. Thus, by the type of acond we have f(l) ∈ C1 ⇐⇒Ω A1,
which finishes the case.

For the induction step, we assume i > 0 and analyze the type of the outermost
acond lens. We must show that each branch has the correct type. For the first
branch, we calculate the required type as

id ∈ Ci+1 ∩ [] ⇐⇒Ω Ai+1 ∩ []

i.e., [Di] ∩ [] ⇐⇒Ω [P i/2] ∩ [] if i even
i.e., [Di] ∩ [] ⇐⇒Ω [P i/2]++S ∩ [] if i is odd
i.e., ∅ ⇐⇒Ω ∅ in either case, since i > 0

which holds vacuously.
Similarly, we calculate the required type for the second branch (i.e., the acond

lens) as follows

Ci+1 \ [] ⇐⇒Ω Ai+1 \ []

i.e., [Di] \ [] ⇐⇒Ω [P i/2] \ [] if i even
i.e., D ::[Di−1] ⇐⇒Ω P ::[P (i/2)−1]

i.e., [Di] \ [] ⇐⇒Ω [P $i/2%]++S \ [] otherwise
i.e., D ::[Di−1] ⇐⇒Ω [P $i/2%−1]++S

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–18 · J. N. Foster et. al.

Since this lens is also an acond, we must analyze the type of its branches. For the
first branch, (plunge *h; add *t {||}), we calculate the required type as

(D ::[Di−1]) ∩ (D ::[]) ⇐⇒Ω (P ::[P (i/2)−1]) ∩ ((D ::[]) ::[]) if i even
i.e., ∅ ⇐⇒Ω ∅

(D ::[Di−1]) ∩ (D ::[]) ⇐⇒Ω ((P ::[P $i/2%−1])++S) ∩ ((D ::[]) ::[]) otherwise
i.e., D ::[] ⇐⇒Ω (D ::[]) ::[]

The case where i is even is immediate, since every lens has that type vacuously;
the other case follows from the types of plunge, add and the composition operator.
For the second branch we must show that

rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map l)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)

∈ (D ::[Di−1]) \ (D ::[]) ⇐⇒Ω (P ::[P (i/2)−1]) \ ((D ::[]) ::[]) if i even
i.e., D ::D ::[Di−2] ⇐⇒Ω P ::[P (i/2)−1]

(D ::[Di−1]) \ (D ::[]) ⇐⇒Ω ((P ::[P $i/2%−1])++S) \ ((D ::[]) ::[]) otherwise
i.e., D ::D ::[Di−2] ⇐⇒Ω (P ::[P $i/2%−1])++S

There are several cases. If i = 1 then we have the lens typing vacuously. Otherwise,
i > 1 and we calculate the types for each lens in the composition. From the type
of rename we have

rename *h tmp ∈ D ::D ::[Di−2] ⇐⇒Ω
{∣

∣tmp 4→ D, *t 4→ D ::[Di−2]
∣

∣

}

and, moreover, using the type of hoist nonunqique we have

hoist nonunique *t {*h, *t}
∈

{∣

∣tmp 4→ D, *t 4→ D ::[Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [Di−2]
∣

∣

}

Using the type of fork, we then verify the types of each arm. The first arm is
(map l). We prove that

map l ∈
{∣

∣*t 4→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*t 4→ [P (i−2)/2]
∣

∣

}

if i even
{∣

∣*t 4→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*t 4→ [P $i−2%/2]++S
∣

∣

}

otherwise

by checking that l has the correct type:

l ∈
⋂

n∈N

{∣

∣*t 4→ [D]
∣

∣

}

(n) ⇐⇒Ω
{∣

∣*t 4→ [P (i−2)/2]
∣

∣

}

(n) if i even

⋂

n∈N

{∣

∣*t 4→ [D]
∣

∣

}

(n) ⇐⇒Ω
{∣

∣*t 4→ [P $i−2%/2]++S
∣

∣

}

(n) otherwise

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–19

For every n not equal to *t, this reduces to l ∈ ∅ ⇐⇒Ω ∅, which vacuously holds.
Otherwise we calculate as follows:

l ∈
{∣

∣*t 4→ [Di−2]
∣

∣

}

(*t) ⇐⇒Ω
{∣

∣*t 4→ [P (i−2)/2]
∣

∣

}

(*t) if i is even
i.e., [Di−2] ⇐⇒Ω [P (i−2)/2]
i.e., Ci−1 ⇐⇒Ω Ai−1

{∣

∣*t 4→ [Di−2]
∣

∣

}

(*t) ⇐⇒Ω
{∣

∣*t 4→ ([P $(i−2)/2%])++S
∣

∣

}

(*t) otherwise
i.e., [Di−2] ⇐⇒Ω ([P $(i−2)/2%])++S
i.e., Ci−1 ⇐⇒Ω Ai−1

both facts follow by induction hypothesis. Then, since the domain of every tree in
source and target component of the lens type we want to show for the map is {*t},
we have that the types are shuffle closed and have equal domain. Thus, by the type
of map, the first arm has the correct type.

