
80

Synthesizing Quotient Lenses

SOLOMON MAINA, University of Pennsylvnia, USA

ANDERS MILTNER, Princeton University, USA

KATHLEEN FISHER, Tufts University, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA

DAVID WALKER, Princeton University, USA

STEVE ZDANCEWIC, University of Pennsylvania, USA

Quotient lenses are bidirectional transformations whose correctness laws are łloosenedž by specified equiv-

alence relations, allowing inessential details in concrete data formats to be suppressed. For example, a

programmer could use a quotient lens to define a transformation that ignores the order of fields in XML data,

so that two XML files with the same fields but in different orders would be considered the same, allowing a

single, simple program to handle them both. Building on a recently published algorithm for synthesizing plain

bijective lenses from high-level specifications, we show how to synthesize bijective quotient lenses in three

steps. First, we introduce quotient regular expressions (QREs), annotated regular expressions that conveniently

mark inessential aspects of string data formats; each QRE specifies, simulteneously, a regular language and

an equivalence relation on it. Second, we introduce QRE lenses, i.e., lenses mapping between QREs. Our key

technical result is a proof that every QRE lens can be transformed into a functionally equivalent lens that

canonizes source and target data just at the łedgesž and that uses a bijective lens to map between the respective

canonical elements; no internal canonization occurs in a lens in this normal form. Third, we leverage this

normalization theorem to synthesize QRE lenses from a pair of QREs and example input-output pairs, reusing

earlier work on synthesizing plain bijective lenses. We have implemented QREs and QRE lens synthesis as

an extension to the bidirectional programming language Boomerang. We evaluate the effectiveness of our

approach by synthesizing QRE lenses between various real-world data formats in the Optician benchmark

suite.

CCS Concepts: • Software and its engineering → Domain specific languages; Application specific devel-

opment environments;

Additional Key Words and Phrases: Bidirectional Programming, Program Synthesis, Type-Directed Synthesis,

Type Systems

ACM Reference Format:

Solomon Maina, Anders Miltner, Kathleen Fisher, Benjamin C. Pierce, David Walker, and Steve Zdancewic.

2018. Synthesizing Quotient Lenses. Proc. ACM Program. Lang. 2, ICFP, Article 80 (September 2018), 29 pages.

https://doi.org/10.1145/3236775

1 INTRODUCTION

Programmers often need to write programs that bidirectionally convert data between two different
formats. For example, bibliographic data may be stored in BibTEX or EndNote formats, spreadsheet

Authors’ addresses: Solomon Maina, University of Pennsylvnia, USA, smaina@seas.upenn.edu; Anders Miltner, Princeton

University, USA, amiltner@cs.princeton.edu; Kathleen Fisher, Tufts University, USA, kfisher@eecs.tufts.edu; Benjamin

C. Pierce, University of Pennsylvania, USA, bcpierce@cis.upenn.edu; David Walker, Princeton University, USA, dpw@cs.

princeton.edu; Steve Zdancewic, University of Pennsylvania, USA, stevez@cis.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART80

https://doi.org/10.1145/3236775

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236775
https://doi.org/10.1145/3236775

80:2 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

data can be represented as either CSV and TSV files, and web APIs can return data as either
JSON or XML objects. A time-tested and appealing way to implement such conversions is to use
lenses [Foster et al. 2007], programs that simultaneously define pairs of functions for translating
the data from the source format to the target format (the get direction) and back again (the put

direction). Lens programming languages guarantee that these put and get functions satisfy certain
lens laws, which imply that round trips, from source to target and back again, behave properly.

Recent work [Miltner et al. 2017] developed a tool called Optician to synthesize a subset of the
bijective lenses that can be derived in the lens programming language Boomerang [Bohannon et al.
2008]. Each lens ℓ : S ⇔ T that Optician can synthesize specifies a bijection from the language of a
source regular expression S to a target language of a target regular expression T :

ℓ.get (ℓ.put t) = t , and ℓ.put (ℓ.get s) = s (1)

Optician makes programming bijective lenses easier. However, many useful lenses are not strictly
bijective in natureÐthe desired transformation might ignore whitespace or the exact ordering of
data fields, for instanceÐand it is a shame that Optician’s synthesis algorithm cannot be directly
applied in such cases. One observation, however, is that non-bijective transformations can often be
structured as a bijective łcorež surrounded by some kind of data normalization at the edges. We
can therefore hope to use the Optician algorithm as component in a system that synthesizes more
complex lenses.

This paper applies this idea to the problem of synthesizing quotient lenses [Foster et al. 2008].
Quotient lenses are lenses in which the lens laws are loosened so that they hold modulo an
equivalence relation on the source and target data respectively; in this paper we are concerned with
bijective quotient lenses which are lenses for which Equation 1 holds modulo equivalence relations
≡S and ≡T defined on the source and target data respectively:

ℓ.get (ℓ.put t) ≡T t , and ℓ.put (ℓ.get s) ≡S s (2)

Quotient lenses are useful in situations where a programmer wishes for the transformation defined
by a lens to have the same behavior on data that differ only in inessential details. For instance, a
programmer may wish to łquotient awayž the number of white space characters between data
items, the capitalization of various strings, the sequence of fields in a record, or the order of items
in a list.

Optician synthesizes bijective lenses from a pair (S,T) of regular expressions specifying the
source and target types and a set of example input-output pairs that guide the synthesis algorithm.
This presents a challenge for synthesizing quotient lenses since a specification of a lens’s source
and target formats needs to account for the equivalence relations defined on the respective formats.
Our solution is to introduce Quotient Regular Expressions (QREs), which are regular expressions
augmented with extra syntax that enables programmers to simultaneously specify a regular ex-
pression and an equivalence relation on the language of that regular expression. Further, given a
QRE, we can automatically infer a canonizerÐa function that converts strings in the language of
the regular expression to a canonical form.

For example, consider the following QRE for writing author names:

let wsp_sp = collapse wsp→ " ␣ "
let comma_name = last_name . "," . wsp_sp . first_name

In this example, wsp is an existing regular expression for a nonempty sequence of whitespace
characters, and first_name and last_name are existing regular expressions for first and last names.
The QRE wsp_sp is a QRE with the same underlying language as wsp, but with a single canonical
representative: " ␣ ". It is used as a component of comma_name, a QRE with an underlying language

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:3

of two names, separated by a command and whitespace, where the names with a single space
between them are canonical.

Our second main contribution in this paper is to introduce QRE lenses, with the end goal of
synthesizing QRE lenses that map between QREs via a synthesized bijective lens between the
respective canonical formats. This idea is simple and natural but begs the following question: do we
give up expressiveness if we restrict ourselves to this form? Our main technical contribution to this
question asserts that we do notÐmore specifically, we prove a normal form theorem (Theorem 5.2)
that says that every QRE lens formed by freely composing QRE lenses, applying regular operators to
them, and quotenting them with QREs can be rewritten to be the composition of a source canonizer,
a bijective lens, and a target canonizer. This normalization property will enable us to (1) synthesize
QRE lenses by extending the synthesis algorithm used by Optician, and (2) prove that if there is a
QRE lens that satisfies the input specification, then this extended algorithm will return such a lens.

Given this framework, generating a QRE lens requires only a pair of QREs to describe the source
and target formats and a (possibly empty) suite of examples demonstrating the mapping. For
example, the following code

let ℓ = synth comma_name⇔ space_name using {("Lovelace, ␣ Ada", "Ada ␣ Lovelace")}

binds ℓ to a synthesized QRE lens mapping between names in the comma-separated form described
by the QRE comma_name and the space-separated form described by the QRE space_name.

In summary, our main contributions are:

(1) We introduce Quotient Regular Expressions (QREs), a compact, convenient notation for simul-
taneously defining a regular language modulo some equivalence relation and a canonizer for
that relation (Section 4).

(2) We introduce QRE lenses, which translate between data formats specified using QREs (Sec-
tion 5).

(3) We design a specific set of useful QRE lens combinators and prove that QRE lenses defined
using these combinators can be put into a restricted normal form (Section 5). This is the main
technical contribution of this paper.

(4) We leverage this result to reduce the problem of synthesizing QRE lenses to the problem of
synthesizing bijective string lenses, which was previously studied in past work [Miltner et al.
2017] (Section 6).

(5) We extend Boomerang with QREs and QRE lens synthesis and demonstrate the utility and
practicality of our approach by synthesizing QRE lenses between a variety of data formats
drawn from the Optician benchmark suite (Section 7).

Sections 8 and 9 present related and future work.

