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Project Summary

What is the best way to build programs that compute with data sources controlled by multiple prin-
cipals, while ensuring compliance with the security policies of the principals involved? The objective
of this project is to devise methods for building manifestly secure applications for an information
grid consisting of multiple data sources controlled by multiple principals. This is achieved by using
techniques from mathematical logic, programming language semantics, and mechanized reasoning to
ensure security of application code, while permitting convenient expression of complex computations
with data sources on the information grid. The project will design and implement a programming
language whose type system ensures compliance with security policies through the use of proofs in a
formal logic of authorization during both the static and dynamic phases of processing. The project
will use automated reasoning tools such as theorem provers and logical frameworks to prove formally
and rigorously the security properties of the programming language. As a result, every application
written in the language enjoys the guarantees afforded by the language as a whole.

The intellectual merit of the project consists of scientific and engineering techniques for build-
ing practical programs for computing with multiple data sources that are manifestly secure. Manifest
security means that the trust relationships, access control and information flow policies, and proofs
of compliance with these policies are made manifest in the framework through the use of formal
logical methods for specifying and verifying them. These properties will be formally verified against
precise specifications written in a novel logic of authorization and information flow using mechanized
theorem provers and logical frameworks so that there is a direct link between the theoretical analysis
and the executable code. This ensures that running applications are manifestly in compliance with
the security policies of the principals on the information grid to an extent not previously achievable
in practical systems. The project will build a secure information grid and associated applications to
demonstrate the effectiveness of its approach and provide a means for comparison with competing
methods.

The broader impacts of the project include the development of fundamental technology to
ensure privacy while permitting flexible access to disparate, and independently controlled, data
sources. Making security policies themselves, and proofs of application compliance with them, read-
ily available in machine-checkable form is a technical cornerstone for ensuring privacy without unduly
limiting the legitimate use of these data sources. The project will also significantly increase collab-
oration between two major research universities within the Commonwealth of Pennsylvania. The
participants have an established record of fostering education in the field through writing textbooks,
developing new classes and course materials at their universities, and organizing summer schools
for students throughout the world. The project will also employ undergraduate researchers through
direct funding and the NSF Research Experience for Undergraduates program. Both participating
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departments have vibrant organizations supporting and promoting women in computer science, and
we will work toward involving women in our project at both undergraduate and graduate level.
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Project Description

1 Overview

Managers of information repositories today face a tension between security and accessibility of the
information they control. Ideally, a manager wishes to make some set of information readily and
conveniently accessible for legitimate uses, while still ensuring that no information is leaked or
modified inappropriately or without authorization. However, present-day solutions provide good
facilities only for one side or the other. On the security side, it is fairly well understood how to
prevent unauthorized leakage or modification of information by limiting data accesses to properly
privileged queries. This works well provided the gatekeeping and authentication protocols are sound
and correctly implemented. Yet, even when all works correctly, access is typically limited to a pre-
specified set of queries. Moreover, since protocols and implementations often are not correct, it
makes good sense to protect particularly sensitive information by keeping it off the network entirely.
On the accessibility side, there has been considerable progress in the grid computing community on
the problem of mobile code, wherein programs are able to move across the network to their data of
interest and freely compute with it there [28]. This paradigm allows for considerable flexibility in the
exploitation of information, because participants may supply their own code to be run by other sites.
However, such projects have typically assumed that all participants trust each other. What security
is provided focuses mainly on authentication and simple access control, providing no assurance that
the accessed information is used appropriately. Research on certified code [70, 61, 95, 22] has sought
to weaken these assumptions of mutual trust. However, the work in certified code has focused on
preventing mobile code from attacking its host or bypassing its host’s access controls, not on complex
reasoning about authorization or controlling the propagation of information. This tension between
security and accessibility, together with the added problem of correctness, has led to an unsatisfying
state of affairs. Information is either (1) accessible but insecure, (2) believed to be secure but not
very accessible, or (3) definitely secure but completely off-line.

We propose to develop the theoretical and engineering basis for a secure information grid. In
our proposed framework, code will be free to move throughout the grid, but before such code may
be executed, it must establish to its host that it complies with the host’s policy regarding use and
propagation of its data.
Architecture The overall architecture of an information grid is shown in Figure 1. There are
several key components to an information grid. First, we have a rich policy language, expressive
enough to specify both authorization and information-flow policies. Together, these policies regulate
the use and propagation of information throughout the system. The policy language is used at all
stages of grid software lifecycle: During development, it is used to express constraints on legal
program behaviors that can be checked statically. During deployment, policies appearing in code
certificates are verified by hosts to ensure compliance with their own local data polices. Finally,
during execution of grid software, the policy language provides the vocabulary for authorization
checks that are performed at run time to enforce access control. The policy language (described in
more detail below) is based on an open-ended authorization logic.

Next, we have a programming language and accompanying certifying compiler The programming
language employs a strong type system that uses the policy language for specification of information-
flow and authorization policies. The programming language also provides features for describing
the locality of data sources and the security policies that govern them. The certifying compiler
receives two inputs: the program, including its confidentiality and integrity policy annotations, plus
information about the trust relationships between principals and hosts in the information grid. This
grid information is again expressed as a collection of statements in the policy language. The compiler
produces, in addition to executable output, a mechanically verifiable certificate witnessing the type
safety of the resulting object code.

