
The Weird World of
Bi-Directional Programming

Benjamin C. Pierce

Microsoft Research, Cambridge
(on leave from University of Pennsylvania)

March, 2006

The View Update Problem

I We apply a function to transform source to target

I Someone updates target

I We must now “translate” this update to obtain an
appropriately updated source

S T

The View Update Problem

I We apply a function to transform source to target

I Someone updates target

I We must now “translate” this update to obtain an
appropriately updated source

S T

Updated
T

update

The View Update Problem

I We apply a function to transform source to target

I Someone updates target

I We must now “translate” this update to obtain an
appropriately updated source

S T

Updated
T

Updated
S

The View Update Problem

I We apply a function to transform source to target

I Someone updates target

I We must now “translate” this update to obtain an
appropriately updated source

S T

Updated
T

Updated
S

recombine old S with new T

The View Update Problem: Terminology

Let’s call the function from source to target get and the other
putback. The two functions together form a lens.

S
(source structures)

T
(target structures)

get

putback

lens

The View Update Problem In Practice

This is called the view update problem in the database literature.

Database View
View definition

Update translation policy

The View Update Problem In Practice

This problem arises in many contexts besides “straight”
databases — for example in editors for structured documents...

Document Screen presentation

edit operation
on screen

Updated document

The View Update Problem In Practice

...and data synchronizers such as the Harmony system being
built at the University of Pennsylvania.

source in format B

source in format A
Common target

Synchronized source in
format A

synchronize

Synchronized source in
format B

Why is This Hard?

A Simple Solution?

We can “solve” the problem just by sticking together two
arbitrary functions of appropriate types, each written
separately in any programming language you like.

But this is tricky to get right... and even trickier to maintain!

“Thou shalt not repeat
thyself in thy code!”

A Simple Non-Solution

We can “solve” the problem just by sticking together two
arbitrary functions of appropriate types, each written
separately in any programming language you like.

But this is tricky to get right... and even trickier to maintain!

“Thou shalt not repeat
thyself in thy code!”

A Simple Non-Solution

We can “solve” the problem just by sticking together two
arbitrary functions of appropriate types, each written
separately in any programming language you like.

But this is tricky to get right... and even trickier to maintain!

“Thou shalt not repeat
thyself in thy code!”

A Simple Non-Solution

We can “solve” the problem just by sticking together two
arbitrary functions of appropriate types, each written
separately in any programming language you like.

But this is tricky to get right... and even trickier to maintain!

“Thou shalt not repeat
thyself in thy code!”

Need to find a way of deriving both functions from a single
description.

A Class of Simple Solutions

Things become easier if we restrict attention to bijective
transformations.

A Class of Simple Solutions

Things become easier if we restrict attention to bijective
transformations. Lots of success stories...

I xsugar [Møller and Braband]

I bijective macro tree transducers [Hosoya]

I correspondences and structuring schemas for XML
[Abiteboul, Cluet, and Milo]

I pickling combinators [Kennedy]

I embedded interpreters [Benton]

I updatable views of o-o databases [Ohori and Tajima]

I inter-compilation between Jekyll and C [Ennals]

I etc., etc., etc.

From Bijectiveness to Bi-Directionality

But bijectiveness is a strong restriction.

Often the whole point of defining a “view” is to hide some
information that is present in the source!

I presenting just a small part of a huge database

I ignoring ordering of records when synchronizing XML
databases

I etc.

=⇒ Also important to address the more general
“bi-directional” case, where the putback function weaves
updates back into the original source.

Constructivism

Another issue: It is not enough to know that a putback exists.

I E.g., even in the bijective case, just giving the get
function and proving, somehow, that it is bijective doesn’t
do the whole job.

We need a description that allows us to compute both get and
putback functions.

(This is why the bijective case is already interesting!)

Constructivism

Possible approaches:

I Monolithic:
I programmer writes get function in some standard

notation (e.g., SQL)
I read off its semantics in some form
I from this, calculate an appropriate putback

I Compositional:
I Build complex bi-directional transformations from

simpler bi-directional components.