2 BACKGROUND: BIJECTIVE STRING LANGUAGES

Before describing QREs and QRE lenses, we briefly review bijective string lenses. Consider a
bidirectional transformation that converts between BibTEX citation records such as

@Book {Lovelace,

Author = "Ada Lovelace",

Title = {Notes}

}

and equivalent EndNote records like the following:

%0 Book

%F Lovelace

%A Ada Lovelace

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:4 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

let preamble : "@book{"⇔ "%0 ␣ Book\n%F ␣ " =
del "@book{" . ins "%0 ␣ Book\n%F ␣ "

let author_lens : (",\n" . bib_author)⇔ ("\n" . end_author) =
del ",\nauthor ␣ = ␣ \""
. ins "\n%A ␣ "
. name
. (del " ␣ and ␣ "
. ins "\n"
. (ins "%A ␣ " . name . del " ␣ and ␣ " . ins "\n")∗
. ins "%A ␣ "
. name
|| "")

let title_lens : ("\",\n" . bib_title . "},\n}")⇔ ("\n" . end_title) =
del "\",\ntitle ␣ = ␣ {" . ins "\n%T ␣ " . title . del "},\n}"

let bib_to_end : bibtex⇔ end_note = preamble . label . author_lens . title_lens

Fig. 1. A plain bijective lens bib_to_end between data matching bibtex and end_note regular expressions
(which are omitted for brevity).

%T Notes

Boomerang’s bijective string lenses are designed to define bidirectional transformations such
as this one, where the data formats can be matched in a one-to-one manner, in this case by
matching the label, author and title fields. Boomerang encourages a compositional approach in
which programmers define simple lenses and then compose them using a variety of combinators.

Primitive lenses include:

• del s: delete the constant string s in the get direction; insert it in the put direction.
• ins s: insert the constant string s in the get direction; delete it in the put direction.
• copy R: copy the text matching the regular expression R in both directions.

Such primitives may be combined using the regular operators Kleene star, alternation and concate-
nation, as well as lens composition. Figure 1 illustrates the use of these combinators to define a
lens bib_to_end that transforms data in BibTEX to EndNote (and vice versa).

Recent work described the Optician algorithm/tool [Miltner et al. 2017], which can synthesize
bijective lenses such as bib_to_end, obviating the sometimes tedious tasks involved in writing such
lenses by hand. Given the directive

synth S⇔ T using exs

Optician will synthesize a bijective lens between source and target formats described by regular
expressions S and T, respectively, and constrained by a set of inputśoutput example pairs exs
specifying how the synthesized lens should behave on those examples.

3 QRE LENSES BY EXAMPLE

Optician greatly simplifies the task of programming bijective string lenses, but not all bidirectional
transformations are bijective. For instance, BibTEX users are not typically interested in preserving
whitespace between words. The order of author and title fields is also likely irrelevant, and there
may be equivalent ways of writing the same name: łLovelace, Adaž vs łAda Lovelace.ž Consequently,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:5

the following two BibTEX citations represent the same logical object even though they differ in
nonessential details.

@Book {Lovelace,

Author = "Ada Lovelace",

Title = {Notes},

}

@Book{ Lovelace,

Title = {Notes},

Author = "Lovelace, Ada", }

When mapping these records into another format, such as EndNote, we must decide what to
do with the nonessential information. A bijective mapping must preserve all the information,
including the extraneous details, which leads to complex and brittle lenses. A better approach is to
identify records that differ only in the nonessential information, mapping them into a canonical
representation. This canonical representation is then mapped into the target format. With this
approach, both of the above BibTEX records would be mapped to the same EndNote record.

We use Quotient Regular Expresions (QREs) to specify the external format in full detail and to
mark which pieces of it are inessential. From a QRE, we can infer a regular expression that describes
only the essential information, which we call the internal format, and we can derive a canonizer
that maps between the external and internal formats.

3.1 Specifying BibTEX Using QREs

In this subsection, we develop a QRE specification of BibTEX records, introducing various QRE
combinators along the way. Our first step in this process is to define a whitespace format, which
externally matches any non-zero number of whitespace characters. It converts any such whitespace
into a single space character, its canonical form. We use the QRE collapse primitive to define this
whitespace-normalizing QRE.

let wsp_sp = collapse wsp→ " ␣ "

Sometimes there are multiple disjoint representations of the same data. In such situations, the
QRE squash combinator creates a QRE that allows external data to be in either format, and converts
any data in the first format to the second. For instance, assume that the comma_name format
describes łLovelace, Adaž and that the space_name format describes łAda Lovelacež and c_to_s is
a function from the first to the second. In this case, the following instance of squash creates the
desired canonizer.

let name = squash comma_name→ space_name using c_to_s

One way to define the c_to_s function is simply to write it from scratch in some ordinary
programming language. However, we can synthesize such functions automaticallyÐhere, c_to_s is
the get direction of a lens that can be synthesized using the synth combinator:

let ℓ = synth comma_name⇔ space_name using {("Lovelace, ␣ Ada", "Ada ␣ Lovelace")}
let c_to_s = ℓ.get

The first line above synthesizes a lens between comma_name and space_name using the listed
example transformation as a guide. The second line extracts the get direction transformation from
the lens, which is what we need for squash.

The permutation QRE combinator, perm, allows data to be unordered. For example, the following
instance of perm allows label, author, and title fields (which we assume have been defined earlier)
to appear in any order.

let bib_fields = perm (label, bib_author, bib_title)

To normalize the field separators, one can specify in an optional with clause that the components
of the permutation are conjoined by another QRE. For instance, below, we normalize whitespace
between fields, leaving only a single newline.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:6 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

let wsp = [␣ \n\t\r]+
let wsp_sp = collapse wsp→ " ␣ "
let last_name = [A−Z][a−z]
let first_name = [A−Z][a−z]

(∗ define name representations with a space and with a comma ∗)
let space_name = first_name . wsp_sp . last_name
let comma_name = last_name . "," . wsp_sp . first_name

(∗ synthesize a lens that maps comma representation to space representation ∗)
let ℓ = synth comma_name⇔ space_name using {("Lovelace, ␣ Ada", "Ada ␣ Lovelace")}
let c_to_s = ℓ.get

(∗ squash QRE maps comma_name to space_name ∗)
let name = squash comma_name→ space_name using c_to_s

(∗ define rest of bibtex fields ∗)
let bib_names = name . (wsp_sp . "and" . wsp_sp . name)∗

let bib_author = "author ␣ = ␣ \"" . bib_names . "\""
let title = word . (wsp_sp . word)∗

let bib_title = "title ␣ = ␣ {" . title . "}"

(∗ allow any permutation of fields interspersed with arbitrary whitespace ∗)
let bib_fields = perm (label, bib_author, bib_title) with (collapse ("," . wsp)→ ",\n")
let bibtex = "@book{" . bib_fields . "}"

Fig. 2. QRE definition of BibTEX records.

let bib_fields = perm (label, bib_author, bib_title) with (collapse ("," . wsp)→ ",\n")

Another QRE primitive is the functional composition combinator, written ł;ž. For an example of its
use, suppose we have already defined a QRE, canonized_whitespace, that accepts XML documents
and chooses documents with no whitespace as canonical. Suppose that we also have defined a QRE,
canonized_order, which accepts whitespace-normalized XML documents, and chooses a specific
ordering of XML elements as canonical. We can use the functional composition combinator to
combine these two QREs into canonized_whitespace ; canonized_order, a QRE that accepts all
XML documents, and chooses ordered XML documents without whitespace as canonical.

The final QRE combinator is the normalize combinator. This combinator allows a programmer to
manually define a function f which sends each string that matches a regular expression R to some
canonical representative in another regular expression R′ where L(R′) ⊆ L(R). The equivalence
relation defined by the normalize combinator is hence the equivalence relation defined by the fibres
of f ; that is, for all strings s and s ′ that match R, s is equivalent to s ′ if and only if f (s) = f (s ′).

For instance, assume that f (s) = ł␣ž (a space character) for all whitespace strings s . Then
the collapse QRE wsp_sp defined above can be expressed using the normalize combinator as
normalize (wsp," ␣ ", f).

Figure 2 gives a QRE definition for the simple BibTEX records we consider here.

3.2 QRE Lenses and QRE Lens Synthesis

At this point we have a tool for synthesizing bijective string lenses from a pair of regular expressions
and a set of example input-output pairs (Optician), and we have a way of defining regular expressions

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:7

Fig. 3. QRE lens from source P to target Q . P and Q are QREs, each consisting of a łwholež set (W (P) and
W (Q)) and a łkernelž part (K(P) andK(Q)) Between the two kernels is a plain bijective lens. The get function of
the whole lens takes an argument fromW (P), applies the canonizer for P to obtain a canonical representative
in K(P), then applies the get of the plain lens, yielding an element of K(Q), which is a subset ofW (Q). The
put function does the reverse, mapping fromW (Q) to K(P) (henceW (P). This lens is in normal form, with
canonizers (specified by QREs) at the outer edges and an ordinary bijective lens in the center.

with equivalence relations indicating the essential information (QREs). A tantalizing possibility
would be to use the bijective string lens synthesis procedure as a subroutine for a quotient lens
synthesis procedure. This new synthesizer would take as input source and target QREs and example
input-output pairs, compute the canonical source/target formats from the QREs, map the example
input-output pairs to their canonical representations, and then invoke the bijective string lens
synthesis procedure on the canonical data formats and the canonical examples.