For the second arm we first prove that

xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h)
∈

{∣

∣*tmp 4→ D, *h 4→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ D, *t 4→
{∣

∣*h 4→ D, *t 4→ {||}
∣

∣

}∣

∣

}

i.e.,
{∣

∣*tmp 4→ D, *h 4→ D
∣

∣

}

⇐⇒Ω P

and that

plunge *h ∈ P ⇐⇒Ω
{∣

∣*h 4→ P
∣

∣

}

using the type of plunge. With the type of the composition operator, we have that
the composition of the xfork and plunge lenses has type

{∣

∣*tmp 4→ D, *h 4→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ P
∣

∣

}

Putting these pieces together we have that the fork lens has type
{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ P, *t 4→ [P (i/2)−1]
∣

∣

}

if i is even
i.e.,

{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [Di−2]
∣

∣

}

⇐⇒Ω P ::[P (i/2)−1]

{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [Di−2]
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ P, *t 4→ [P $i/2%−1]++S
∣

∣

}

otherwise
{∣

∣tmp 4→ D, *h 4→ D, *t 4→ [Di−2]
∣

∣

}

⇐⇒Ω P ::[P $i/2%−1]++S

Thus, using the type of the composition operator along with the types we proved
for rename, hoist nonunique, and fork, we have that the second branch of the
inner acond belongs to

D ::[Di−1] ⇐⇒Ω P ::[P (i/2)−1] if i even
D ::[Di−1] ⇐⇒Ω [P $i/2%−1]++S otherwise

as required.
By the type of the composition operator, we have f(l) ∈ Ci+1 ⇐⇒Ω Ai+1, which

finishes the case and the inductive proof.
By Corollary 3.17(2), we conclude that

fix(f) = group ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ⇐⇒Ω [P]++([] ∪ S)

which completes the proof.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–20 · J. N. Foster et. al.

7.11 Lemma [Well-behavedness]:
∀D⊆T , t ∈ T . with t '∈ D. concat t ∈ [D] ::[D] ::[] !

Ω

[D]++(t ::[D])

Proof. First, note that concat t is the fixed point of the function:

f = λl. acond ([] ::[D] ::[]) (t ::[D])
(wmap {*h 4→ const t [], *t 4→ hd []})
(fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; l; plunge *t))

Let C = [D] :: [D] :: [] and A = [D]++(t :: [D]). We assume that l ∈ C !
Ω A

and prove that f(l) ∈ C !
Ω A. Using Corollary 3.17(1), we conclude that fix (f) =

concat t ∈ C !
Ω A.

The outermost lens is an acond. Thus, we must show that each branch has the
correct type. For the first, we have

wmap {*h 4→ const t [], *t 4→ hd []}
∈ C ∩ ([] ::[D] ::[]) !

Ω A ∩ (t ::[D])
i.e., ([D] ::[D] ::[]) ∩ ([] ::[D] ::[]) !

Ω ([D]++(t ::[D])) ∩ (t ::[D])
i.e., [] ::[D] ::[] !

Ω t ::[D]

Let m be the total function from names to lenses that maps *h to (const t []) and
*t to (hd []) and every other name to id. We prove that m has the correct type,
Πn ∈ N .[] ::[D] ::[](n) !

Ω t ::[D](n), as follows

m(*h) = const t [] ∈ [] ::[D] ::[](*h) !
Ω t ::[D](*h)

i.e., [] !
Ω t

by the type of const;

m(*t) = hd [] ∈ [] ::[D] ::[](*t) !
Ω t ::[D](*t)

i.e., [D] ::[] !
Ω

[D]
by the type of hd;

m(n) = id ∈ [] ::[D] ::[](n) !
Ω t ::[D](n) ∀n '∈ {*h, *t}

i.e., ∅ !
Ω ∅

vacuously.

Additionally, since both the source and targets types are cons cells, they have equal
domains and are shuffle closed by Lemma 7.2. Putting all these facts together, we
have that wmap has the type calculated above.

For the second branch, we must prove that

fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; l; plunge *t)
∈ C \ ([] ::[D] ::[]) !

Ω A \ (t ::[D])
i.e., ([D] ::[D] ::[]) \ ([] ::[D] ::[]) !

Ω ([D]++(t ::[D])) \ (t ::[D])
i.e., (D ::[D]) ::[D] ::[] !

Ω (D ::[D])++(t ::[D])

We calculate the type of the first fork. The first arm has type

id ∈
{∣

∣*t 4→ [D] ::[]
∣

∣

}

!
Ω

{∣

∣*t 4→ [D] ::[]
∣

∣

}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–21

and the second arm has type

(hoist *h; rename *t tmp) ∈
{∣

∣*h 4→ D ::[D]
∣

∣

}

!
Ω

{∣

∣*h 4→ D, tmp 4→ [D]
∣

∣

}

using the types of id, hoist, rename and the composition operator. With these
facts and the type of fork we have

fork {*t} id (hoist *h; rename *t tmp)
∈ (D ::[D]) ::[D] ::[] !

Ω
{∣

∣*h 4→ D, tmp 4→ [D], *t 4→ [D] ::[]
∣

∣

}

For the first arm of the next fork we have

id ∈
{∣

∣*h 4→ D
∣

∣

}

!
Ω

{∣

∣*h 4→ D
∣

∣

}

and moreover, for the second arm, we have

(rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 4→ [D], *t 4→ [D] ::[]
∣

∣

}

!
Ω

{∣

∣*t 4→
{∣

∣[D]++(t ::[D])
∣

∣

}∣

∣

}

using the types of rename, plunge, and the type of l we have by induction hypoth-
esis. Thus, using the type of fork we have

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣*h 4→ D, tmp 4→ [D], *t 4→ [D] ::[]
∣

∣

}

!
Ω

{∣

∣*h 4→ D, *t 4→
{∣

∣[D]++(t ::[D])
∣

∣

}∣

∣

}

i.e.,
{∣

∣*h 4→ D, tmp 4→ [D], *t 4→ [D] ::[]
∣

∣

}

!
Ω D :: ([D]++(t ::[D]))

as required. Hence, using the typing of the composition operator, we have that the
second branch of the acond–the composition of both forks–has the type specified
above.