Monolithic Approaches

Problem:

I In general, the get direction may not provide enough
information to determine the putback function
(More on this later...)

Possible solutions:

I Restrict the set of get functions to ones with “obvious”
putback functions [e.g., Oracle “updatable views”]

I Put an ordering on the possible results of the putback
and look for an algorithm that finds the best [e.g.,
Buneman, Khanna, and Tan]

I Restrict the set of update operations (e.g., to
single-record insertions or deletions) [Hu, Mu, and
Takeichi]

Compositional Approaches

I Build complex bi-directional transformations by combining
simpler bi-directional transformations

I I.e., design languages in which every program can be
read...

from left to right as a get function
from right to left as a putback function

I Compositional reasoning about lens properties

I Type systems play a crucial role

I well-typedness =⇒ “reasonableness”
I well-typedness of components (plus simple local

reasoning) =⇒ well-typedness of compound expression

Compositional Approaches

I Build complex bi-directional transformations by combining
simpler bi-directional transformations

I I.e., design languages in which every program can be
read...

from left to right as a get function
from right to left as a putback function

I Compositional reasoning about lens properties

I Type systems play a crucial role

I well-typedness =⇒ “reasonableness”
I well-typedness of components (plus simple local

reasoning) =⇒ well-typedness of compound expression

Harmony

In the Harmony group at Penn, we have applied this
compositional approach in two concrete domains:

I a language for bi-directional tree transformations

I a language for updatable relational views

Today

A guided tour of this weird world.

Goals:

I To give a sense of the design space of bi-directional
languages

I To illustrate a particular point in this space (Harmony’s
language of bi-directional tree transformations) and
sketch some of its interesting structures

Harmony Demo

The Design Space

What is an “Update”?

Before we can talk about what it means to translate an
update, we must first say precisely what we mean by an
update.

S

Updated
T

Updated
S

 T

Is it...

I the new state of T

I a (mathematical) function from T to T?

I a (syntactic) program denoting such a function?

What is an “Update”?

Before we can talk about what it means to translate an
update, we must first say precisely what we mean by an
update.

S

Updated
T

Updated
S

 T

Is it...

I the new state of T

I a (mathematical) function from T to T?

I a (syntactic) program denoting such a function?

What is an “Update”?

Before we can talk about what it means to translate an
update, we must first say precisely what we mean by an
update.

S

Updated
T

Updated
S

 T

Is it...

I the new state of T

I a (mathematical) function from T to T?

I a (syntactic) program denoting such a function?

What is an “Update”?

Before we can talk about what it means to translate an
update, we must first say precisely what we mean by an
update.

S

Updated
T

Updated
S

 T

Is it...

I the new state of T

I a (mathematical) function from T to T?

I a (syntactic) program denoting such a function?

What is an “Update”?

Before we can talk about what it means to translate an
update, we must first say precisely what we mean by an
update.

S

Updated
T

Updated
S

 T
insert {name=John, age=39}
delete records with age > 35
change John's age to 40
change Fred's age to 38
delete Fred

Is it...

I the new state of T

I a (mathematical) function from T to T?

I a (syntactic) program denoting such a function?

What is an “Update”?

All of these are sensible answers.

Tradeoffs:

I state-based approach (update = new state):

+ mathematically simpler
+ describes “loosely coupled” systems: update translator

need not know what operation was applied — just its
result

I operation-based approaches (update = function /
program):

+ more expressive / flexible
+ directly captures intuition of “manipulating (small)

deltas to (huge) databases”

For this talk, we’ll adopt the simpler state-based approach.

Lenses (Formally)

A lens between a set of source structures S and a set of target
structures T is a pair of functions

get from S to T
putback from T × S to S

T

lens

 putback

get S

A Sample Lens

Xml.flatten;

hoist "contacts"; List.hd []; hoist "contact";

List.map (mapp {"n"} (List.hd []; hoist "pcdata";

List.hd []);

pivot "n");

List.flatten;

map (List.hd [];

map (List.map (hoist "pcdata"; List.hd []));

acond {} [] (const [] {}) (hoist "studio"))

What is a “Reasonable” Lens?