Indeed this idea is what motivates our definition of QRE lenses. Intuitively, our QRE lenses are
bijective lenses with łcanonizers at the edgesž. Figure 3 depicts the architecture of QRE lenses.
Every QRE lens q has a type P ⇔ Q where P and Q are QREs. In the get direction, a QRE lens
q : P ⇔ Q uses the source QRE P to compute a canonical representative for the data modulo the
equivalence relation defined by P and then applies the get function of a bijective string lens ℓ to
this representative. In the put direction, q operates similarly, but using the QRE Q and the put
function of ℓ.

Because the QREs P and Q determine the internal formats for data after canonization, and
because the algorithm for synthesizing bijective string lenses is directed by these formats, P and Q

are all that is required to synthesize QRE lenses end-to-end.
However, our requirement that canonizers appear only at the edges raises a key technical

question: Are we limiting the expressiveness of our transformations by demanding all programs fit
into this normal form? It turns out that we are notÐany lens that uses canonizers internally can be
transformed into a lens that uses canonizers only at the edges. The main technical contribution
of this paper (Theorem 5.2) is a proof of this fact. This technical result justifies using synthesis to
produce QRE lenses instead of manually writing them, which can lead to substantial savings in
program complexity. For instance, after defining the BibTEX and EndNote QREs and binding them
to the variables bibtex and endnote respectively, then all of the code in Figure 1 may be replaced
by a single call to the synthesis prodedure:

let bib_to_end : bibtex⇔ endnote =
synth bibtex⇔ endnote using {(bib_example, end_example)}

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:8 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

Here, the generated quotient lens synchronizes bibtex and endnote formats, using bib_example
and end_example (the two concrete example strings given at the beginning of this section) to
disambiguate. In addition, and as we saw earlier with the definition of c_to_s, the synthesis
procedure itself can be used to create lenses that are in turn used to define other QREs. The ability
to interleave QRE specification with QRE lens synthesis yields a powerful and flexible way of
creating bidirectional transformations.

4 QUOTIENT REGULAR EXPRESSIONS

A Quotient Regular Expression (or QRE) is a regular expression R augmented with syntax that
expresses an equivalence relation on the language of R. This section formalizes the set of QRE
combinators that we introduced informally in Section 3.

4.1 Syntax and Semantics of QREs

Formally, the language of Quotient Regular Expressions (QREs) is given by the following grammar,

Q := normalize(R1,R2, f) | id(R) | collapse R 7→ s | squash Q1 → Q2 using f

| perm(Q1, . . . ,Qn) with Q | Q1 ; Q2 | Q1 ·Q2 | (Q1 | Q2) | Q∗

where Q ranges over QREs, R ranges over regular expressions, f ranges over functions between
regular languages, and s ranges over character strings.

Using the conventional notation that L(R) is the language accepted by the regular expression R,
each QRE Q yields four semantic objects:

W (Q) A regular expression, denoting the łwholež of Q
≡Q An equivalence relation on L(W (Q))

K(Q) A regular expression, denoting the łkernelž of Q , such that L(K(Q)) forms a
complete set of representatives for ≡Q

canonize(Q) A łcanonizingž function. Given any w ∈ L(W (Q)), canonize(Q)(w)
is the unique k in L(K(Q)) such that k ≡Q w .

Intuitively, W (Q) is the regular expression representing the external format, while K(Q) is the
regular expression representing the internal format. The equivalence relation ≡Q groups together
elements in the language of W (Q) that contain the same essential information. The function
canonize(Q) picks the representative element from each of the resulting equivalence classes.

The well-formedness constraints for QREs ensure that these four semantic objects fit together to
form a coherent quotientW (Q)/≡Q whose equivalence classes are determined by canonize(Q).

4.2 The normalize Combinator

The relationship among the semantic objects of a QRE can be understood in terms of the combinator
normalize(R1,R2, f), which expresses each of these pieces explicitly. Its whole language is just R1,
its kernel language is just R2, and its canonizer is just f ; its equivalence relation ≡ is determined
by the fibres of f , so we have s1 ≡ s2 ⇔ f (s1) = f (s2) for s1 and s2 in L(R1).

These components form a coherent quotient language when the canonization function f is
surjective and idempotent (intuitively, f picks out a unique representative for each equivalence
class). We also require that the kernel language be a subset of the whole language, which enables
QRE composition. These considerations lead to the following well-formedness rule.

L(R2) ⊆ L(R1) f : L(R1) −→ L(R2) f is surjective f = f 2

(Normalize)
normalize(R1,R2, f) wf

Semantically, the normalize QRE is universalÐeach of the other combinators Q is equivalent
to normalize(W (Q),K(Q), f) for some surjective, idempotent function f : L(W (Q)) −→ L(K(Q)).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:9

Q W (Q) K(Q)

id(R) R R

collapse R 7→ s R s

squash Q1 → Q2 using f W (Q1) |W (Q2) K(Q2)

normalize(R1,R2, f) R1 R2

Q1 ; Q2 W (Q1) K(Q2)

Q1 · Q2 W (Q1) ·W (Q2) K(Q1) · K(Q2)

Q1 | Q2 W (Q1) |W (Q2) K(Q1) | K(Q2)

Q∗ W (Q)∗ K(Q)∗

W (perm(Q1, . . . ,Qn) with Q) =
⋃

σ ∈Sn

W (Qσ (1)) ·W (Q) · . . . ·W (Q) ·W (Qσ (n))

K(perm(Q1, . . . ,Qn) with Q) = K(Q1) · K(Q) · . . . · K(Q) · K(Qn)

Fig. 4. Whole and Kernel regular expressions for QRE combinators. In describing regular expressions, we use
the notations | and

⋃

for alternation, the notation · for concatenation, and the notation ∗ for Kleene closure.
We use the notation Sn to denote the set of all permutations of the numbers 1 to n.

However, verifying that a canonization function f is surjective and idempotent is in general
undecidable. Consequently, a programmer wishing to use normalize must discharge strong proof
obligations, which is cumbersome in practice.1

The remaining QRE combinators, which we discuss next, provide simpler, more compositional
ways of building canonizers that meet these requirements by construction. Nevertheless, the
normalize combinator provides a useful guide in the design of these combinators because it gives a
sufficient condition for the well-formedness of any potential QREs.

4.3 QRE Combinator Semantics

Figure 4 gives the inductive definitions of the whole and kernel languagesW (Q) and K(Q) for all
of the QRE combinators. The squash and permutation combinators have the two most interesting
definitions. If Q = squash Q1 → Q2 using f , then the whole language of Q is W (Q1) |W (Q2)

because the squash combinator merges the whole languageW (Q1) of Q1 with the whole language
W (Q2) of Q2. The function f : L(W (Q1)) −→ L(W (Q2)), maps L(W (Q1)) into L(W (Q2)) using f

and then canonizesW (Q2) into K(Q2) using canonize(Q2).
For the perm(Q1, . . . ,Qn) with Q combinator, the whole language is the union of languages of

the formW (Qσ (1)) ·W (Q) · . . . ·W (Q) ·W (Qσ (n)) for any permutation σ in Sn , where Sn is the set
of all permutations of the numbers 1 to n. Intuitively, the permutation combinator allows for the
string to match any permutation of the Qi ’s while preserving the separator Q in between each of
theQi ’s. The kernel of the permutation combinator is the language K(Q1) ·K(Q) · . . . ·K(Q) ·K(Qn),
because the canonical permutation is the identity permuation, with each of the parts of the input
that match Qi and Q canonized into K(Qi) and K(Q) respectively.

Figure 5 gives the inductive definitions of the canonize function for each QRE. The permutation
combinator gives rise to the most interesting definition:

canonize(perm(Q1, . . . ,Qn) with Q)(wσ (1) · s1 · . . . · sn−1 ·wσ (n))

= canonize(Q1)(w1) · canonize(Q)(s1) · . . . · canonize(Q)(sn−1) · canonize(Qn)(wn)

1In our implementation we allow a programmer to use normalize at their own risk without checking these side conditions

as an łescape hatchž for the case when other QRE combinators are insufficient.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:10 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

canonize(id(R))(w) = w

canonize(collapse R 7→ s)(w) = s

canonize(squash Q1 → Q2 using f)(w) =

{

canonize(Q1)(f (w)) if w ∈ L(W (Q1))

canonize(Q2)(w) otherwise

canonize(normalize(R1,R2, f))(w) = f (w)

canonize(Q1 ; Q2)(w) = canonize(Q2)(canonize(Q1)(w))

canonize(Q1 ·Q2)(w1 ·w2) = canonize(Q1)(w1) · canonize(Q2)(w2)

canonize(Q1 | Q2)(w) =

{

canonize(Q1)(w) if w ∈ L(W (Q1))

canonize(Q2)(w) if w ∈ L(W (Q2))

canonize(Q∗)(w1 · . . . ·wn) =

{

ϵ if n = 0

canonize(Q)(w1) · . . . · canonize(Q)(wn) if n > 0

canonize(perm(Q1, . . . ,Qn) with Q)(wσ (1) · s1 · . . . · sn−1 ·wσ (n))