With the type of acond, we conclude that f(l) ∈ C !
Ω A and by Corollary 3.17(1),

that fix (f) = concat t has the same type, C !
Ω A.

7.12 Lemma [Totality]:
∀D⊆T , t ∈ T . with t '∈ D. concat t ∈ [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

Proof. The proof, in outline, is as follows. We first note that concat t is the
fixed point of the function f , defined in the well-behavedness proof above. We
then identify two increasing chains of types, Ci and Ai and prove for all i, that
f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 assuming that l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17(2), we
conclude that fix (f) ∈

⋃

i Ci ⇐⇒Ω
⋃

i Ai.
Define two chains of types:

C0 = A0 = ∅
Ci+1 = [Di] ::[D] ::[]
Ai+1 = [Di]++(t ::[D])

We prove l ∈ Ci ⇐⇒Ω Ai implies f(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction on i.
For the base case, i = 0, we show that the outermost lens, acond has type

C1 ⇐⇒Ω A1 by proving that each branch has the correct type. For the first branch,
we calculate the required type as follows:

wmap {*h 4→ const t [], *t 4→ hd []}
∈ C1 ∩ ([] ::[D] ::[]) ⇐⇒Ω A1 ∩ (t ::[D])

([] ::[D] ::[]) ∩ ([] ::[D] ::[]) ⇐⇒Ω ([]++(t ::[D])) ∩ (t ::[D])
i.e., [] ::[D] ::[] ⇐⇒Ω t ::[D]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–22 · J. N. Foster et. al.

As above, let m be the total function from names to lenses that maps *h to
(const t []) and *t to (hd []) and every other name to id. We prove that m
has the correct type, Πn ∈ N .[] ::[D] ::[](n) ⇐⇒Ω t ::[D](n), as follows

m(*h) = const t [] ∈ [] ::[D] ::[](*h) ⇐⇒Ω t ::[D](*h)
i.e., [] ⇐⇒Ω t

by the type of const;

m(*t) = hd [] ∈ [] ::[D] ::[](*t) ⇐⇒Ω t ::[D](*t)
i.e., [D] ::[] ⇐⇒Ω [D]

by the type of hd;

m(n) = id ∈ [] ::[D] ::[](n) ⇐⇒Ω t ::[D](n) ∀n '∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

Additionally, since both the source and targets types are cons cells, they have equal
sets of domains and are shuffle closed by Lemma 7.2. Putting these facts together,
we obtain the correct type for wmap calculated above.

For the second branch, we must prove

fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; l; plunge *t)
∈ C1 \ ([] ::[D] ::[]) ⇐⇒Ω A1 \ (t ::[D])

i.e., ([] ::[D] ::[]) \ ([] ::[D] ::[]) !
Ω ([]++(t ::[D])) \ (t ::[D])

i.e., ∅ !
Ω ∅

which holds, vacuously. Thus, by the type of acond we have f(l) ∈ C1 ⇐⇒Ω A1,
which finishes the case.

For the induction step, we assume i > 0 and l ∈ Ci ⇐⇒Ω Ai and show that f(l) ∈
Ci+1 ⇐⇒Ω Ai+1. We prove that the outermost lens, acond has type C1 ⇐⇒Ω A1 by
proving that each branch has the correct type. For the first branch, we calculate
the required type as follows:

wmap {*h 4→ const t [], *t 4→ hd []}
∈ Ci+1 ∩ ([] ::[D] ::[]) ⇐⇒Ω Ai+1 ∩ (t ::[D])

i.e., ([Di] ::[D] ::[]) ∩ ([] ::[D] ::[]) ⇐⇒Ω ([Di]++(t ::[D])) ∩ (t ::[D])
i.e., ∅ ⇐⇒Ω ∅

This empty typing vacuously holds for any lens. For the second branch we must
prove that

fork {*t} id (hoist *h; rename *t tmp);
fork {*t} id (rename tmp *h; l; plunge *t)
∈ Ci+1 \ ([] ::[D] ::[]) ⇐⇒Ω Ai+1 \ (t ::[D])

i.e., ([Di] ::[D] ::[]) \ ([] ::[D] ::[]) ⇐⇒Ω ([Di]++(t ::[D])) \ (t ::[D])
i.e., (D ::[Di−1]) ::[D] ::[] ⇐⇒Ω (D ::[Di−1])++(t ::[D])

We calculate the type of the first fork directly. The first arm has type

id ∈
{∣

∣*t 4→ [D] ::[]
∣

∣

}

⇐⇒Ω
{∣

∣*t 4→ [D] ::[]
∣

∣

}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–23

and the second arm has type

(hoist *h; rename *t tmp)
∈

{∣

∣*h 4→ D ::[Di−1]
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ D, tmp 4→ [Di−1]
∣