To design a nice programming language, we need some design
principles to

I allow us to recognize and reject bad (unreasonable)
primitives and bad (non-reasonableness-preserving)
combining forms

I give users a means to understand and predict the
behavior of programs in our language

An Unreasonable Example

An Unreasonable Example

 foo 0 foo

project out string component

An Unreasonable Example

 foo 0

bar

foo

An Unreasonable Example

foo 0

blech 5 bar

foo

return a constant

An Unreasonable Example

foo 0

blech 5 bar

foo

 blech

≠

Acceptability

Principle:

Updates should be “translated exactly” — i.e., to a
source structure for which get yields exactly the
updated target structure.

Formally:
get(putback(t, s)) = t

Another Unreasonable Example

 foo 5 foo

project out string component

Another Unreasonable Example

 foo 5

bar

foo

Another Unreasonable Example

foo 5

bar 0 bar

foo

propagate
updated string

always set numeric
field to 0

Another Unreasonable Example

 foo 5

foo

foo

=

Another Unreasonable Example

foo 5

foo 0 foo

foo

=≠

Stability

Principle:

If the target does not change, neither should the
source.

Formally:
putback(get(s), s) = s

A Debatable Example

 foo 0 foo

project out string component

A Debatable Example

 foo 0

bar

foo

A Debatable Example

foo 0

bar 1 bar

foo

increment numeric component
if string component has changed

A Debatable Example

foo 0

bar 1

quux

bar

foo

A Debatable Example

foo 0

bar 1

quux 2 quux

bar

foo

translated updates produce
"side effects" on source

A Debatable Example

foo 0

bar 1

foo

bar

foo

restore original target

A Debatable Example

foo 0

bar 1

foo 2 foo

bar

foo

original source
is not restored

Forgetfulness

Principle:

Each update should completely overwrite the effect
of the previous one. Thus, the effect of two putbacks
in a row should be the same as just the second.

Formally:
putback(t2, putback(t1, s)) = putback(t2, s)

Nice properties:

I Implies that S is isomorphic to T × U for some U

I Bancilhon and Spyratos’s notion of preserving a “constant
complement” is a slight refinement of this.

Seems sensible. But do we want to require it of all lenses?

Forgetfulness

Principle:

Each update should completely overwrite the effect
of the previous one. Thus, the effect of two putbacks
in a row should be the same as just the second.

Formally:
putback(t2, putback(t1, s)) = putback(t2, s)

Nice properties:

I Implies that S is isomorphic to T × U for some U

I Bancilhon and Spyratos’s notion of preserving a “constant
complement” is a slight refinement of this.

Seems sensible. But do we want to require it of all lenses?

More Examples To Think About

foo 3

bar 5

baz 8

foo 3

baz 8

select g
reen

records

More Examples To Think About

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

select g
reen

records

delete baz

More Examples To Think About

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

bar 5
foo 3

select g
reen

records

delete baz

More Examples To Think About

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

bar 5

foo 3

baz 8

foo 3

select g
reen

records

delete baz

restore baz

More Examples To Think About

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

bar 5

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

select g
reen

records

delete baz

restore baz

back to original source

More Examples To Think About

foo 3

bar 5

baz 8

foo

baz

select green

records and

delete numbers

More Examples To Think About

foo 3

bar 5

baz 8

foo

baz

foo

select green

records and

delete numbers

delete baz

More Examples To Think About

foo 3

bar 5

baz 8

foo

baz

foo 3

bar 5
foo

select green

records and

delete numbers

delete baz

More Examples To Think About

foo 3

bar 5

baz 8

foo

baz

foo 3

bar 5
foo

select green

records and

delete numbers

delete baz

restore baz

foo

baz

More Examples To Think About

foo 3

bar 5

baz 8

foo

baz

foo 3

bar 5

foo 3

bar 5

baz 0

foo

select green

records and

delete numbers

delete baz

restore baz

foo

baz

number set to some default

What To Do?