= canonize(Q1)(w1) · canonize(Q)(s1) · . . . · canonize(Q)(sn−1) · canonize(Qn)(wn)

Fig. 5. QRE canonizers. Here we assume that the inputw to the canonizers has been partitioned in the unique
way guaranteed to exist by the lens unambiguity conditions.

w ≡normalize(R1,R2,f) w
′ ⇐⇒ f (w) = f (w ′)

w ≡id(R) w
′ ⇐⇒ w = w ′

w ≡collapse R 7→s w ′ ⇐⇒ True

w ≡squash Q1→Q2 using f w ′ ⇐⇒ f (w) ≡Q2 w
′ or w ≡Q2 w

′

w ≡Q1 ; Q2 w ′ ⇐⇒ ∃k,k ′ ∈ L(K(Q2)) such that w ≡Q1 k, w ′ ≡Q1 k ′, and k ≡Q2 k ′

w ≡Q1 ·Q2 w ′ ⇐⇒ w = r1 · r2, w
′
= r ′1 · r

′
2 with r1 ≡Q1 r ′1, r2 ≡ Qn r ′2

w ≡Q1 | Q2
w ′ ⇐⇒ w ≡Q1 w ′ or w ≡Q2 w ′

w ≡Q∗ w ′ ⇐⇒ w = r1 · . . . · rn , w
′
= r ′1 · . . . · r

′
n and ri ≡Q r ′i

w ≡perm(Q1, ...,Qn) with Q w ′⇐⇒ w = rσ (1) · s1 · . . . · sn−1 · rσ (n), w
′
= r ′θ (1) · s

′
1 · . . . · s

′
n−1 · r

′
θ (n)

for some σ ,θ ∈ Sn , with ri ≡qi r ′i and sk ≡Q s ′
k

Fig. 6. QRE Equivalence Relations

which places the strings that match Qi and Q according to the canonical permutation (i.e., the
identity permutation) before applying the canonizers canonize(Qi) and canonize(Q), respectively.

Finally, Figure 6 gives the inductive definition of the equivalence relation ≡Q , which is the
set-theoretic semantics of a QRE Q as an equivalence relation on the regular languageW (Q).

4.4 Ambiguity and Well-Formed QREs

To ensure that regular combinations of QREs are well-formed, we need to enforce a variety of
unambiguity constraints. Specifically, when applying regular combinators to QREs Q1 and Q2, we
require that if a string s matches any of the regular expressionsW (Q1) ·W (Q2), W (Q1) |W (Q2),
W (Q1)

∗, K(Q1) · K(Q2), K(Q1) | K(Q2), K(Q1)
∗, then s matches that regular expression in

only one way. Formally, we say that regular expressions R and S are unambiguosly concatenable,
written R ·! S if for all strings r , r ′ ∈ L(R) and s, s ′ ∈ L(S), if r · s = r ′ · s ′, then r = r ′ and s = s ′.
We say that a regular expression R is unambiguosly iterable, written R∗! if for all strings r1, . . . , rm

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:11

R is strongly unambiguous
(Id)

id(R) wf

s ∈ L(R)
(Collapse)

collapse R 7→ s wf

Qi ,Q wf
∀σ,θ, W (Qσ (1))·W (Q)·... ·W (Qσ (n))

∩W (Qθ (1))·W (Q)·... ·W (Qθ (n))=∅
K(Q1) ·

! K(Q) ·! . . . ·! K(Q) ·! K(Qn)
(Perm)

perm(Q1, . . . ,Qn) with Q wf

Q1,Q2 wf L(W (Q1)) ∩ L(W (Q2)) = ∅ f : L(W (Q1)) −→ L(W (Q2))
(Squash)

squash Q1 → Q2 using f wf

L(R′) ⊆ L(R) f : L(R) −→ L(R′) f is surjective f = f 2

(Normalize)
normalize(R,R′, f) wf

Q1,Q2 wf K(Q1) =W (Q2)
(Compose)

Q1 ; Q2 wf

Q wf W (Q)∗! K(Q)∗!
(Star)

Q∗ wf

Q1,Q2 wf W (Q1) ·
! W (Q2) K(Q1) ·

! K(Q2)
(Concat)

Q1 ·Q2 wf
Q1,Q2 wf W (Q1) ∩W (Q2) = ∅

(Union)
Q1 | Q2 wf

Fig. 7. Well-formed QREs

and r ′1, . . . , r
′
n ∈ L(R), if r1 · . . . · rm = r ′1 · . . . · r

′
n , then m = n and ri = r ′i . We say that a regular

expression R is strongly unambiguous [Sippu and Soisalon-Soininen 1988] if and only if (1) R = ∅,
or (2) R = S1 · S2 with S1, S2 strongly unambiguous and S1 ·

! Sn , or (3) R = S1 | S2 with S1, S2 strongly
unambiguous and L(S1) ∩ L(S2) = ∅, or (4) R = S∗ with S strongly unambiguous and S∗!.

These unambiguity constraints can be a little fiddly in practice. As a simple example of this,
consider writing a regular expression for comma-separated lists of strings. Our first impulse might
be to write it as,

CSL = anychar+ . ("," . anychar+)∗

(where . is concatenation), but this regular expression is ambiguous, as anychar is a big union of a
of single characters including comma.

While the unambiguity constraints consequently appear to compromise compositionality of
QREs, they can usually be circumvented by making a small changes to the offending regular
expression: for instance, in the preceding example, then we need to write,

CSL = anycharexceptcomma+ . ("," . anycharexceptcomma+)∗

(assuming anycharexceptcomma denotes a big union of every single character string except
comma).

Unambiguity constraints are necessary because they ensure that the canonizing function of a QRE
is well-defined. For example, consider the QRE "a"∗ . (collapse "a"∗→ "a"). The behavior of this QRE
is not well-defined since the string "aaa" can be canonized to any of "a", "aa", or "aaa" depending
on how "aaa" is parsed. The unambiguity constraints are also applied to the kernels of QREs since
the underlying bijective string lens of a QRE lens operates on kernels, and bijective string lenses
impose the same unambiguity restrictions so that they too are well defined as functions.

4.5 Well-formedness of QREs

Figure 7 gives the inference rules for deriving well-formed QREs. The unambiguity conditions are
pertinent when defining QREs using the regular combinators. For example, the (Concat) inference

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:12 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

rule says that the concatenation Q1 ·Q2 of QREs Q1 and Q2 is well formed only if the concatentions
ofW (Q1) andW (Q2), and K(Q1) and K(Q2) are unambiguous.

The most complicated inference rule is the (Perm) rule for the permutation combinator. The
second hypothesis for the Perm rule says that for any two different permutations σ and θ , the
languagesW (Qσ (1)) ·W (Q) · . . . ·W (Qσ (n)) andW (Qθ (1)) ·W (Q) · . . . ·W (Qθ (n)) must be disjoint.
This restriction is important because an input string could match any of the regular expressions
W (Qθ (1)) ·W (Q) · . . . ·W (Qθ (n)) for some permutation θ , so we must require that all of them be
disjoint. The third hypothesis says that the regular expression K(Q1) · K(Q) · . . . · K(Q) · K(Qn)

must be unambiguous. This restriction arises because the underlying lens that maps to or from a
perm QRE operates on the language K(Q1) · K(Q) · . . . · K(Q) · K(Qn), the kernel of the perm QRE.
The underlying lens requires that the source and target regular expressions be unambiguous so
that the lens can match strings uniquely.

5 QRE LENSES

As we have seen, QREs express a broad class of equivalence relations directly on regular languages.
QREs are therefore a good specification language for quotient lenses. In this section we introduce
QRE Lenses, a class of quotient lenses that map between data that is specified using QREs.

Recall that given regular expressions R, S and equivalence relations ≡R and ≡S defined on L(R)
and L(S), a bijective quotient lens q : R/≡R ⇔ S/≡S is a pair of functions q.get : L(R) −→ L(S)
and q.put : L(S) −→ L(R) such that for all r ∈ L(R) and s ∈ L(S), we have q.put(q.get(r)) ≡R r

and q.get(q.put(s)) ≡S s . Moreover, if r ≡R r ′, then q.get(r) = q.get(r ′), and if s ≡S s ′, then
q.put(s) = q.put(s ′). In words, a bijective quotient lens q from R to S modulo ≡R and ≡S is a pair of
functions q.get and q.put such that q.get respects ≡R and q.put respects ≡S , and such that the get

and put functions lifted to L(R)/≡R and L(S)/≡S are mutual inverses. These laws are similar to the
bijective lens laws Eq. (1), except that the equality restrictions in the bijective lens laws are loosened
to allow for equivalence relations. Also, the condition that r ≡R r ′ implies q.get(r) = q.get(r ′)
ensures that the get function induced on the equivalence classes of ≡R is well-defined, and similarly
for the put function.