Finally, the runtime system provides three services to grid software. First, it checks the certificate
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Figure 1: High-level picture of a secure information grid architecture

accompanying any code it is asked to execute—this protects the host against malicious or corrupted
code by ruling out potential flaws (like buffer overflows, etc.) and ensures that the code complies with
the host’s local information-flow policy. This part of the security enforcement occurs before the code
is run; the certificate verifier is part of the trusted computing base. Second, the runtime manages
digital certificates that represent proof witnesses for the authorization checks the code needs to make
as the software is running. And third, the runtime provides secure inter-host communication: when,
during the course of execution, a grid program needs to exchange data with or send code to another
host in the grid, it does so through the runtime system, which applies appropriate authentication
and encryption to ensure that the underlying communication channel is secure.
Manifest Security The unifying theme of the information grid architecture is manifest security :
all the steps in the chain of reasoning showing that a given program may safely be executed by
a given host—including both security policies (including trust relationships among principals and
hosts) and the arguments showing that the program obeys them—are made explicit with concrete
evidence in the form of machine-checkable proofs.

Manifest security has a number of appealing advantages. Making the type safety and policy
compliance of the executable code manifest protects the hosts of the grid from malicious attack.
Manifest security also facilitates auditing the behavior of the system. At runtime, explicitly con-
structed proofs of authorization decisions make it possible to account for the behavior of the system
and, when things go wrong (hosts crashing, passwords or keys being compromised, etc.), identify
and localize the problem. Statically, making the policies manifest means that it is possible to check
them for consistency and to identify assumptions. Mechanical verification of these properties leads
to high degree of confidence in the system’s correctness.

In practice, the only scalable way to construct evidence of compliance for a large number of grid
programs is to begin by verifying, once and for all, the security properties of the programming lan-
guage in which the programs are written: the type safety of the language as a whole then establishes
that any given program complies with its stated policy as long as it is well typed. Consequently,
the type safety of the source language is of critical importance, and, following the idea of mani-
fest security, it must also be made explicit in a mechanically verifiable way. Thus, a key aspect
of the information grid is the mechanical verification of the metatheoretic properties (type safety,
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noninterference, etc.) of the programming language and accompanying infrastructure.
To summarize, the central idea of the proposed work is making the security of the information

grid infrastructure manifest. The soundness of the language is made manifest by a proof carried out
explicitly in a formalized metalogic. The fact that a particular executable program accords with the
type system of the language is made manifest through the process of typechecking and certifying
compilation. Which hosts are allowed to manipulate which data is made manifest by policies that
explicitly describe the trust relationships among hosts and principals in the grid. The authorization
decisions made by an executing program are made manifest by requiring the system to be able
to dynamically produce certificates that correspond to proofs in the authorization logic. And the
policies themselves are made manifest as formal objects referred to by these proofs. The upshot of
all of this is that we obtain strong assurance that the programming language and compiler are sound,
that the security policies used in a system are consistent and consistently enforced, and that any
information flows or access control decisions made by the running system comply with the policy.
An Example One of the applications we intend to build to stress-test our infrastructure is an
information grid for managing journal paper submissions and reviewing. (We will focus on security
and information management issues: implementing a full-blown journal management system with a
sophisticated web-browser interface, etc., is beyond the scope of the project.) The application will
support multiple journals, with some level of trust but not complete sharing of information among
the principals associated with the different journals (for example, each journal will want to keep
its reviews and the identity of its reviewers secret). These principals include the editor(s) for each
journal, the reviewers, the authors, and the general public. This domain offers many opportunities
for formalization of interesting authorization and secrecy policies. (For example, assigned referees
can read the paper(s) to which they are assigned, but no others, and only once they are assigned and
have agreed; they can submit a report but cannot revise it on their own; they can see other reports
[in anonymous form] once a decision is reached, or earlier if the editor authorizes it; accepted papers
can be viewed by the general public; etc.) As a more interesting twist, we also allow the journal
editors to share information about reviewers: we introduce another principal called the “reviewer
clearinghouse,” whose job it is to maintain a database of reviewers, with their affiliations, areas of
expertise, etc., that can be queried by journal editors. Moreover, the database includes performance
information such as average completion times for reviews and “helpfulness scores” assigned by editors
of papers for which they have written reviews. Similar features are already implemented in widely
deployed journal management systems; their obvious delicacy and potential for abuse make them a
perfect case study for an infrastructure like ours, where ownership of information is decentralized
and where policies and their verification are both made manifest.

One concrete way of getting relevant information from the journals into the reviewer clearinghouse
database is for the implementor of the clearinghouse to write a snippet of code that is distributed
to the hosts responsible for each of the journals, to be run whenever a new review is entered (or
another event of interest takes place) so that appropriate information can be sent back in the form of
a small mobile agent that moves back to the clearinghouse and updates its database. The “security
lifecycle” of one of these code snippets is as follows: It is written and compiled on the clearinghouse
host, which, during typechecking, verifies its compliance with the policies published by the journal
hosts and produces a certificate demonstrating that the object code produced by the compiler is
indeed compliant. This certificate is transmitted along with the object code to the journal hosts,
which themselves verify the validity of the certificate with respect to the code, before installing
it in some internal list of event handlers. Alternatively, the clearinghouse itself might initiate the
execution of a similar snippet, sending agents to each of the journals to gather and carry back data
in compliance with their policies. Both alternatives involve the notion of a “located computation,”
which takes place in a specified security context and which can move, consistently with policy, from
one such context to another.
Assumptions, Limitations, and Non-Goals With any proposed technique for enforcing security
policies, it is necessary to make some assumptions about the context in which the system will be
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deployed—the same is true of an information grid. These assumptions help to delimit the scope and
provide traction on the issues at the heart of the project. The work we propose here is largely focused
on protecting hosts from potentially malicious code and preventing malicious hosts from disrupting
global confidentiality and authorization constraints. Our project will also build on existing results
and standard techniques (such as the use of public-key cryptography). The primary assumptions,
limitations, and explicit non-goals of our project are as follows.