Should we...

I Demand forgetfulness and lose the ability to handle
deletion in some cases?

I Not demand forgetfulness and lose the guarantee of
undoability?

Better: keep both as possibilities

I Do not demand forgetfulness of all lenses

I But provide a way to easily check that it holds in
particular cases

What To Do?

Should we...

I Demand forgetfulness and lose the ability to handle
deletion in some cases?

I Not demand forgetfulness and lose the guarantee of
undoability?

Better: keep both as possibilities

I Do not demand forgetfulness of all lenses

I But provide a way to easily check that it holds in
particular cases

Another Special Case: Bijective Lenses

A lens whose putback function ignores its second (source)
argument is called bijective.

Too strong for many applications.

But nice when it holds!

I behavior very predictable and easy to understand

I simplifies notations (allowing defaults to be omitted, etc.)

Again, we should keep both possibilities open:

I do not demand bijectiveness of all lenses

I but provide a way to tell when it holds

A Lens Bestiary

bijective lenses

acceptable lenses

well-behaved and forgetful
(very well behaved) lenses

all lenses

acceptable and stable
(well-behaved) lenses

Also, if we had time: partial, monotone, ...

A Lens Bestiary

bijective lenses

acceptable lenses

well-behaved and forgetful
(very well behaved) lenses

all lenses

acceptable and stable
(well-behaved) lenses

"Re
ason

able
"

Also, if we had time: partial, monotone, ...

A Lens Bestiary

bijective lenses

acceptable lenses

well-behaved and forgetful
(very well behaved) lenses

all lenses

acceptable and stable
(well-behaved) lenses

"Re
ason

able
"

Also, if we had time: partial, monotone, ...

Notation: Lens Types

S
wb⇐⇒ T well-behaved lenses from S to T

S
vwb⇐⇒ T very well behaved lenses from S to T

S
bij⇐⇒ T bijective lenses from S to T

S
α⇐⇒ T lenses with property α ∈ {wb, vwb, bij}

How Many Putbacks?

To deepen intuitions about these different subclasses of
reasonable lenses, let’s try a little visualization exercise...

How Many Putbacks? (Bijective Case)

S

T

A bijective lens defines a one-to-one correspondence between
S and T .

How Many Putbacks? (Bijective Case)

S

T

The behavior of the putback function is thus completely fixed
by the behavior of get.

How Many Putbacks? (Very Well Behaved Case)

S

T

If we are defining a very well behaved lens, then many
structures from S can map onto the same structure from T .

How Many Putbacks? (Very Well Behaved Case)

S

T

Source structures partitioned by the equivalence relation

s1 ∼ s2 ⇐⇒ get(s1) = get(s2)

How Many Putbacks? (Very Well Behaved Case)

S

T

The get function projects out part of the information in the
source structure...

How Many Putbacks? (Very Well Behaved Case)

S

T

The get function projects out part of the information in the
source structure... and throws away the rest.

How Many Putbacks? (Very Well Behaved Case)

S

T

If the target structure is modified. . .

How Many Putbacks? (Very Well Behaved Case)

S

T

If the target structure is modified. . .

How Many Putbacks? (Very Well Behaved Case)

S

T

If the target structure is modified. . . the “target part” of the
new source structure is fixed by acceptability...

How Many Putbacks? (Very Well Behaved Case)

S

T

If the target structure is modified. . . the “target part” of the
new source structure is fixed by acceptability... and the
“projected away part” is fixed by forgetfulness to be exactly
the one from the original source.

How Many Putbacks? (Well-Behaved Case)

S

T

?? ?

However, if we are defining a well-behaved lens, the behavior
of putback is constrained only by acceptability.

Many putbacks to choose from!

How Many Putbacks? (Well-Behaved Case)

S

T

Need extra information to select one.