Having identified QREs as a natural way of specifing equivalence relations on regular expressions,
a natural next step in defining quotient lenses is to map between two QREs via a bijection between
their kernels; indeed, this approach is the one we adopt in defining QRE lenses. More concretely, to
define a language of QRE lenses, we (1) define a language of bijections (Section 5.1), (2) add quotients
by allowing canonizers to be prepended or postpended to bijections, and (3) allow composition of
such quotient lenses via the regular operators and functional composition (Sections 5.2 and 5.3).

However, we also have a secondary objective, which is to support lens synthesis. When provided
with QREs describing the source and target languages, we would like to be able to generate quotient
lenses automatically. One way to achieve that goal is to generate canonizers canonize(Q1) and
canonize(Q2) from QREs Q1 and Q2 and then to synthesize bijective lenses between the kernel
languages for Q1 and Q2. Unfortunately, the composition of two such quotient lenses does not have
the form of a bijective lens with canonizers at the edges. Hence, an important technical question is
whether we give up expressiveness if we restrict ourselves to this form. Fortunately, we can show
that there is no loss of expressiveness if the bijections used to define QRE lenses are derived with a
particular set of combinators. We describe these combinators next.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:13

5.1 Bijective String Lenses

We define the set of bijective string lenses to be the set of bijections between regular languages
constructed using the following combinators,

ℓ := id(R) | const(s, t) | swap(ℓ1, ℓ2) | ℓ1 · ℓ2 | (ℓ1 | ℓ2) | ℓ
∗ | ℓ1 ; ℓ2

where R ranges over regular expressions and s ranges over character strings.
The const(s, t) lens replaces the string s with t in the source data in the forward direction, and t

with s in the target data in the backward direction, while id(R) applies the identity function to the
source and target in L(R) in both directions. The composition lens ℓ1 ; ℓ2 applies ℓ1 followed by
then ℓ2 to the source in the forward direction, and applies ℓ2 followed by ℓ1 to the target in the
backward direction. The lens ℓ1 · ℓ2 first splits the string s into s1 and s2, applies ℓ1 and ℓ2 to s1

and s2 to get t1 and t2 respectively, then concatenates t1 and t2 and returns t1 · t2 as the final result
in the forward direction. ℓ1 · ℓ2 operates similarly in the backward direction, but with s, s1 and s2

substituted for t , t1 and t2. The swap(ℓ1, ℓ2) lens operates like ℓ1 · ℓ2, except that it swaps t1 and t2
before concatenating the two for a final result of t2 · t1 in the forward direction. In the backward
direction, swap(ℓ1, ℓ2) first undoes the swap, then behaves like the concatenation lens. The ℓ1 | ℓ2
lens chooses to apply ℓ1 or ℓ2 depending on whether the source (resp. target) data is matched by ℓ1
or ℓ2 in the forward (resp. backward direction). The ℓ∗ lens splits the string s into strings s1, . . . , sn ,
applies ℓ1 to each si to obtain ti , and then concatenates each of the ti ’s for a final result of t1 · . . . · tn
in the forward direction. The iteration lens ℓ∗ operates similarly in the backward direction, but
with s and si substituted for t and ti .

The denotation of a lens ℓ1 is Jℓ1K ⊆ String × String. If (s1, s2) ∈ Jℓ1K, then ℓ1 maps between s1

and s2.

Jid(R)K = {(r , r) | r ∈ L(R)}

Jconst(r , s)K = {(r , s)}

Jswap(ℓ1, ℓ2)K = {(s · t , t
′ · s ′) | (s, s ′) ∈ Jℓ1K and (t , t ′) ∈ Jℓ2K}

Jℓ1 · ℓ2K = {(s · t , s
′ · t ′) | (s, s ′) ∈ Jℓ1K and (t , t ′) ∈ Jℓ2K}

Jℓ1 | ℓ2K = {(s · t) | (s, t) ∈ Jℓ1K or (s, t) ∈ Jℓ2K}

Jℓ∗K = {(s1 · . . . · sn , t1 · . . . · tn) | (si , ti) ∈ JℓK for 1 ≤ i ≤ n}

Jℓ1 ; ℓ2K = {(r , t) | there exists s with (r , s) ∈ Jℓ1K and (s, t) ∈ Jℓ2K}

Each bijective string lens ℓ has a type ℓ : R ⇔ S where R and S are regular expressions. If
ℓ : R ⇔ S , then the source language of ℓ is L(R) and the target language of ℓ is L(S). The final
rule in the figure deserves special attention. It states that a lens ℓ : R ⇔ S can also be considered to
be of type ℓ : R′⇔ S ′ provided that R (resp. S) can be proven to be equivalent to R′ (resp. S) from
the star-semiring axioms (associativity and commutativity of | and ·, identity of the empty string ϵ ,
distibutivity of · over |, annihilative property of∅with respect to ·, and thatR∗ = ϵ | R ·R∗ = ϵ | R∗ ·R

for all R):

ℓ1 : R ⇔ S R ≡s R′ S ≡s S ′

ℓ1 : R′⇔ S ′

This rule makes it significantly more difficult to synthesize a bijective lens from its type.

5.2 Syntax of QRE Lenses

Having given a brief overview of the class of bijective string lenses, we now introduce the class of
QRE lenses. The language of QRE lenses is given by following grammar,

q := lift(ℓ) | q1 · q2 | swap(q1,q2) | (q1 | q2) | q
∗ | q1 ; q2 | lquot(q,Q) | rquot(Q,q)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:14 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

s1 ∈ Σ
∗ s2 ∈ Σ

∗

const (s1, st) : s1 ⇔ s2

R is strongly unambiguous

id(R) : R ⇔ R
ℓ1:R1⇔S1
ℓ2:R2⇔S2

R1 ·
!R2

S1 ·
!S2

ℓ1 · ℓ2 : R1 · R2 ⇔ S1 · S2

ℓ1:R1⇔S1
ℓ2:R2⇔S2

R1 ·
!R2

S2 ·
!S1

swap (ℓ1, ℓ2) : R1 · R2 ⇔ S2 · S1

ℓ1 : R1 ⇔ R2 ℓ2 : R2 ⇔ R3

ℓ1 ; ℓ2 : R1 ⇔ R3

ℓ1:R1⇔S1
ℓ2:R2⇔S2

L(R1)∩L(R2)=∅
L(S1)∩L(S2)=∅

ℓ1 | ℓ2 : R1 | R2 ⇔ S1 | S2

ℓ : R ⇔ S R∗! S∗!

ℓ∗ : R ⇔ S

ℓ : R ⇔ S R ≡s R′ S ≡s S ′

ℓ : R′⇔ S ′

Fig. 8. Bijective String Lens Typing Rules

where Q ranges over QREs.
Other than the lift combinator which allows a bijective lens to be treated as a quotient lens, the

QRE lens combinators are the same as the bijective string lens combinators but with two extra
combinators where quotienting actually occurs: the lquot and rquot combinators. The lquot(Q,q)
combinator takes a quotient lens q and a QRE Q and quotients the source data using Q , assuming
that the source data forms a complete set of representatives for the equivalence relation ≡Q . The
rquot(q,Q) combinator does the same but on the target data.

For example, recall that in the BibTEX to EndNote transformation, we had the QREs bibtex and
endnote and the bijective lens bib_to_end that maps between bibtex and endnote. The quotient
lens that maps between bibtex and endnote is then given by the following QRE lens:

let bib_to_end_q : bibtex⇔ endnote = rquot (lquot(bibtex, bib_to_end), endnote)

5.3 Semantics of QRE Lenses

Each QRE lens q has a type q : Q1 ⇔ Q2 where Q1,Q2 are QREs. If q : Q1 ⇔ Q2, then the
source format is described byW (Q1) and the canonical set of representative for the source data
is described by K(Q1). Similarly, the target format is described byW (Q2) and the canonical set of
representatives for the target data is described by K(Q2). The underlying lens of q is a bijective
lens ℓ : K(Q1) ⇔ K(Q2).

The denotation JqK of a QRE lens q : Q1 ⇔ Q2 is a quotient lens JqK : W (Q1)/≡Q1 ⇐⇒

W (Q2)/≡Q2 . The typing rules and denotation of QRE lenses are given in Figure 9. The trickiest
typing rule is the typing rule for composition:

q1:Q1⇔Q2
q2:Q3⇔Q4

L(W (Q2))=L(W (Q3))
K (Q2)≡

sK (Q3)
canonize(Q2) = canonize(Q3)

q1 ; q2 : Q1 ⇔ Q4

This rule essentially says that the composition q1 ; q2 is well defined if and only if the in-
termediary QREs Q3 and Q4 define the same equivalence relation on regular expressions that
are equivalent modulo the star-semiring axioms. (See [Foster et al. 2008, ğ4] for an example of
what goes wrong if this premise is dropped). The condition L(W (Q2)) = L(W (Q3)) says that
the intermediary language is the same on both sides, while the condition K(Q2) ≡

s K(Q3) says
that the kernel regular expressions are equivalent modulo the star-semiring axioms. Finally, the
condition canonize(Q2) = canonize(Q3) says that Q2 and Q3 define the same equivalence relation
on L(W (Q2)) = L(W (Q3)).