First, we assume an underlying infrastructure suitable for reliably exchanging code and data
among the hosts of the grid (for example, as provided by the standard TCP/IP protocols). Hosts
participating in an information grid, and, in particular, their runtime systems, may be trusted to
varying degrees by the principals involved in the system (these trust relationships are specified by
explicit policies); the network is not trusted.

Second, we employ standard cryptographic techniques to ensure confidential and authenticated
communication between hosts in the network. For the purposes of our mechanical verification, we
make the standard Dolev-Yao assumptions [27] and treat encryption operations as perfect.

Third, for the sake of practicality and tractability, some parts of the implementation behavior
won’t be modeled. For example, low-level details about caching and timing effects will be omitted,
and we will assume that it is intractable for the attacker to perform complete network traffic analysis.
Consequently, there is the possibility that an attacker able to interact with the information grid at
level of abstraction lower than the one we model may be able to circumvent its information-flow
policies. Such abstraction-violation attacks are always possible, regardless of where the abstraction
boundary is drawn. Existing work on preventing low-level timing [5] and network traffic analysis
attacks could in principle be applied in our context, but we will not focus on this here.

Fourth, our work will not address the issues of fault tolerance and reliability that are typically
addressed by replication and the use of consensus protocols (although it is likely that those techniques
could be fruitfully applied in an information grid). Our proposed work also does not address denial
of service attacks—the focus of this work is on integrity of grid software and the confidentiality of
data, not on availability of the system.

This list is certainly incomplete, but we believe that the philosophy of manifest security will itself
help to identify and articulate additional assumptions and limitations that may arise.

2 Proposed Work

Our approach to building applications with manifestly secure access to distributed information is
founded on logic, type theory, and mechanically verifiable proofs. This section discusses in more
detail the technical challenges we must face in each of these areas and our plans for addressing them.

2.1 Grid Security Policies: A Logic of Authorization and Knowledge

To reason about and enforce properties of our infrastructure and of programs executing on it, we
must be able to specify security policies. The first component of our proposed research is thus the
development of an appropriate policy language for authorization and information flow. Since our
goal is to design and implement a flexible, open-ended architecture, the specification language itself
must be both expressive and open-ended. Moreover, we wish to reason formally about properties
of security policies in order to avoid unintended consequences of policy decisions. Finally, we would
like to be able to verify grid software against these security policies. This section sketches some
underlying logical principles for the policy language and some preliminary evidence for the viability
of our approach. We begin by decomposing the problem into authorization and information flow.
Authorization answers the question of which principals are permitted to access which resources.
Information flow specifies the permissible consequences of properly authorized access.
Authorization policies We want a logic in which one can reason about whether a principal should
have access to a resource. Logics for reasoning about access control go back to work by Abadi
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et al. [4, 2]. However, prior work does not completely satisfy our design criteria—in particular,
generality and extensibility is difficult to combine with the ability to reason mechanically about
policies as a whole (see the related work discussion below).

Briefly, a principal K should be granted access to a resource R exactly if there is a proof of
may-access(K, R). We may understand the meaning of this proposition by considering the pertinent
judgements and proof rules [31, 53, 78]. The most basic judgment is that of the truth of a proposition,
written as A true. We furthermore need a judgment of affirmation, written K affirms A, expressing
a policy of K. For example, K affirms may-access(L,R) is a policy statement by principal K that
L may access resource R. This implies the truth of may-access(L,R) if K also controls the resource
R. The final ingredient is the standard notion of hypothetical judgment. We write Γ =⇒ A true
and Γ =⇒ K affirms A, where Γ is a collection of assumptions of the form B true or K affirms B.

We now sketch a sequent calculus for reasoning about authorization. We begin with the so-called
judgmental rules which explicate the meaning of the judgments:

Γ, P true =⇒ P true
Γ =⇒ A true

Γ =⇒ K affirms A

The first rule expresses that from the assumption P we can obtain the conclusion P . The second,
that when A true any principal K is prepared to affirm A. Since A is true and has an explicit proof,
there is no reason for K to deny it. Conversely, if K affirms A, then A is true from K’s point of
view—i.e., we may assume that A is true while establishing an affirmation for the same principal K:

Γ, A true =⇒ K affirms C

Γ,K affirms A =⇒ K affirms C

In order to use affirmations within propositions (to form policies that require the conjunction of
two affirmations, for example), the logic must internalize them as propositions. The syntax 〈K〉A
packages an affirmation judgment as a proposition:

Γ =⇒ K affirms A

Γ =⇒ 〈K〉A true
Γ, A true =⇒ K affirms C

Γ, 〈K〉A true =⇒ K affirms C

An authorization policy is now just a set of assumptions Γ. An authorization query is a conclu-
sion, usually of the form K affirms may-access(L,R) where K controls resource R. Principal L will
be granted access if there is a proof of the query from Γ. Our authorization architecture will follow
proof-carrying authorization [9, 10], wherein L supplies such a proof explicitly for validation by a
resource monitor implemented in the grid runtime system. At the leaves of these proofs are digitally
signed certificates that witness the policy statements of the principals as collected in Γ.