Lenses for Trees

Lenses for Trees

The rest of the talk focuses on Harmony’s language for
bi-directional tree transformations.

Applications include:

I mappings from various XML/HTML bookmark forms to a
common “abstract bookmark” schema

I mappings between calendar formats (icalendar, palm
calendar)

I mappings between address book formats (xcard, csv)

I (under construction) translators for XMI files, drawings,
bibtex files, MS Access databases, ...

Overview

I Generic lenses
I identity, composition, conditionals, recursion

I Structure manipulation lenses
I Lenses that modify the shape of the tree near the root
I hoist, plunge, pivot, . . .

I Tree navigation lenses
I Apply different lenses to different parts of the tree, or

one lens deeper in the tree
I map, fork, . . .

I “Database-like” lenses
I flatten, join, . . .

I Structure replication lenses
I merge, copy, . . .

Trees

Core data model: unordered, edge-labeled trees with no
duplicate edge labels at a given node.

(I.e., a tree is just a partial function from labels to subtrees.)

fre
d

ginger
fo
x.
ne
t

pa
ra
m
ou
nt
.c
om

More complex concrete data formats (lists, XML, etc.) are
straightforwardly encoded as unordered trees.

Tree Types

Types are sets of trees.

=⇒ Type algebra based on regular tree types is a natural fit.

Notation:

T ::= {n 7→ T} child named n with subtree in T
{! 7→ T} child with any name and subtree in T
{* 7→ T} any number of children with subtrees in T
T1 • T2 concatenation of T1 and T2

. . . (plus some others we don’t need today)

The Identity Lens

The identity is a bijective lens from any set U to itself.

id ∈ U
bij⇐⇒ U

Source Target

The Identity Lens

The identity is a bijective lens from any set U to itself.

id ∈ U
bij⇐⇒ U

U U

Source Target

Lens Composition

If l ∈ S
α⇐⇒ U and k ∈ U

α⇐⇒ T then

(l ; k) ∈ S
α⇐⇒ T

l

T

 S

k

T

 U

Source Target

Lens Composition

If l ∈ S
α⇐⇒ U and k ∈ U

α⇐⇒ T then

(l ; k) ∈ S
α⇐⇒ T

l

T

k

getl ;k(s) = getk(getl(s))

Lens Composition

If l ∈ S
α⇐⇒ U and k ∈ U

α⇐⇒ T then

(l ; k) ∈ S
α⇐⇒ T

l

T

k

putbackl ;k(t, s) = putbackl(putbackk(t, getl(s)), s)

Hoist

hoist ∈
{
n 7→ U

} bij⇐⇒ U

n

Source Target

The get function hoists the child under n.

The putback function restores the edge n.

The Constant Lens (first version)

Source Target

t

The get function discards the entire source structure and
always yields the tree t.

The Constant Lens (first version)

Source Target

t

The get function discards the entire source structure and
always yields the tree t.

The putback function restores the original source structure.

Map

map l applies a lens l to all the children of the root node

map

l

m n

o m n

o

m n

pm n

p

Ω

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
if l∈S

wb⇐⇒ T

map

l

m n

o m n

o

m n

pm n

p

Ω

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The get direction replicates the source structure. . .

map

l

m o
n

o

mn

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The get direction replicates the source structure. . .

and applies l to every child

map

l

m n

o m n

o

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The get direction replicates the source structure. . .

and applies l to every child

map

l

m n

o m n

o

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The get direction replicates the source structure. . .

and applies l to every child

map

l

m n

o m n

o

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The putback direction replicates the target structure. . .

map

l

m n

o

m n

p

n

p

m

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The putback direction replicates the target structure. . .

and applies l to every child using the source trees

map

l

m n

o

m n

pm n

p

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The putback direction replicates the target structure. . .

and applies l to every child using the source trees

map

l

m n

o

m n

pm n

p

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The putback direction replicates the target structure. . .

deleting children that are absent

map

l

m n

o

m n

pm n

p

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The putback direction replicates the target structure. . .

creating new children, using which source tree?

map

l

m n

o

m n

pm n

p

?