Of course checking the condition canonize(Q2) = canonize(Q3) is undecidable in general; indeed
the approach used to type quotient lenses in Boomerang is to classify equivalences according to

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:15

ℓ : R ⇔ S
lift(ℓ) : id(R) ⇔ id(S)

(Lift)
Jlift(ℓ)K.get = JℓK
Jlift(ℓ)K.put = JℓK−1

q : Q2 ⇔ Q3 Q1 wf K(Q1) =W (Q2)

lquot(Q1,q) : Q1 ; Q2 ⇔ Q3
(Lquot)

Jlquot(Q1,q)K.get = JqK.get ◦ canonize(Q1)

Jlquot(Q1,q)K.put = JqK.put

q : Q1 ⇔ Q3 Q3 wf W (Q3) = K(Q2)

rquot(q,Q1) : Q1 ⇔ Q2 ; Q3
(Rquot)

Jrquot(q,Q1)K.get = JqK.get
Jrquot(q,Q1)K.put = JqK.put ◦ canonize(Q3)

q : Q1 ⇔ Q2 W (Q1)
∗!,W (Q2)

∗! K(Q1)
∗!,K(Q2)

∗!

q∗ : Q1
∗ ⇔ Q2

∗ (Star)
Jq∗K.get = (JqK.get)∗

Jq∗K.put = (JqK.get)∗

q1:Q1⇔Q3
q2:Q2⇔Q4

W (Q1)·
!W (Q2)

K (Q1)·
!K (Q2)

W (Q3)·
!W (Q4)

K (Q3)·
!K (Q4)

q1 · q2 : Q1 ·Q2 ⇔ Q3 ·Q4
(Concat)

Jq1 · q2K.get = Jq1K.get · Jq2K.get
Jq1 · q2K.put = Jq1K.put · Jq2K.put

q1:Q1⇔Q3
q2:Q2⇔Q4

W (Q1)·
!W (Q2)

K (Q1)·
!K (Q2)

W (Q4)·
!W (Q3)

K (Q4)·
!K (Q3)

q = q1 · q2 : Q1 ·Q2 ⇔ Q4 ·Q3
(Swap)

JqK.get(s1 · s2) = Jq2K.get(s2) · Jq1K.get(s1)

JqK.put(t2 · t1) = Jq1K.put(t1) · Jq2K.put(t2)

q1:Q1⇔Q3
q2:Q2⇔Q4

L(W (Q1))∩L(W (Q2))=∅
L(W (Q3))∩L(W (Q4))=∅

q1 | q2 : (Q1 | Q2) ⇔ (Q3 | Q4)
(Or)

Jq1 | q2K.get(s) =

{

Jq1K.get(s) if s ∈ L(W (Q1))

Jq2K.get(s) if s ∈ L(W (Q2))

Jq1 | q2K.put(s) =

{

Jq1K.put(s) if s ∈ L(W (Q3))

Jq2K.put(s) if s ∈ L(W (Q4))

q1:Q1⇔Q2
q2:Q3⇔Q4

L(W (Q2))=L(W (Q3))
K (Q2)≡

sK (Q3)
canonize(Q2) = canonize(Q3)

(Compose)
q1 ; q2 : Q1 ⇔ Q4

Jq1 ; q2K.get = Jq2K.get ◦ Jq1K.get

Jq1 ; q2K.put = Jq1K.put ◦ Jq2K.put

Fig. 9. Denotation and Typing Rules for QRE Lenses

whether they are or are not the equality relation. While this decision seemingly restricts the power
of composition in Boomerang significantly, the practice of writing quotient lenses shows that this
restriction is not overly restrictive. This is because most quotient lenses originate as lifted basic
lenses, and therefore have types whose equivalence relations are both equality, and further, equality
is preserved by many of the quotient lens combinators [Foster et al. 2008]. Foster et al also discuss
a second possible approach to typing quotient lenses, where equivalence relations are represented
by rational functions that induce them. While this second approach is more refined than the first,
Boomerang favours the first approach since the second appears to be too expensive to be useful in
practice.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:16 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

Thankfully, we do not face the issue of checking equivalence relation equality in our work since
our end goal is to synthesize lenses and not write them my hand, so the programmer will never
actually need to typecheck a functional composition expression.

The semantics defined on QRE lenses imply the following theorem:

Theorem 5.1. If there is a derivation q : Q1 ⇔ Q2, then JqK : W (Q1)/≡Q1 ⇔ W (Q2)/≡Q2 is a

well-defined quotient lens.

5.4 Normal Forms of QRE Lenses

Recall that our approach in defining QRE lenses is to have each QRE lens q : Q1 ⇔ Q2 be such that

JqK.get = ℓ ◦ canonize(Q1)

JqK.put = ℓ−1 ◦ canonize(Q2)

for some bijective lens ℓ. In other words, each QRE lens is the same as a bijective lens with canonizers
at the edges. The following theorem, which is the main technical contribution of this paper, confirms
that this indeed is the case:

Theorem 5.2. If there is a derivation q : Q1 ⇔ Q2, then there exists a bijective lens ℓ : K(Q1) ⇔

K(Q2) such that:

JqK.get = JℓK ◦ canonize(Q1)

JqK.put = JℓK−1 ◦ canonize(Q2)

Proof. The proof follows by induction on the derivation of q : c ⇔ c . The most interesting part
of the proof is the case for functional composition as we must demonstrate that it is possible to
eliminate the canonizers in the middle of the term.

The derivation rule and denotation for composition are as follows:

q1:Q1⇔Q2
q2:Q3⇔Q4

L(W (Q2))=L(W (Q3))
K (Q2)≡K (Q3)

canonize(Q2) = canonize(Q3)

q1 ; q2 : Q1 ⇔ Q4

Jq1 ; q2K.get = Jq2K.get ◦ Jq1K.get

Jq1 ; q2K.put = Jq1K.put ◦ Jq2K.put

By the induction hypothesis, there exist bijective lenses, ℓ1 : K(Q1) ⇔ K(Q2) and ℓ2 : K(Q3) ⇔

K(Q4) such that:

Jq1K.get = Jℓ1K ◦ canonize(Q1) Jq2K.get = Jℓ2K ◦ canonize(Q3)

Jq1K.put = Jℓ1K
−1
◦ canonize(Q2) Jq2K.put = Jℓ2K

−1
◦ canonize(Q4)

Consequently:

Jq2K.get ◦ Jq1K.get = (Jℓ2K ◦ canonize(Q3)) ◦ (Jℓ1K ◦ canonize(Q1))

= Jℓ2K ◦ (canonize(Q3) ◦ Jℓ1K) ◦ canonize(Q1)

= (Jℓ2K ◦ Jℓ1K) ◦ canonize(Q1)

= Jℓ1 ; ℓ2K ◦ canonize(Q1)

We are permitted to claim the third step from the second since canonize(Q3) is the identity function
on K(Q2) which is syntactically equal to K(Q3) by assumption. A similar argument shows that:

Jq1K.put ◦ Jq2K.put = Jℓ1 ; ℓ2K
−1 ◦ canonize(Q4)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:17

The other cases of the proof are similar, proceeding by a straightforward application of the
induction hypothesis followed by unrolling the equations that give the denotation for QRE lenses.
Full details can be found in the appendix. □

6 SYNTHESIZING QRE LENSES

QRE lenses address some of the limitations of bijective lenses because a single lens program
expresses both the canonizers and the transformation between kernel languages simultaneously,
which reduces programmer effort. But we can go even further by recognizing that the type structure
of QRE lenses contains information that can be exploited to automatically synthesize lenses from
their types. Rather than writing the QRE lens manually, the programmer can instead specify the
desired behavior of a lens by giving its interface types and providing examples, if necessary, to
disambiguate among possible implementations. This way of constructing lenses can often be much
simpler than building them by hand, as we saw in Section 3.2.

The Optician framework [Miltner et al. 2017] showed how to do such lens synthesis in the case
for bijective lenses. Here we show how to reduce QRE lens synthesis to that case, so that we can
re-use the Optician algorithm but in the more expressive context of QRE lenses. The basic idea is
straightforward: we run the Optician algorithm to synthesize a lens between the kernels of two
QREs and then apply the canonizers at the edges to recover a lens between the whole languages.
This simple strategy turns out to be remarkably effective, and the idea of using Optician in this
way inspired the design of our QRE lenses.

The Optician bijective lens synthesis algorithm works as follows. Given regular expressions
R and S and a set of example inputśoutput pairs {(r1, s1), . . . , (rn , sn)}, Optician will try to find a
bijective lens ℓ : R ⇔ S that agrees on the examples, i.e., it maps ri to si in the forward direction and
si to ri in the backward direction. The bijective lens synthesis algorithm is guaranteed to succeed
(eventually!) if such a bijective lens exists. There are typically a large number of such lenses, so
this algorithm chooses the one that corresponds to a minimal alignment of the regular expressions.
Additional details on this algorithm can be found in the original paper on synthesizing bijective
lenses [Miltner et al. 2017].