All this raises several issues, such as how to concretely express policies and proofs, how to assem-
ble proofs, and how to verify their correctness. Our grid architecture will use a logical framework [80]
that is explicitly designed for the representation of logics and proofs. This design makes the archi-
tecture inherently open-ended: we can enrich our logic with further connectives while still using the
same implementation. Furthermore, we can formally reason about the logic and about specific poli-
cies using the meta-theoretic reasoning capabilities of the framework. This is useful to, for example,
establish that a security policy is consistent.
Information-flow policies Authorization policies govern which principals are allowed to access
which resources, but they do not specify what those principals may do with the data once they
have permission to access it. Information-flow policies, in contrast, restrict the propagation and
dissemination of information throughout the information grid.

Suppose that principal L has been granted access to file R (by presenting a proof of may-access(L,R)
to the runtime reference monitor). What kind of information flow does this actually entail—i.e.,
what knowledge can various principles now derive?
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In order to define a logic of knowledge, we need a new judgment, K knows A, where A is a
proposition. Clearly, if K knows A, then A should be true. Consequently, any judgement J entailed
by A true is entailed by K knows A:

Γ, A true =⇒ J

Γ,K knows A =⇒ J

The converse is false, and this is the very essence of secrecy: there are many true propositions that
K does not (and should not) know. We establish that K knows A by showing that K can infer A
using only its own knowledge. We formalize this using the restriction operator Γ|K , which erases
from Γ all hypotheses not of the form K knows B.

Γ|K =⇒ A true
Γ =⇒ K knows A

As before, we can internalize the judgment K knows A as a proposition, written [[K]]A:

Γ =⇒ K knows A
Γ =⇒ [[K]]A true

Γ,K knows A =⇒ J

Γ, [[K]]A true =⇒ J

At this point the logic can specify and reason about authorization and its information flow
consequences. However, the logic as we have described it so far is monotonic: during a proof we can
establish more affirmations and infer additional knowledge for the principals, but we can never take
away knowledge. Consequently, the system can not model consumable resources, nor systems with
essential state changes. In order to capture such systems, it is necessary to move to linear logic [32].

Space permits only the briefest sketch of the resulting logical system. We distinguish between
persistent assumptions (including all the ones made so far) and linear assumptions, which must be
used exactly once in a proof. Such assumptions can model either consumable, one-time certificates
(for example, the permission to submit a review, but only once) or modifiable data (such as a paper
that may be revised). Consumable certificates are linear assumptions K affirms A, while modifiable
data are linear assumptions K knows A.

To illustrate some of these ideas in an example, consider the journal reviewing scenario from the
overview. The principals are the journals J , the editors E, the reviewers R, authors A. Data include
the papers P . We have the following predicates:

editor(E, J) E is an editor for journal J
author(A,P ) A is author of paper P
reviewer(R,P ) R a reviewer for paper P
submitted(P, J) paper P has been submitted to journal J
may-access(K, P ) principal K may access paper P

The authorization policy includes the following: (1) authors may see their own papers; (2)
reviewers must agree to a review; (3) reviewers may see assigned papers.

〈J〉(author(A,P ) ∧ submitted(P, J) ⊃ may-access(A,P )) (1)
〈J〉(submitted(P, J) ∧ editor(E, J) ∧ (〈E〉reviewer(R,P )) ∧ (〈R〉reviewer(R,P ))

⊃ reviewer(R,P )) (2)
〈J〉(submitted(P, J) ∧ reviewer(R,P ) ⊃ may-access(R,P )) (3)

The information itself in this example could be distributed, some stored in the journal’s database.
For example, we write [[J ]]contents(P, T ) to mean that the journal knows the contents of paper P is
text T . Some sample aspects of an information flow policy: (1) principals may learn the contents of
a paper if the journal affirms this; (2) reviewers may know the authors’ identity; (3) a clearinghouse
may learn the identity of reviewers for given journal, but not which specific papers they review.
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submitted(P, J) ∧ (〈J〉may-access(K, P )) ⊃ ([[J ]]contents(P, T )) ⊃ ([[K]]contents(P, T )) (1)
author(A,P ) ∧ submitted(P, J) ∧ (〈J〉reviewer(R,P )) ⊃ [[R]]author(A,P ) (2)

(〈J〉reviewer(R,P )) ∧ submitted(P, J) ⊃ [[clearinghouse]](∃P. submitted(P, J) ∧ reviewer(R,P )) (3)

Permission to update or change both papers and reviews can be added, although the information
flow entailed by such actions requires a change of state and therefore a linear logic of knowledge.
Similarly, charging for the privilege of viewing accepted papers could be specified using consumable
authorities and resources.