∣

}

using the types of id, hoist, rename and the composition operator. With these
facts and the type of fork we have

fork {*t} id (hoist *h; rename *t tmp)
∈ (D ::[Di−1]) ::[D] ::[] ⇐⇒Ω

{∣

∣*h 4→ D, tmp 4→ [Di−1], *t 4→ [D] ::[]
∣

∣

}

For the first arm of the next fork we have

id ∈
{∣

∣*h 4→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ D
∣

∣

}

and moreover, for the second arm, we have

(rename tmp *h; l; plunge *t)
∈

{∣

∣tmp 4→ [Di−1], *t 4→ [D] ::[]
∣

∣

}

⇐⇒Ω
{∣

∣*t 4→
{∣

∣[Di−1]++(t ::[D])
∣

∣

}∣

∣

}

using the types of rename, plunge, and the type of l we have by induction hypoth-
esis. Thus, using the type of fork we have

fork {*h} id (rename tmp *h; l; plunge *t)
∈

{∣

∣*h 4→ D, tmp 4→ [Di−1], *t 4→ [D] ::[]
∣

∣

}

⇐⇒Ω
{∣

∣*h 4→ D, *t 4→ [Di−1]++(t ::[D])
∣

∣

}

i.e.,
{∣

∣*h 4→ D, tmp 4→ [Di−1], *t 4→ [D] ::[]
∣

∣

}

⇐⇒Ω D :: ([Di−1]++(t ::[D]))

as required. Hence, using the typing of the composition operator, we have that
the second branch of the acond–the composition of both forks–has the total type
specified above. Hence, f(l) ∈ Ci+1 ⇐⇒Ω Ai+1, which finishes the case and the
inductive proof.

Using Corollary 3.17(2), we conclude that

fix (f) = concat t ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., ∅ ∪
⋃

i [D
i] ⇐⇒Ω ∅ ∪

⋃

i [D
i]

i.e., [D] ::[D] ::[] ⇐⇒Ω [D]++(t ::[D])

which finishes the proof.

Special Types for Conditional Lenses

In this section, we record some additional types that our conditional lenses inhabit,
which we need for our proof that list filter, defined in Section 7, is total.

The first lemma presents an alternate total type for cond where the target sets in
the types of l1, l2 and the entire cond lens are intersected with an arbitrary set, A.
Recall that the standard type for ccond takes two lenses with type C ∩C1 ⇐⇒Ω A1

and C\C1 ⇐⇒Ω A2 (as well as conversion functions f21 and f12) and produces a lens
with type C ⇐⇒Ω A1 ∪A2. This type is usually the type that we want. However, in
some situations (when reasoning about totality), we need to show a fixed instance
of cond has many different types. The abstract components of some of these types
may be smaller than (A1 ∪ A2), where A1 and A2 appear literally in the syntax
of the ccond instance. The new type presented here allows us to simplify some of
these cases by only considering the lens type that is intersected with the abstract
type we want, reducing the proof burden.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–24 · J. N. Foster et. al.

A.28 Lemma: The cond lens has the following type:
∀C, C1, A, A1, A2 ⊆ V.
∀l1 ∈ (C∩C1) ⇐⇒Ω (A∩A1). ∀l2 ∈ (C\C1) ⇐⇒Ω (A∩A2).
∀f21 ∈ (C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A∩(A1∪A2)).

Proof. We prove (1) by showing that the cond lens is well-behaved at C !
Ω

(A ∩ (A1 ∪ A2)), and then prove (2) by showing that that the lens is also total if
both l1 and l2 are total. We abbreviate cond C1 A1 f21 f12 l1 l2 as l.
Get: Suppose c ∈ C and l↗ c is defined. (Again, for brevity, we write l for
(cond C1 A1 A2 f21 f12 l1 l2)). If c ∈ C1, then l↗ c = l1↗ c ∈ (A ∩ A1) ⊆ (A ∩
(A1∪A2)) by the type of l1. Otherwise, l↗ c = l2↗ c ∈ (A∩A2) ⊆ (A∩ (A1 ∪A2))
by the type of l2.

Put: Suppose (a, c) ∈ (A∩ (A1∪A2))×CΩ and l↘ (a, c) is defined. There are six
cases to consider, one for each clause in the definition, and the result in each case
is immediate from the typing of l1 or l2, as the case may be. Note, in particular,
that the range of f21 falls within the source of l1 in the fourth clause, and similarly
for f12 and l2 in the sixth clause.

GetPut: Suppose c ∈ C and l↘ (l↗ c, c) is defined. If c ∈ C1, then l↗ c = l1↗ c,
which, by the type of l1, belongs to (A∩A1). So l↘ (l1↗ c, c) = l1 ↘ (l1↗ c, c) by
either the first or the third clause in the definition of l↘. This, in turn, is equal to
c by GetPut for l1. On the other hand, if c '∈ C1, then l↗ c = l2↗ c, which, by
the type of l2, belongs to (A∩A2). So l↘ (l2↗ c, c) = l2 ↘ (l2↗ c, c) by either the
second or the fourth clause in the definition of l↘. This is equal to c by GetPut
for l2.

PutGet Suppose (a, c) ∈ (A∩(A1∪A2))×CΩ and l↗ (l↘ (a, c)) is defined. There
are again six cases to consider:

(1) If a ∈ (A ∩ (A1∩A2)) and c ∈ C1, then l↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, c)). But
l1 ↘ (a, c) ∈ C1 by the type of l1, so l↗ (l1 ↘ (a, c)) = l1↗ (l1 ↘ (a, c)) = a
by PutGet for l1.

(2) If a ∈ (A ∩ (A1∩A2)) and c '∈ C1, then l↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, c)). But
l2 ↘ (a, c) ∈ C2 by the type of l2, so l↗ (l2 ↘ (a, c)) = l2↗ (l2 ↘ (a, c)) = a
by PutGet for l2.