In our setting, we want to synthesize a quotient lens q : Q1 ⇔ Q2 from the QREs Q1 and Q2 and
a set of example input-output pairs {(x1,y1), . . . , (xn ,yn)} where the xi ’s are inW (Q1) and the yi ’s
are inW (Q2). We furthermore wish q to map the equivalence class of xi to the equivalence class of
yi and vice versa:

q.get(xi) ≡Q2 yi , and

q.put(yi) ≡Q1 xi

Our approach to synthesizing QRE lenses is guided by Theorem 5.2, which says that, if there is a
derivation q : Q1 ⇔ Q2 of a QRE lens, then there exists a bijective lens ℓ : K(Q1) ⇔ K(Q2) such
that:

JqK.get = JℓK ◦ canonize(Q1)

JqK.put = JℓK−1 ◦ canonize(Q2)

For the examples, the xi ’s are in W (Q1) and the yi ’s are in W (Q2), so we can construct x ′i =
canonize(Q1)(xi) inK(Q1) andy ′i = canonize(Q2)(yi) is inK(Q2). To synthesize the desired quotient
lens q : Q1 ⇔ Q2 that is consistent with the input-output examples {(x1,y1), . . . , (xn ,yn)} it suffices
to synthesize a bijective lens ℓ : K(Q1) ⇔ K(Q2) that is consistent with the canonized examples
{(x ′1,y

′
1), . . . , (x

′
n ,y
′
n)} and then apply the canonizers at the outside. Our procedure for QRE lens

synthesis is given formally in Algorithm 1.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:18 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

Algorithm 1 SynthQRELens

1: function SynthQRELens(Q1,Q2, exs)
2: R1 ← K(Q1)

3: R2 ← K(Q2)

4: c1 ← canonize(Q1)

5: c2 ← canonize(Q2)

6: exs ′← Map(exs, f un (exl , exr) → (c1(exl), c2(exr)))

7: l ← SynthBijectiveLens(R1,R2, exs
′)

8: return rquot(lquot(Q1, ℓ),Q2)

Theorem 6.1. Given QREsQ1 andQ2, and a set of examples {(x1,y1), . . . , (xn ,yn)}, if there is a QRE

lens q : Q1 ⇔ Q2 such that q.get(xi) ≡Q2 yi and q.put(yi) ≡Q1 xi , then SynthQRELens(Q1,Q2, exs)

will return such a lens.

(This follows from the correctness of the Optician algorithm and Theorem 5.2.)
Returning to the BibTEX to EndNote transformation of Section 3.2, the QREs bibtex and endnote

describe a BibTEX record and an Endnote record respectively. We also had the example pair
(bib_example , end_example), where:

bib_example =
"@Book ␣ {Lovelace,
␣ Author ␣ = ␣ \"Ada ␣ Lovelace\",
␣ Title ␣ = ␣ {Generic ␣ Title},
}"

end_example =
"%0 ␣ Book
␣ %T ␣ Generic ␣ Title
␣ %A ␣ Ada ␣ Lovelace
␣ %F ␣ Lovelace"

There exists a bijective lens between the kernel of bibtex and the kernel of endnote that maps the
normalized form of bib_example to the normalized form of end_example, so calling SynthQRELens

on the QREs bibtex and endnote, with the example set of {(bib_example, end_example)} will return
a satisfying lens. In this instance, the example set guides the algorithm to also find the desired lens.

7 IMPLEMENTATION AND EVALUATION

We have implemented QREs and the quotient lens synthesis algorithm described above as an
extension to the Boomerang interpreter [Bohannon et al. 2008; Foster et al. 2008]. We have extended
the existing Optician tool to synthesize QRE lenses from QREs. We will use łQRE-enhanced Opticianž
to denote our extended version of Optician, and just plain łOpticianž to denote the pre-QRE
version of Optician. The synthesis algorithm produces Boomerang lens values, so Boomerang gives
synthesized lenses the same first-class status as hand-written ones. To evaluate the effectiveness of
QREs, QRE lenses, and QRE lens synthesis, we conducted experiments to answer the following
questions:

• Ease of use. Does synthesizing QRE lenses from QREs permit an easier development process
than writing lenses by hand? Does synthesizing QRE lenses from QREs permit an easier
development process than manually writing canonizers and then synthesizing lenses between
their canonized forms?
• Performance. Is the synthesis algorithm/implementation fast enough to be used as part of

a standard development process?

All evaluations were performed on a 2.5 GHz Intel Core i7 processor with 16 GB of 1600 MHz DDR3
running macOS High Sierra.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:19

bi
bt

ex
-e

ndn
ot

e

ca
ch

ef
ile

sd

ba
ck

upp
ch

os
ts

cg
ru

le
s

hos
ts

bo
ot

co
nf

au
to

m
as

te
r

au
to

m
ou

nte
r

cr
on

bb
hos

ts
0

1000

2000

3000

4000

5000

6000

A
S

T
C

o
u

n
t

AST Counts by Benchmark

QS

BS

NS

Fig. 10. AST node measurements for each of the three approaches on each of the 10 non-bijective benchmark
problems. Benchmarks are sorted in order of increasing complexity as measured by the number of AST nodes
in the source and target format descriptions. QRE Synthesis requires far fewer AST nodes than the other two
approaches.

7.1 Benchmark Suite Construction

To evaluate our QRE implementation, we adapted 39 lens synthesis tasks from the benchmark
suite of the original Optician system. These benchmarks are a combination of custom benchmarks,
benchmarks derived from FlashFill [Gulwani 2011], and benchmarks derived from Augeas [Lut-
terkort 2008] (we also experimented using our QRE implementation to synthesize quotient lenses
between XML, RDF and and JSON formats using data from the data.gov database; the data consisted
of census statistics, demographic statistics, wage comparosion data, and crime index data). In these
39 benchmarks, 10 of the data formats had to be modified to work with the bijectivity constraints
that Optician required. For instance, when one representation permits whitespace where the other
does not, we modified the original version of the benchmark to allow more whitespace, thereby
restoring bijectivity (but altering the data format). With the new QRE support, we were able to
remove these alterations. This experience alone suggests that QREs make the lens development
process more flexible.

7.2 Ease of Use

To evaluate the impact of QRE lens synthsis on programmer effort, we focus our attention on the
10 problems in the benchmark suite that are not bijective and hence require non-trivial canonizers.
(Optician already handles the other problems with minimal programmer effort.)

We are interested in comparing three different approaches, which vary in the amount of synthesis
used. In the first approach, which we call QS for QRE Synthesis, the programmer uses QRE lens
synthesis. She must write QRE specifications of the source and target formats and she may give
examples. In the second approach, which we call BS for Bijective Synthesis, the programmer
uses bijective lens synthesis à la Optician. She must write canonizers by hand, along with regular
expressions to describe the external representations of the source and target formats. (The internal
formats can be inferred from the canonizers.) She may also provide examples to help in the synthesis

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:20 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

of the bijective lens. In the third approach, which we call NS for No Synthesis, the programmer
writes the lens between the source and target formats entirely by hand, including the descriptions
of the source and target formats.

For each problem in the benchmark suite, we calculate the following measures as proxies for the
level of programmer effort when using each the three approaches:

QS: The number of AST nodes in the QRE specifications for the source and target formats,
including examples.

BS: The sum of (1) the number of AST nodes inW (q) for each QRE q in the source and target
formats, (2) the number of AST nodes in canonize(q) for each QRE q with a non-trivial
canonizer, and (3) the number of AST nodes in the examples. We use (1) to estimate the
burden of describing the external source and target formats and (2) to estimate the burden
of writing the requisite canonizers by hand. We count the nodes in the examples because
they would be fed to the bijective synthesizer. These counts are an approximation, as both
W (q) and canonize(q) are automatically generated from the corresponding QRE q, and it is
possible that a human-written version might be smaller.

NS: The sum of (1) the number of AST nodes inW (q) for each QRE q in the source and target
formats and (2) the number of AST nodes in the synthesized QRE lens. We use (1) to estimate
the burdern of describing the source and target formats and (2) to estimate the burdern of
writing the appropriate lens by hand. These counts are also approximations, asW (q) and the
synthesized lens may be larger than one written by hand.

Figure 10 shows each of these measures for the 10 non-bijective problems in the benchmark
suite. On average (using a geometric mean), BS used 38.5% more AST nodes than QS, requiring an
average of 214 more AST nodes. On average, NS used 180% more AST nodes than QS, requiring an
average of 998 more AST nodes. These figures suggest that introducing QREs saves programmers
significant effort compared to both Optician and basic Boomerang.