Map

map l ∈
{
* 7→ S

} wb⇐⇒
{
* 7→ T

}
The putback direction replicates the target structure. . .

creating new children, using the special “missing tree” Ω

map

l

m n

o

m n

pm n

p

Ω

Map (alternate typing)

map l ∈
{
* 7→ S

} vwb⇐⇒
{
* 7→ T

}
if l∈S

bij⇐⇒ T

map

l

m n

o m n

o

m n

pm n

p

Ω

Creation

Doing putback(t, Ω) corresponds to creating an element of S
given just an element t ∈ T .

Formally, we enrich the source and target of all lenses with the
element Ω.

Lenses whose get functions discard information (like const)
now need to be extended to handle Ω (by providing defaults).

Pivot

pivot k ∈ {k 7→ {! 7→ {}} • U
bij⇐⇒ {! 7→ U}

pivot k performs fetches the key under k and puts it at the
root of the tree.

k

ke
y

ke
y

Typical use: choose a key before a flatten...

Pivot

pivot k ∈ {k 7→ {! 7→ {}} • U
bij⇐⇒ {! 7→ U}

pivot k performs fetches the key under k and puts it at the
root of the tree.

k

ke
y

ke
y

Typical use: choose a key before a flatten...

Flatten

flatten ∈ List({! 7→ U}) wb⇐⇒ {* 7→ List(U)}

The flatten lens takes a list of keyed trees and flattens it
into a tree of lists, where the top-level children are the keys
from the original list:

m n o

m n o get n

putback: exercise!

Conditional

Any serious language needs some kind of conditional.

How could this work in a bi-directional setting?

Critical issue: How do we ensure reasonableness, when all we
know about the two branches of the conditional is that each is
reasonable by itself (i.e., if both get and putback go through
the same branch)?

Conditional

Any serious language needs some kind of conditional.

How could this work in a bi-directional setting?

Critical issue: How do we ensure reasonableness, when all we
know about the two branches of the conditional is that each is
reasonable by itself (i.e., if both get and putback go through
the same branch)?

Conditional: get direction

Choose a lens depending on some property
of the structure

In the get direction: test the source structure
(i.e., check if s ∈ Sc ⊆ S)

co
nd

l1 l2

l1 ∈ Sc
α⇐⇒ T1 l2 ∈ Sc

α⇐⇒ T2

What about the way back?

Conditional: get direction

Choose a lens depending on some property
of the structure
In the get direction: test the source structure
(i.e., check if s ∈ Sc ⊆ S) co

nd
 S

c

l1 l2

l1 ∈ Sc
α⇐⇒ T1 l2 ∈ Sc

α⇐⇒ T2

What about the way back?

Conditional: get direction

Choose a lens depending on some property
of the structure
In the get direction: test the source structure
(i.e., check if s ∈ Sc ⊆ S) co

nd
 S

c

l1 l2

s

l1 ∈ Sc
α⇐⇒ T1 l2 ∈ Sc

α⇐⇒ T2

What about the way back?

Conditional: get direction

Choose a lens depending on some property
of the structure
In the get direction: test the source structure
(i.e., check if s ∈ Sc ⊆ S) co

nd
 S

c

s

l1 l2

∈ Sc

l1 ∈ Sc
α⇐⇒ T1

l2 ∈ Sc
α⇐⇒ T2

What about the way back?

Conditional: get direction

Choose a lens depending on some property
of the structure
In the get direction: test the source structure
(i.e., check if s ∈ Sc ⊆ S) co

nd
 S

c

l1 l2

s ∉ Sc

l1 ∈ Sc
α⇐⇒ T1 l2 ∈ Sc

α⇐⇒ T2

What about the way back?