(3) If a ∈ (A∩(A1\A2)) and c ∈ (C1)Ω, then l↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, c)). But
l1 ↘ (a, c) ∈ C1 by the type of l1, so l↗ (l1 ↘ (a, c)) = l1↗ (l1 ↘ (a, c)) = a
by PutGet for l1.

(4) If a ∈ (A ∩ (A1\A2)) and c '∈ (C1)Ω, then l↗ (l↘ (a, c)) =
l↗ (l1 ↘ (a, f21(a, c))). But l1 ↘ (a, f21(a, c)) ∈ C1 by the types of f21 and
l1, so l↗ (l1 ↘ (a, f21(a, c))) = l1↗ (l1 ↘ (a, f21(a, c))) = a by PutGet for l1.

(5) If a ∈ (A ∩ (A2\A1)) and c '∈ C1, then l↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, c)). But
l2 ↘ (a, c) ∈ C2 by the type of l2, so l↗ (l2 ↘ (a, c)) = l2↗ (l2 ↘ (a, c)) = a
by PutGet for l2.

(6) If a ∈ (A ∩ (A2\A1)) and c ∈ C1, then l↗ (l↘ (a, c)) =
l↗ (l2 ↘ (a, f12(a, c))). But l2 ↘ (a, f12(a, c)) ∈ C2 by the types of f12 and
l2, so l↗ (l2 ↘ (a, f12(a, c))) = l2↗ (l2 ↘ (a, f12(a, c))) = a by PutGet for l2.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–25

Hence, l ∈ C !
Ω A ∩ (A1 ∪ A2). Next we prove that l is total at that type if l1 and

l2 are total, by showing that its get and putback functions are totally defined on
their domains.

We first show that the get function is totally defined on C. Pick c ∈ C. If c ∈ C1

then l↗ c = l1↗ c. As l1 ∈ C ∩ C1 ⇐⇒Ω A ∩ A1, it follows that l1↗ c is defined.
Similarly, if c ∈ (C \C1), then l↗ c = l2↗ c. As l2 ∈ C \C1 ⇐⇒Ω A∩A2, it follows
that l2↗ c is defined. Hence, l↗ is a total function.

Second, we prove that the putback function is totally defined on (A∩(A1∪A2))×
CΩ. There are six cases, corresponding to the six cases in the definition of the
putback function:

(1) If a ∈ (A∩ (A1∩A2)) and c ∈ C1, then l↘ (a, c) = l1 ↘ (a, c) is defined as l1↘
is total on (A ∩ A1) × (C ∩ C1)Ω.

(2) If a ∈ (A∩ (A1∩A2)) and c '∈ C1, then l↘ (a, c) = l2 ↘ (a, c) is defined as l2↘
is total on (A ∩ A2) × (C \ C1)Ω.

(3) If a ∈ (A ∩ (A1\A2)) and c ∈ (C1)Ω, then l↘ (a, c) = l1 ↘ (a, c) is defined as
l1↘ is total on (A ∩ A1) × (C ∩ C1)Ω.

(4) If a ∈ (A∩ (A1\A2)) and c '∈ (C1)Ω, then l↘ (a, c) = l1 ↘ (a, f21(c)) is defined
as f21 is a totally defined function with type: (C \ C1) → (C ∩ C1)Ω and l1↘
is total on (A ∩ A1) × (C ∩ C1)Ω.

(5) If a ∈ (A ∩ (A2\A1)) and c '∈ C1, then then l↘ (a, c) = l2 ↘ (a, c) is defined
as l2↘ is total on (A ∩ A2) × (C \ C1)Ω.

(6) If a ∈ (A ∩ (A2\A1)) and c ∈ C1, then l↘ (a, c) = l2 ↘ (a, f12(c)) is defined
as f12 is a totally defined function with type: (C ∩ C1) → (C \ C1)Ω and l2↘
is total on (A ∩ A2) × (C \ C1)Ω.

Hence, l↘ is a total function.
We conclude that (cond C1 A1 A2 f21 f12 l1 l2) ∈ C ⇐⇒Ω (A ∩ (A1 ∪ A2)).

The next lemma record types for conditional lenses in special cases where the
conditional always selects one lens or the other (in both directions). In these situa-
tions, we can use a more flexible typing rule that makes no assumptions about the
branch that is never used. The first describes ccond instances where the second
branch is always taken.

A.29 Lemma [Always-False ccond]:
∀C, C1, A⊆V. with C ∩ C1 = ∅.∀l2 ∈ C\C1 ⇐⇒Ω A. ccond C1 l1 l2 ∈ C ⇐⇒Ω A.

Proof. First we argue that (ccond C1 l1 l2) = l2 by showing that their respective
get and putback functions are identical. For any c ∈ C, we must have c '∈ (C1 ∩ C)
(because it is empty) and so c ∈ (C \ C1). Hence, (ccond C1 l1 l2)↗ c = l2↗ c.
Similarly, for any (a, c) in A × CΩ, we must have c '∈ (C ∩ C1). By definition,
(ccond C1 l1 l2)↘ (a, c) = l2 ↘ (a, c).

Since (ccond C1 l1 l2) = l2, the well-behavedness and totality of the ccond lens
follow from the well-behavedness and totality of l2. In particular, since l1 is never
used, we do not need any assumptions about it.