A logic of authorization and knowledge as sketched above is so general that it can express policies
that are unenforceable or unimplementable. For example, a policy might state that “If K knows the
contents of every file that L owns, then M should be able to learn this fact.” M and L (and even K)
may not have enough information to establish the antecedent, and even a trusted, omniscient party
would find it expensive. We therefore propose to identify programming models that go hand-in-hand
with classes of policies that they can enforce, employing a combination of logical and cryptographic
techniques. A particularly natural class is that of stratified policies where information flow may
depend on authorization, but not vice versa. Stratification allows us to generate explicit proofs
of authorization without directly relying on potentially private knowledge and enables us to use
proof-carrying authorization as an enforcement mechanism.
Contributions The major contributions of this thread of research on the logical foundations of
authorization and knowledge may be summarized as follows: (1) We will design and implement a
policy logic incorporating affirmation (for reasoning about authorization), knowledge (for reasoning
about information flow), and linearity (for consumable authorities and resources), combining them
into a coherent foundation for security policy specification. (2) Following the philosophy of manifest
security, we will formalize the meta-theoretical properties of the policy logic, including cut elimi-
nation and various forms of policy analysis, such as noninterference. In this logic, noninterference
theorems take the form (Γ,K affirms A =⇒ L affirms C) if and only if (Γ =⇒ L affirms C), under
various circumstances—for example, when Γ does not mention K in a negative position and K is dis-
tinct from L. This means K cannot interfere with authorization for L. Part of the novel contribution
here will be connecting this characterization of noninterference to more standard formulations found
in the programming languages literature (see the next section). (3) We will develop appropriate
cryptographic enforcement mechanisms for the linear authorization logic to account for the presence
of consumable certificates and resources. The corresponding problem without linearity is relatively
well understood: a statement of the form K affirms A is either directly a digital certificate with
contents A signed by a key corresponding to principal K, or a chain of formal proof steps ultimately
relying on such signed certificates.
Related Work Since Abadi et al.’s seminal work [4], there have been numerous proposals for
authorization logics [42, 14, 23, 2, 50, 49, 85]. Many of these have different aim and scope from our
work in that they are often designed to capture and reason about existing mechanisms, rather than
based on purely logical principles. As far as we are aware, these have not been investigated from the
meta-theoretic perspective to prove, for example, cut elimination and the noninterference theorems
that follow from them. Moreover, prior proposals do not integrate reasoning about knowledge or
consumable resources. Another line of related work explores the use of authorization logic for policy
enforcement via explicit proof objects [9, 10, 12, 13] with one recent paper taking the first steps at
exploring the value of linearity to model consumable credentials [11]. This work, however, has been
carried out in the framework of classical higher-order logic which is inherently difficult to reason
about; our approach will be predicative and constructive. There is also prior research on using
logics of knowledge to specify information-flow policies [75], but that work concentrates mainly
on explaining the relationships among different policies and does not consider the interaction of
information-flow and authorization. Another approach is to use a type system for authorization as
done, for example, in the KLAIM system [26]. Proof-carrying authorization extends this to a much
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richer and open-ended policy language at the cost of more complex enforcement mechanisms.

2.2 Enforcing Information-flow Policies

The logic described in the previous section allows information grid applications to specify rich
information-flow policies. Unlike authorization policies, which can be enforced by the runtime ref-
erence monitor, information-flow policies must be enforced statically [54, 90]—intuitively, this is
because information-flows can arise because of what the system did not do, and so are a property of
the set of all possible system behaviors. It follows that enforcing information-flow policies depends
on being able to statically analyze grid software. There is a large body of work developing these
language-based techniques (see [87] for an overview), but in the context of our information-grid
infrastructure there are a number of new challenges.

One is that existing approaches typically rely on type systems enhanced with rather simple
security classification labels that restrict information-flows in the program. For example, in the
following code fragment, variables x and y are both integers, but x has label L while y has label M :

int{L} x; int{M} y; x = 2 * y;

The assignment x = 2 * y is permissible only if the label L is at least as restrictive as the label M ,
written M v L. Intuitively, data with label L must be treated more carefully than data with label
M . If the constraint M v L does not hold, the compiler should reject this program as insecure.

The challenge in our context is to give a logical interpretation to these classification labels that is
compatible with both the known program analysis techniques and the policy logic described above.
Here, we sketch how this might be accomplished for classification labels based on Myers and Liskov’s
decentralized label model [67]. Decentralized labels permit data owners to specifies sets of readers
of the data. For example, the label written as {K : R1, . . . , Rn} indicates that K is an owner of
the data and K’s policy is that R1, . . . , Rn are permitted to read the data. A piece of data might
have several owners, each with their own reader constraints. Such labels can be used to implement
confidentially policies; data integrity requires additional information to be recorded in the labels.

Logically, such a label can simply be interpreted as a proposition of authorization regarding
operations on the variable. For example, the label {K : R1, . . . , Rn} on value x can be trans-
lated to a conjunction of primitive propositions owns(K, x) ∧ K affirms (may-access(R1, x) ∧ . . . ∧
may-access(Rn, x)). In addition, we would have general policies such as the following two:

(∀K. owns(K, x) ⊃ K affirms may-access(L, x)) ⊃ may-access(L, x)
∀K. owns(K, x) ⊃ K affirms may-access(K, x)

The first policy permits L to access x if all of the owners permit L to access x; the second says that
if K owns x then K can access it.

Checking a label condition like M v L in the example corresponds to proving a logical entailment
M ⊃ L: for every principal that can read x, we have to show that they have permission to read y;
otherwise an impermissible information flow is created.

The ideas sketched above can be extended to a logical interpretation for richer label systems,
such as those for integrity policies that govern write operations to variables. The logical approach
also extends naturally to policies that allow delegation relations among principals, as well as robust
declassification mechanisms [106, 68], both of which are useful for constructing practical information-
flow policies.