Conditional: get direction

Choose a lens depending on some property
of the structure
In the get direction: test the source structure
(i.e., check if s ∈ Sc ⊆ S) co

nd
 S

c

l1 l2

s ∉ Sc

l1 ∈ Sc
α⇐⇒ T1 l2 ∈ Sc

α⇐⇒ T2

What about the way back?

Conditional: ccond

l1
get

l2
get

t

Sc

Sc

T

 putback

s

 putback

Choose according to the source argument

Conditional: ccond

l1
get

l2
get

t

t'

Sc

Sc

T

 putback

s

 putback

Choose according to the source argument

Conditional: ccond

l1
get

l2
get

t

t'

Sc

Sc

T
s'

 putback

s

 putback

Choose according to the source argument

Conditional: acond

Sc

T1
l1

 putback

get

l2
get

T2

ts

 putbackSc

Another alternative: Choose according to the target argument

Conditional: acond

l1

 putback

get

l2
get

ts

t'

 putback

Sc

T1

T2Sc

But what about switching domains?

Conditional: acond

l1

 putback

get

l2
get

ts

t'

Sc

T1

T2

s'

Sc

?

 putback

A source structure from Sc is needed. . .

Conditional: acond

l1

 putback

get

l2
get

ts

s' t'

 putback

Sc

T1

T2

Ω

Sc

Consider it as creation

Conditional: The General Case

l1

Sc

T1

 putback

get

T2

t

s

tmp

f12

 putback

s'

t'

Sc

get

Combine both and use a fix up function instead of Ω.

Going Further

Derived forms for a wide variety of more complex
transformations can be implemented in terms of these
primitives.

I more complex structure manipulations

I list processing (map, reverse, filter, group, ...)

I XML processing

I etc., etc.

Lenses For Relations

Quick Sketch

Data model: source and target structures are relational
databases (named collections of tables)

Primitives: Operators from relational algebra, each augmented
with enough parameters to determine putback behavior.

Type system: Built using standard tools from databases

I predicates on rows of tables

I functional dependencies between columns (restricted to
“tree form”)

See our upcoming PODS 2006 paper for more.

Finishing Up. . .

Related Work

I Semantic Framework — many related ideas in database
literature (see paper)

I [Dayal, Bernstein ’82] “exact translation”
I [Bancilhon, Spryatos ’81] “translators under constant

complement”
I [Gottlob, Paolini, Zicari ’88] “dynamic views”

I Bijective and Reversible Languages (lots)

I Bi-Directional Languages
I [Meertens] — language for constaint maintainers; similar

behavioral laws
I [Hu, Mu, Takeichi ’04] — language at core of a

structured document editor

Harmony Status

I Prototype implementation and several demo applications
working well

I Distributed operation via integration with Unison file
synchronizer

I Starting to be used seriously outside of Penn
I We’re looking for more users... Join the fun!

I Extensive set of demos (including a lens programming
playground) available on the web

Ongoing and Future Work

I More / larger applications

I Formal characterizations of expressiveness
I Is this set of primitives complete in some interesting

sense?

I Programming puzzles
I can flatten be written as a derived form?
I can a linear-time reverse be written as a derived form?

I Algorithmic aspects of static typechecking with tree types

I Relational lenses / database integration

I Lenses over other structures (graphs, streams, ...)

I Lens programming by example (i.e., much higher-level
languages sharing the same semantic basis)

Thank You!

Mail collaborators on this work: Aaron Bohannon, Nate
Foster, Michael Greenwald, Alan Schmitt, Jeff Vaughan

Other Harmony contributors: Malo Denielou, Michael
Greenwald, Owen Gunden, Martin Hofmann, Sanjeev Khanna,
Keshav Kunal, Stéphane Lescuyer, Jon Moore, Zhe Yang

Resources: Papers, slides, (open source) code, and online
demos:

http://www.cis.upenn.edu/∼bcpierce/harmony/

http://www.cis.upenn.edu/~bcpierce/harmony/

	Why is This Hard?
	Harmony Demo
	The Design Space
	Lenses for Trees
	Lenses For Relations
	Finishing Up…