Note that there is no corresponding always-true rule for ccond. Even if C\C1 = ∅,
in the putback direction, the Ω tree still gets sent through l2.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–26 · J. N. Foster et. al.

7.13 Lemma [Well-behavedness]:
∀D, E⊆T . with D ∩ E = ∅ and D '= ∅ and E '= ∅.

inner filter D E ∈ [D1..ω]&[E] !
Ω

[D1..ω]
list filter D E ∈ [D]&[E] !

Ω

[D]

Proof. To start, note that (inner filter D E) is the fixed point of the following
function f from lenses to lenses:

f = λl. ccond E :: ([D1..ω]&[E])
(tl anyE ; l)
(wmap {*h 4→ id,

*t 4→ (cond [E] [] [D1..ω] fltrE (λc. c++[anyD])
(const [] [])
l)})

To shorten the proof, we sometimes abbreviate the entire cond instance as k.
We prove the type for inner filter using Corollary 3.17(1). We assume that

l ∈ ([D1..ω]&[E]) !
Ω

[D1..ω] and show that f(l) also has type ([D1..ω]&[E]) !
Ω

[D1..ω].
The outermost lens is a ccond combinator. We must show that each branch has

the correct type.

(tl anyE ; l)
∈ ([D1..ω]&[E]) ∩ (E :: ([D1..ω]&[E])) !

Ω

[D1..ω]
i.e., E :: ([D1..ω]&[E]) !

Ω

[D1..ω]

wmap {*h 4→ id, *t 4→ k}
∈ ([D1..ω]&[E]) \ (E :: ([D1..ω]&[E])) !

Ω

[D1..ω]
i.e., D :: ([D]&[E]) !

Ω D ::[D]

The first fact follows from the type of tl with anyE ∈ E, the composition operator,
and the hypothesis about the type of l. To prove the second, we use the type of
wmap. Let m be the total function from names to lenses that maps *h to id, *t to
k, and every other name to id. We show that m ∈ Πn ∈ N .D :: ([D]&[E])(n) !

Ω

D ::[D](n) as follows:

m(*h) = id ∈ D :: ([D]&[E])(*h) !
Ω D ::[D](*h)

i.e., D !
Ω D

by the type of id;

m(*t) = k ∈ D :: ([D]&[E])(*t) !
Ω D ::[D](*t)

i.e., [D]&[E] !
Ω

[D]
by the argument below;

m(n) = id ∈ D :: ([D]&[E])(n) !
Ω D ::[D](n)

i.e., ∅ !
Ω ∅

vacuously.

For the tail tag, we must show that k, the cond lens, has the lens type [D]&[E] !
Ω

[D]. The concrete predicate and abstract predicates for the conditional are C1 =

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–27

[E], A1 = [], and A2 = [D1..ω]. For the first branch, we have that

const [] [] ∈ [D]&[E] ∩ C1 !
Ω A1

i.e., ([D]&[E]) ∩ [E] !
Ω

[]
i.e., [E] !

Ω

[]

from the type of const. For the second, we have that

l ∈ [D]&[E] \ C1 !
Ω A2

i.e., ([D]&[E]) \ [E] !
Ω

[D1..ω]
i.e., [D1..ω]&[E] !

Ω

[D1..ω]

by hypothesis. Next we check that the functions fltrE and (λc. c++[anyD]) have
the correct types:

fltrE ∈ ([D1..ω]&[E]) → ([E])Ω

λc. c++[anyD] ∈ ([E]) → ([D1..ω]&[E])Ω

Both facts are immediate. Thus, by the type of cond we have m(*t) = k ∈
[D]&[E] !

Ω

[D]. Additionally since doms(D :: ([D]&[E])) = {{*h, *t}} =
doms([D1..ω]), with Lemma 7.2(1) we have that both types are shuffle closed and
have equal sets of domains. Putting all these facts together, we have that the wmap
instance has type D :: ([D]&[E]) !

Ω D ::[D] as required. Finally, using the type
of ccond, we conclude that f(l) ∈ ([D1..ω]&[E]) !

Ω

[D1..ω]. By Corollary 3.17(1)
we have fix (f) = inner filter D E has the same type.

The proof that list filter D E ∈ [D]&[E] !
Ω

[D] is identical to the proof
above, that k ∈ [D]&[E] !

Ω

[D], except that we use the type of inner filter
directly rather than our hypothesis about the type of l.

7.14 Lemma [Totality]:
∀D, E⊆T . with D ∩ E = ∅ and D '= ∅ and E '= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]
list filter D E ∈ [D]&[E] ⇐⇒Ω [D]

Proof. Note that inner filter D E is the fixed point of the same function f
defined in the well-behavedness proof.

In outline, the proof goes as follows. We start by choosing a sequence of total
type sets T0, T1, (Recall that each Ti is a set of total types and a total type
is itself a pair (C, A).) Next, we prove a key property of f : that, when we apply
it to a lens possessing all the types in some Ti, the result is a lens possessing all
the types in Ti+1. Next we choose an increasing instance of the sequence—i.e., a
chain τ0 ⊆ τ1 ⊆ . . . where each τi ∈ Ti. We argue that the limit of this increasing
instance,

⋃

i τi, is the total type we want—i.e.,

([D1..ω]&[E], [D1..ω]).

We conclude by Lemma 3.19 that the fixed point of f—i.e., the lens
inner filter D E—has this type, finishing the proof. We now proceed to the
details.