A second challenge is to provide programming language constructs that allow running grid code
to query, react to, and perhaps even change the dynamic authorization policies present at hosts in the
information grid. For example, a policy query might take the following form within the program-
ming language: if (dynamicallyAuthorized(may-access(L, x))) then P else Q, where, in
the code block P , we can assume that principal L may access resource x, while code in Q cannot
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make that assumption. What makes this challenging, is that, for such policy queries to be use-
ful, the static analysis of the program must be able to take into account the results of the query.
Thus, dynamicallyAuthorized cannot simply be a library routine: it interacts with typechecking
in nontrivial ways. There is a large design space here that trades off flexibility of the language
with feasibility of typechecking. For example, one issue is how first class the query arguments,
like may-access(L, x), should be. Another question is whether programs should themselves be able
to issue new policy statements, and, if so, how to represent and control this dynamic variation of
authority.

A third challenge in this area is certified compilation. The target code produced by the com-
piler should include proof certificates that establish the compliance of the code with respect to the
information-flow policy. However, showing that the desired noninterference properties are preserved
by compilation is a nontrivial undertaking. One problem that arises is the need to deal with implicit
information flows that are caused by control-flow constructs in the source language. Additional prob-
lems arise due to potential aliasing of pointer values, so data structures that involve references must
also be constrained so that all aliases of a given pointer agree with respect to their security labels.
A sound source-language type system for enforcing information-flow policies must account for all of
these cases, and such techniques have been well established in the literature [101, 66, 82, 83, 87]. The
problem is that compilation may make it harder for a static analysis to see the control-flow structure
of the resulting code. It is therefore necessary to make explicit in the target language sufficient infor-
mation about the source-language control flow so that the same information-flow properties can be
established in both levels. Our team has extensive experience with certified compilation [58, 59, 100],
including some preliminary results about certified compilation of information-flow languages [107];
here we propose to go further and build a practical implementation of such a compiler.
Contributions We plan to pursue the following research directions in the context of enforcing
information-flow policies: (1) We will develop a programming language whose information-flow
policies are specified in a way compatible with the authorization logic, following the ideas sketched
above. This will require clarifying the connections between language-based and logical formulations
of noninterference properties. (2) We will develop techniques to reconcile the static parts of the
information-flow policy specified in the program text itself with the dynamic authorization policies
that are enforced by the runtime system. The connection between static and dynamic policies will
take the form of programming language constructs (like the dynamicallyAuthorized operation
described above) whose static typing rules reflect the results of dynamic checks. (3) We will build
a certifying compiler for this programming language that generates executable code targeted to the
grid infrastructure runtime. The main difficulty here is ensuring that high-level information-flow
policies are adequately captured at the lower level of abstraction available for object code.
Related work Language-based security has a long history [87]; here we survey only the most
closely related work (not already discussed above). Two prominent implementations of languages
with support for information-flow policies are Jif [66, 65] (based on Java), and FlowCaml [83, 91]
(based on OCaml). Both languages support fairly rich label models, but neither is as general as
the logical approach proposed here. Of the two, Jif supports some limited forms of dynamic policy
queries through its actsFor tests. Neither of them use certifying compilation.

Certifying compilation for information-flow languages has been studied in several contexts.
Kobayashi and Shirane [47], Medel et al. [55] and Yu and Islam [103] have proposed variants of
typed assembly language with support for simple information-flow policies. Both of these works use
techniques close to those developed by Zdancewic and Myers’ [107] in which linear types describe
low-level control flow properties. To our knowledge, none of these approaches have been implemented
for a realistic source language.

There has been much recent research related to making information-flow policy languages more
practical [86, 21, 52, 88]. Our own work on declassification [106, 105, 51, 68] and dynamic security
policies [96, 39, 97] will certainly influence the design of the proposed language; the novel contribu-
tions proposed here involve the use of mechanical theorem provers (see the metatheory discussion

9



below) and the application of certifying compilation techniques.
With respect to incorporating logics for security within type systems, Fournet, Gordon, and

Maffeis [29] designed and implemented a variant of the spi-calculus [1] with a type system capable
of enforcing high-level authorization policies described as simple logic programs. Their language
extends earlier work by Gordon and Jeffrey [34, 33, 35].

2.3 Languages for Located Computing

The fundamental feature of an information grid is that it comprises many data sources or repositories
distributed across multiple administrative domains. Thus, data sources are inherently located by
virtue of being controlled by unrelated principals, each with their own security and privacy policies. It
is important to note that the concepts of administrative locality and physical locality are independent
notions. For example, the data governed by a principal might be physically distributed across many
sites to ensure high availability and reliability, yet would constitute a single locale from the point of
view of security policy. Conversely, a single physical repository of data might well be divided into
many administrative domains controlled by separate principals. For example, a journal database
might be logically divided into separate administrative locales for submitted and published papers,
even though they might all reside at the same physical site. To avoid confusion, we will use the term
locale to refer to an administrative domain, and the term site for a physical location. (Although we
focus our attention on administrative locality in this project, it also seems possible to model some
aspects of physical locality, such as the untrusted nature of communication channels between sites,
by introducing notional administrative locales with, say, particularly weak security policies.)