We first define the sequence of pairs of total type sets:

T0 = {(∅, ∅)}
Ti+1 = {([D1..x]&[E0..y], [D1..x]) | x + y = i}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–28 · J. N. Foster et. al.

Let us calculate the first few elements of this sequence explicitly:

T1 = {(∅, ∅)}
T2 = {([D1..1], [D1..1])}
T3 = {([D1..2], [D1..2]), ([D1..1]&[E0..1], [D1..1])}

In the proof, we use some abbreviations to lighten the presentation. We abbre-
viate the type argument to the ccond lens as: C1 = E :: ([D1..ω]&[E]) and the
type arguments to k, the cond lens as: C ′

1 = [E], A′
1 = [], and A′

2 = [D1..ω]. In
each case of the inductive proof below, we introduce local definitions of the source
and target type for the typing we are trying to establish as C and A.

We now prove, by induction on i the fact about f needed to apply Lemma 3.19:
that if l has every total type in Ti, then f(l) has every total type in Ti+1.

For the base case (i = 0), we must first show that f(l) has every total type in the
singleton set T1 = {(∅, ∅)}. This is immediate, since every lens has type ∅ ⇐⇒Ω ∅.

For the induction step (i > 0), we prove that f(l) has every total type in Ti+1,
assuming that l has every total type in Ti. Pick an arbitrary total type τ from
Ti+1. We analyze three cases.

Case x = 0: Recall that the set Ti+1 is {([D1..x]&[E0..y], [D1..x]) | x + y = i}.
The only element τ in this set with x = 0 is the empty total type:

([D1..0]&[E0..y], [D1..0]) = (∅&[E0..y], ∅) = (∅, ∅).

Immediately, the lens f(l) has type ∅ ⇐⇒Ω ∅, finishing the case.
Case x > 0 and y = 0: By construction, τ is of the form (C, A) with C = [D1..x]

and A = [D1..x]. To verify the type of the ccond, we first observe that C ∩ C1 =
[D1..x]∩E :: ([D1..ω]&[E]) = ∅. As a result, the ccond always selects the second
branch in both the get and putback directions. By then always-false typing for
ccond, given in Lemma A.29, it suffices to show that the second branch has type
C ⇐⇒Ω A:

wmap {*h 4→ id, *t 4→ k} ∈ C ⇐⇒Ω A
i.e., [D1..x] ⇐⇒Ω [D1..x]
i.e., D ::[D0..x−1] ⇐⇒Ω D ::[D0..x−1]

Let m be the total function from names to lenses that maps *h to id, *t to k, and
every other name to id. We show that m ∈ Πn ∈ N .D :: ([D]&[E])(n) ⇐⇒Ω D ::
[D](n) as follows:

m(*h) = id ∈ D :: ([D0..x−1])(*h) ⇐⇒Ω D ::[D0..x−1](*h)
i.e., D ⇐⇒Ω D

by the type of id;

m(*t) = k ∈ D :: ([D0..x−1])(*t) ⇐⇒Ω D ::[D0..x−1](*t)
i.e., [D0..x−1] ⇐⇒Ω [D0..x−1]

by the argument below;

m(n) = id ∈ D :: ([D0..x−1])(n) ⇐⇒Ω D ::[D0..x−1](n) ∀n '∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–29

For the tail tag, we must show that the conditional lens, k ∈ [D0..x−1] ⇐⇒Ω

[D0..x−1].
We use the extended typing for cond given by Lemma A.28. The standard type

for cond requires a typing for the branches where the abstract component of each
lens type is the corresponding abstract predicate supplied to cond. For example,
using the standard typing, we would have to show that the second branch, l, has
type [D1..x−1] ⇐⇒Ω [D1..ω]. Unfortunately our induction hypothesis only gives
lens types for l where the length of the abstract list is bounded by x − 1. Notice
however, that since we only want to show that the whole cond instance has a lens
type where the length of the abstract list is at most x − 1, the lens type that
standard type for cond requires for l is certainly stronger than we actually need.
We avoid this problem using Lemma A.28, which only requires a typing for each
branch where the abstract component is calculated from the intersection of the
abstract predicates supplied to cond and the abstract type we wish to show for the
whole lens. In this instance, since the cond lens has concrete predicate C ′

1 = [E]
and abstract predicates A′

1 = [] and A′
2 = [D1..ω], we must prove

const [] [] ∈ [D0..x−1] ∩ C ′
1 ⇐⇒Ω A′

1 ∩ [D0..x−1]
i.e., [D0..x−1] ∩ [E] ⇐⇒Ω [] ∩ [D0..x−1]
i.e., [] ⇐⇒Ω []

and

l ∈ [D0..x−1] \ C ′
1 ⇐⇒Ω A′

2 ∩ [D0..x−1]
i.e., [D0..x−1] \ [E] ⇐⇒Ω [D1..ω] ∩ [D0..x−1]
i.e., [D1..x−1] ⇐⇒Ω [D1..x−1].

The first fact follows from the type of const; the second is immediate by induction
hypothesis. We must also show that the functions fltrE and (λc. c++[anyD]) have
the correct types:

fltrE ∈ ([D1..x−1]) → ([])Ω

λc. c++[anyD] ∈ ([]) → ([D1..x−1])Ω

Thus, k ∈ [D0..x−1] ⇐⇒Ω [D0..x−1].
By the type of wmap, together x > 0 and Lemma 7.2(1), which states that

D ::[D0..x−1] is shuffle closed, we have

wmap {*h 4→ id, *t 4→ k} ∈ D ::[D0..x−1] ⇐⇒Ω D ::[D0..x−1].

Finally, using the always-false type of ccond, we conclude that f(l) ∈ C ⇐⇒Ω A,
finishing the case.

Case x > 0 and y > 0: Here τ has the form (C, A) with C = ([D1..x]&[E0..y])
and A = [D1..x]. The outermost lens in f(l) is a ccond lens. The typing rule for
ccond requires that we prove that the branches have the following types:

(tl anyE ; l) ∈ C ∩ C1 ⇐⇒Ω A
i.e., ([D1..x]&[E0..y]) ∩ (E :: ([D1..ω]&[E])) ⇐⇒Ω [D1..x]
i.e., E :: ([D1..x]&[E0..y−1]) ⇐⇒Ω [D1..x]

which follows from y > 0 using the type of tl and the induction hypothesis.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

App–30 · J. N. Foster et. al.

For the second branch we must show

wmap {*h 4→ id, *t 4→ k}
∈ C \ C1 ⇐⇒Ω A

i.e., ([D1..x]&[E0..y]) \ E :: ([D1..ω]&[E]) ⇐⇒Ω [D1..x]
i.e., D :: ([D0..x−1]&[E0..y]) ⇐⇒Ω D ::[D0..x−1].

We use the type of wmap, together with the facts that x > 0, Lemma 7.2, which
implies that D :: ([D0..x−1]&[E0..y]) and D :: [D0..x−1], are shuffle closed, and
that the set of domains of trees in two cons cell types are identical.

Let m be the same total function from names to lenses as in the previous case.
We prove that m ∈ Πn ∈ N .D :: ([D0..x−1]&[E0..y])(n) ⇐⇒Ω D ::[D0..x−1](n) as
follows:

m(*h) = id ∈ D :: ([D0..x−1]&[E0..y])(*h) ⇐⇒Ω D ::[D0..x−1](*h)
i.e., D ⇐⇒Ω D

by the type of id;

m(*t) = k ∈ D :: ([D0..x−1]&[E0..y])(*t) ⇐⇒Ω D ::[D0..x−1](*t)
i.e., [D0..x−1]&[E0..y] ⇐⇒Ω [D0..x−1]

by the argument below;

m(n) = id ∈ D :: ([D0..x−1]&[E0..y])(n) ⇐⇒Ω D ::[D0..x−1](n) ∀n '∈ {*h, *t}
i.e., ∅ ⇐⇒Ω ∅

vacuously.

For the tail tag, we must show that the conditional lens, k has type
[D0..x−1]&[E0..y] ⇐⇒Ω [D0..x−1]. Again we use the extended typing for cond
given by Lemma A.28. We must prove

const [] [] ∈ ([D0..x−1]&[E0..y]) ∩ C ′
1 ⇐⇒Ω A′

1 ∩ ([D0..x−1])
i.e., ([D0..x−1]&[E0..y]) ∩ [E] ⇐⇒Ω [] ∩ ([D0..x−1])
i.e., [E0..y] ⇐⇒Ω []

and

l ∈ ([D0..x−1]&[E0..y]) \ C ′
1 ⇐⇒Ω A′

2 ∩ [D0..x−1]
i.e., ([D0..x−1]&[E0..y]) \ [E] ⇐⇒Ω [D1..ω] ∩ [D0..x−1]
i.e., ([D1..x−1]&[E0..y]) ⇐⇒Ω [D1..ω].

The first fact follows from the type of const; the second is immediate by induction
hypothesis. We must also show that the functions fltrE and (λc. c++[anyD]) have
the correct types:

fltrE ∈ ([D1..x−1]&[E0..y]) → ([E0..y])Ω

λc. c++[anyD] ∈ ([E0..y]) → ([D1..x−1]&[E0..y])Ω

Both typings are immediate. Putting all these facts together, we have

wmap {*h 4→ id, *t 4→ k} ∈ D :: ([D0..x−1]&[E0..y]) ⇐⇒Ω D ::[D0..x−1].

Finally, using the type of ccond, we conclude that f(l) ∈ C ⇐⇒Ω A, finishing the
case and the inductive proof.

To conclude using Lemma 3.19, we must show that the ([D1..ω]&[E], [D1..ω])
is the limit of an increasing instance of elements of T. Let τ0 ⊆ τ1 ⊆ . . . be defined

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Combinators for Bi-Directional Tree Transformations · App–31

as

τ0 = (∅, ∅) ∈ T0
...

τi+1 = ([D1..((i+1)/2)]&[E0..(i/2)], [D1..((i+1)/2)]) ∈ Ti+1

where i/n is integer division of i by n. To show that the limit is the pair of total
types we want, we prove that each set is contained in the other. First, observe that,
for any c ∈ ([D1..ω]&[E]) and a ∈ [D1..ω], we can find an i such that (c, a) ∈ τi

(lifting ∈ to pairs of sets in the obvious way) by choosing i so that i/2 is greater
than the maximum number of elements of D in c, the number of elements of E
in c, and the number of elements in a. The other inclusion is immediate: every
τi is a subset of ([D1..ω]&[E], [D1..ω]) (lifting ⊆ to pairs of pairs of sets twice,
pointwise).

The proof that list filter D E ∈ [D]&[E] ⇐⇒Ω [D] is identical to its proof
of well-behavedness, except that we use the total type of inner filter.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