An adequate programming model for an information grid must take account of the existence of
disparate locales in order to ensure compliance with the security policies imposed by the various
principals on the information grid. We use the term located computing for such a model. We propose
to build a language for located computing based on an interpretation of modal logic that accounts
for administrative locality [16, 57, 43, 64, 63]. Under this interpretation, the modal logic notion of
possible worlds correspond to locales, and the typing relation is relativized to these locales. This
expresses the notion of a computation executing in the security context of a locale.

A key concept in modal logic is accessibility between worlds, written ω ≤ ω′, which governs the
movement of information. In an insecure grid, accessibility might refer simply to network connectiv-
ity, but in the context of manifest security, it must be constrained to comply with information flow
policies. For example, we might say that ω ≤ ω′ exactly when ω affirms may-flow(ω, ω′), indicating
that each world controls information flowing from it. When appropriate, explicit proofs for autho-
rization of information flow can be constructed from the policy at run-time and passed between
locales as in proof-carrying authorization. One can further internalize the accessibility judgment
as a type, which would then allow programs themselves (rather than just the run-time system) to
construct and manipulate evidence of accessibility.
Contributions (1) We will develop a modal logic of security based on an interpretation of worlds
as administrative locales (and security categories within them), and accessibility as permitted in-
formation flows between such worlds. (2) Based on the modal logic of security, we will devise a
practical programming language for located computing. This will involve casting modal features in
a form convenient for programming, and also integrating those features with other programming
language constructs (e.g., structured data, or I/O). (3) We will implement a certifying compiler for
our language to generate code suitable for the information grid. This will implement the protocols
necessary for located computing, and, at the same time, generate proofs the logic of authorization
and knowledge that its output obeys the security policies of its target locale(s). (4) We will investi-
gate the integration of type systems for information flow (as described in 2.2) with the modal type
systems for located computing described here. A particular issue is the extension of information
flow to languages with first-class functions or data abstraction, which permit formation of objects
carrying “private” data that can be compromised by a malicious host; we hope to address this issue
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by extending techniques developed in the JIF/Split project [108, 109, 104].
Related Work Our approach to located computing is based on a Curry-Howard (propositions-as-
types) interpretation of modal logic. The earliest work of this kind is by Borghuis and Feijs [16], who
introduced a language for computing with located information based on modal logic that compiled
down to shell scripts that used the ftp utility to obtain remote data. Our work is based on Pfenning
and Davies’ judgmental account of modal logic [79], and the spatial interpretation of possible worlds
explored by Moody [57], Jia and Walker [43] and Murphy et al. [64, 63, 62]. The last two are
based on hybrid logics [20, 17] inspired by Simpson’s judgmental formulation of Kripke semantics
for modal logic [92]. There is also a considerable body of work on modelling and specifying mobile
computation in a process calculus setting. This includes especially Cardelli and Gordon’s Mobile
Ambients [18, 19], De Nicola et al.’s access control systems for Klaim [71, 72], Unypoth and Sewell’s
Nomadic Pict [98], Hennessy et al.’s Distributed Pi Calculus [38] and Schmitt and Stefani’s type
system [89] for the Join Calculus [30]. Several of these systems employ extrinsic modal logics to state
and prove properties of programs, but none is based on a Curry-Howard interpretation of modal
logic. Also these formalisms tend to emphasize issues of concurrency, which are suppressed in our
setting to the implementation level.

2.4 Verifying the Meta-Theory of Security-Typed Languages

Our approach to building a secure information grid relies on languages whose type systems enforce
access control and information flow properties. By verifying the security properties of the type
system, we can obtain a corresponding theorem about every type-correct program “for free”. This
represents a significant savings over approaches based on verifying the security properties of programs
written in languages that provide no such guarantees. Experience shows that reasoning about
languages is the most practical means of proving properties of individual programs. An additional
benefit is that it supports the construction of certifying compilers that transfer source-level typing
guarantees to executable object code in the form of machine-checkable safety certificates.

The rigorous verification of security properties of programming languages is therefore central
to our work. These properties include type safety properties, which imply crucial invariants such
as memory safety and control-flow safety, and also ensure compliance with access control and au-
thentication constraints. We will also investigate properties such as non-interference, which express
compliance with information flow properties.

The theoretical techniques required to carry out these verifications are in hand; the challenge is
to do them at scale, for languages of sufficient complexity as to be useful for practical programming
problems. Rigorous proofs about full-scale languages are unwieldy, because of the sheer number of
cases that must be considered. If we are to be truly rigorous, these cannot just be dismissed by
saying “the other cases are analogous” — we must check that they really are!

To make this practical we propose to use automatic proof assistants to formalize languages and
to verify fully their security properties. A number of powerful proof assistants have been used to
verify the metatheory of programming languages. However, it is not clear which are best-suited for
our purposes. The challenges that stem from reasoning about security will also force us to evaluate
the adequacy of the tools and possibly devise and implement significant extensions to new libraries.

One promising tool that has been used in a number of similar, large-scale experiments in Foun-
dational Proof-Carrying Code [56, 8, 6] and Typed Assembly Language [24, 25] is Twelf [80]. We
propose to investigate if and how Twelf can be used to verify the meta-theory of our languages,
which may in some cases require us to develop new, more syntactic and scalable proof methods or
to enrich the framework, for example, to include linearity.

Another avenue we intend to explore are tools less specialized to the meta-theory of logic and
programming languages and instead designed for general mathematics such as Isabelle/HOL [74] or
Coq [40]. In principle, these are clearly strong enough to express, say, a proof of non-interference
via logical relations, but there are practical obstacles such as how to develop and reuse a theory of
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binding or a theory of store. One advance in this direction we may try to exploit is the Isabelle/HOL
library for nominal logic [99] to capture freshness conditions.
Contributions There are four essential components to making the meta-properties of our logics
and languages manifest: (1) We will formalize our logics and languages, including their rules of proof
and computations. Such formalization, besides forming the basis of our mechanical development,
will also serve to precisely specify the semantics our logics, languages and security model. (2) We
will develop and mechanically validate proofs that the semantics of our languages satisfy the type
soundness property. A challenge we see arising from this aspect of the project is the formalization of
linear and other substructural type systems. Current methods of intrinsically representing binding
in the formal system do not apply to linear systems. A part of this work will be to investigate
new methods for this purpose, either via framework extensions as in CLF [102] or via appropriate
libraries. (3) We will develop and mechanically validate proofs about the consistency of our logics,
such as cut elimination and strengthening. As above, the substructural nature of our logics can make
this process more challenging. We expect approaches and solutions to be uniform across this and the
previous task. (4) We will develop and mechanically validate proofs that our languages’ type system
imply security policies about distributed information, such as noninterference. Part of the proposed
research will be to determine the best way to set up such proofs. There are two established techniques
for showing noninterference properties. The first, based on logical relations [93, 3], does not scale well
to full programming language, which include features such as mutable state. Furthermore, proofs
using this technique cannot be naturally represented in some proof assistants. The second, based
on a non-standard operational semantics [84, 69], is more compatible with programming language
features, but leads to a large number of cases and syntactic complications. At present, this second
method seems to be the more promising approach, but we will need to investigate automation
techniques to make it feasible.
Related Work There is a growing body of literature on using mechanized theorem provers
for verifying the metatheory of programming languages. The principal tools in active use for this
purpose are Coq [40], NuPrl [7], HOL [36], Isabelle/HOL [74], ACL2 [45], PVS [77] and Twelf [80].
All of these tools, with the exception of Twelf, are fully general theorem proving systems capable
of formalizing a broad body of mathematics, including the mathematics needed for programming
language metatheory. Twelf, by contrast, is specifically tailored to the definition and mechanized
analysis of formal systems, including logical systems and programming languages.

Considerable successes have been achieved using both approaches. As a recent benchmark of the
capabilities of these systems it is useful to mention the solutions to the POPLmark Challenge posed
by proposers Pierce, Weirich, Zdancewic, and their collaborators. These solutions are all available
from the POPLmark web site [81], and include submissions by Leroy and Vouillon, using Coq; by
Berghofer, using Isabelle/HOL; and by Harper, Crary, and Ashley-Rollman, using Twelf.

Others have achieved substantial successes in the verification of safety and security properties
of programming languages, notably Nipkow, et al.’s work on Java and Jinja [73, 46]. Appel’s
Foundational PCC Project at Princeton [56, 8, 6] has achieved substantial progress on developing
the metatheory of low-level assembly languages suitable as target languages for certifying compilers,
as has Crary’s work on the TALT framework developed at Carnegie Mellon [24]. More recently,
Xavier Leroy has used Coq to verify a back-end for a C compiler [48].

Noninterference results for security type systems and analyses have also been mechanically veri-
fied before: David Naumann verified a secure information flow analyzer for a fragment of the Java
language [69] and Jacobs, Pieters and Warnier [41] showed noninterference for a simple imperative
language in the PVS theorem prover. Also Strecker showed noninterference for MicroJava in Is-
abelle/HOL [94]. These results differ from our project in terms of scale—we intend to formalize the
properties of a much larger programming language with a much richer policy logic.
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2.5 Implementation and Evaluation

To evaluate the flexibility of our design, verify the practicality of our approach, and demonstrate a
complete application of an information grid, our plans include a significant implementation compo-
nent. There are three main pieces of the implementation—two general purpose tools used in creating
information grids, the runtime infrastructure and certifying compiler, and an instance of a specific
information-grid.

The runtime infrastructure is responsible for three important tasks: checking the security certifi-
cates accompanying code when it is deployed, managing digital certificates for authorization checks
while the software executes, and providing secure inter-host communication. The code distribution
and verification components will be based on the ConCert grid architecture[22]. To manage digital
certificate queries, we expect to use technology similar to that in existing trust management frame-
works such as KeyNote [15] or SD3 [44, 37], adapted to the authorization logic proposed here. To
implement the necessary encrypted communication channels we will use existing software packages
such as OpenSSH [76].

Our team has a great deal of expertise in building certifying compilers [60, 24, 22]. We will adapt
current technology on the certifying compilation of security-typed languages. Although this involves
substantial work, we believe that, for the most part, existing techniques will be applicable.

Finally, we will use all this infrastructure to implement a specific information grid: the journal
management system sketched in the introduction. This application has comparatively sophisticated
authorization and information-flow requirements, which will allow us to evaluate the practicality
and effectiveness of our proposed techniques.

An additional degree of evaluation is provided by the proposed work on mechanized metatheory.
We propose a substantial amount of language design, and those languages must be proven sound.
Typically such soundness proofs are verified by peer review, but our work on mechanized metatheory
will allow (and indeed demand) very thorough verification before our designs ever face external
review. In short, the metatheory work will aid in evaluation of the language design work.
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