7.3 Maintaining Competitive Performance

To assess the performance of QRE synthesis, we are interested in two different questions. First,
how does the performance of QRE-enhanced Optician compare to the performance of Optician on
benchmarks that do not require QREs? The answer to this question tells us how much overhead we
have introduced by adopting the more general mechanism. Figure 11(a) shows that QRE-enhanced
Optician was able to synthesize all of the Optician benchmarks at a speed competitive with the old
version. There is a small amount of additional overhead introduced by QREs in calculating theW
and K functions, resulting in a slight decrease in performance.

Second, how much time does it take for QRE-enhanced Optician to synthesize a QRE lens when
running on a non-bijective benchmark problem? Figure 11(b) shows the amount of time required
to infer a lens for each of the 10 benchmark programs with nontrivial quotients. We find that
QRE-enhanced Optician is able to synthesize all quotient lenses in under 10 seconds, and typically
finishes in under 5 seconds.

8 RELATED WORK

This paper builds on the work of Foster et al [Foster et al. 2008] who introduced the theory
of quotient lenses and implemented quotient lenses as a refinement of the bidirectional string
processing language Boomerang [Bohannon et al. 2008]. As we mentioned in Section 4.4, all
our QRE combinators can be expressed using just the normalize combinator, which is one of
the canonizer primitives that Boomerang already supports. Also, all our QRE lens combinators

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:21

0 2 4 6 8

Time (s)

0

10

20

30

40

B
en

ch
m

ar
k

s
C

o
m

p
le

te
d

Time vs Optician
Benchmarks Completed

Optician

OpticianQ

(a)

0 2 4 6 8

Time (s)

0

2

4

6

8

10

B
en

ch
m

ar
k

s
C

o
m

p
le

te
d

Time vs Optometrist
Benchmarks Completed

OpticianQ

(b)

Fig. 11. Runtimes measurements. In (a), we run Optician and QRE-enhanced Optician on the Optician
benchmarks. We find that there is only a negligible performance overhead incurred by using QREs. In (b),
we run QRE-enhanced Optician on the 10 Optician benchmarks previously edited to make them bijective,
after removing those edits and then extending the synthesis specification to include QREs. (In other words,
we restored them to their original state, added QREs, and then ran QRE-enhanced Optician). We find that
QRE-enhanced Optician is able to synthesize all quotient lenses in under 10 seconds, and typically finishes in
under 5 seconds.

are already supported in Boomerang. Consequently Boomerang quotient lenses are at least as
expressive as our language of QRE lenses.

Boomerang’s canonizers allow one to canonize a regular language R to by mapping it to another
regular language S which may not be contained in S . Formally, given setsC and B and an equivalence
relation on B, Foster et al defined a canonizer q fromC to B/≡B to be a pair of functions q.canonize :
C −→ B and q.choose : B −→ C such that for every b ∈ B:

q.canonize (q.choose b) ≡B b

This definition gives allows much more latitude for defining canonizers than QREs. For example,
if ≡B is equal to Tot(B), the equivalence relation that relates every element in B to every other
element in B, then every function from C to B is a canonizer.

Because of this extra elbow-room, Boomerang is able to offer two primitive duplication quotient
lenses, the first of which can be derived using the following inference rule,

ℓ : C/≡C ⇔ A1/≡A1 f : C −→ A2 A1 ·
! A2 ≡A=≡A1 ·Tot(A2)

dup1ℓ f : C/≡C =⇒ A1 · A2/≡A

(dup1 ℓ f).get c = (ℓ.get c) · (f c)

(dup1 ℓ f).put (a1 · a2) c = ℓ.put a1 c

(dup1 ℓ f).create (a1 · a2) = ℓ.create a1

with the symmetric dup2 combinator discarding the first copy instead of the second in the put/create
direction.

Boomerang’s more general definition for canonizers also allows quotient lenses to be used as
canonizers by using the taking the canonize function to be the get component of a lens and the
choose function to be its create component. Naturally, QREs also take advantage of this ability

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:22 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

to use lenses as canonizers by allowing for user-defined functions to be used by the squash and
normalize combinators. Moreover, the added functionality of synthesizing lenses further makes it
easier to define canonizers, as well as lenses.

Foster et al also discuss other bidirectional programming languages that support quotienting of
data including XSugar [Brabrand et al. 2008], biXid [Kawanaka and Hosoya 2006] and X/Inv [Hu
et al. 2004; Mu et al. 2004; MU et al. 2006]; we refer the reader to the related work section in [Foster
et al. 2008] for this discussion.

A newer language which supports quotenting is FliPpr [Matsuda and Wang 2013]. FliPpr is
a program transformation system that uses program inversion to produce a CFG parser from a
pretty-printer. FliPpr includes biased choice combinators that choose canonical representatives for
sets of strings. For example, one can define variants of (white)spaces with the choice operator as,

nil = text "" <+ space
space = (text " ␣ " <+ text "\n") <> nil

where nil and space pretty-print "" and " ␣ " respectively, but represent zero-or-more and one-or-
more whitespaces in parsing. FliPpr also allows annotations for optional parentheses in programs.
These features enable a user to easily define a pretty-printer that also recognizes ugly strings that
get mapped to a canonical representative modulo whitespace and parentheses quotienting.

Another programming language that supports quotienting is BiFluX [Pacheco et al. 2014], a
bidirectional functional update language for XML. BiFluX is inspired by the FLUX XML update
language [Cheney 2008], and adopts a bidirectional programming by update paradigm, where a
program succintly and precisely describes how to update a source document with a target document,
in an intuitive way, such that there is a unique łinversež source query for each update program.
The source and view types of BiFluX programs are given by regular expressions.

In BiFluX, a regular expression R is said to be unambiguous if there is only one way to parse a flat
value of type R to a structured value of type R; here a flat value of R is a value of R with all left/right
tags, parentheses and list brackets removed. The bidirectional part of BiFluX involves transforming
source regular expressions to view regular expressions so that data sequences described by the two
types can be matched. This process can result in intermediate types that are ambiguous, and this
ambiguity can cause unintended updates to be made the source, especially when information is
discarded in this process.

The typechecking phase of a BiFluX program therefore includes a type normalization phase that
tries to normalize a source types using automata reduction techniques, and derive a lens between
ambiguous and unambiguous types. On the view side, this phase only tries to normalize view types
into isomorphic types. Pacheco et. al. do not claim that their normalization procedures are complete
in the sense that they can disambiguate any ambiguous type, but they do show that when these
procedures succeed the normalized types are unambiguous.
Formlenses [Rajkumar et al. 2014] are a variant of lenses that perform transformations up to

equivalence. Formlenses are a bidirectional generalization of formlets [Cooper et al. 2008], which
are a high-level abstraction for building Web forms. Formlets encapsulate several low-level details
including selecting field names for elements and parsing data from client responses. In their work,
Rajkumar et. al. represent a formlens as a function that takes an optional initial value of a form and
a list of integers as a name source and produces a triple consisting of an HTML document, a collect

function, and a modified namesource:

type Formlens a = Maybe a→ [Int]→ (Html,Env→Maybe a,[Int])

The names of any generated form fields are drawn from the name source, and the collect function
looks up precisely these names

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:23

Rajkumar et. al. consider only formlenses that are well-formed in the sense that a well-formed
formlens should only draw names from the namesource provided as an argument, and the collect

function should only look up corresponding names. Under this assumption, Rajkumar et. al. define
what it means for a formlens to be well behaved by defining a version of the classical GetPut and
PutGet laws for formlenses. These laws hold modulo an equivalence relation on environments,
since a formlens may be invoked with two separate namespaces, but this should not affect the value
stored in the information encapsulated in the type a. Consequently, the GetPut and PutGet laws
defined for formlenses are in spirit analogous to the GetPut and PutGet laws for quotient lenses,
since they hold up to renaming of environment variables.

Another recent line of work that exploits equivalence relations on data is by Hilken et. al. in
[Hilken et al. 2016]. This work is concerned mainly with testing, and uses Equivalence Partitioning, a
software testing technique that divides the input data of a software unit into partitions of equivalent
data from which test cases can be derived. This approach has the advantage that it can greatly reduce
the number of test cases and hence the amount of time spent testing since only one representative
from each class is tested.

More concretely, their approach gives the developer an explicit option to formulate her under-
standing of two object models being different. The technical realization is as follows: The developer
specifies łclassifying termž, a closed Object Constraint Language (OCL) query term that can be
evaluated in an object model and returns a characteristic value. Two object models with the same
characteristic value belong to the same equivalence class. For example under a configuration
requiring at least 2 and at most 4 Person objects, the classifying term Person.allInstances()−>size()
would yield three object models with 2,3 and 4 Person objects respectively.

Classifying terms are therefore analogous to our QREs or to Boomerang canonizers in the sense
that they define an equivalence relation on data. However, while QREs and canonizers aim at
identifying or characterizing the elements that should be treated equally by a lens, the focus of the
work by Hilken et al. is on classes that represent specific patterns of particular relevance to the
modeler who is interested in analyzing the behavior of a transformation.

Finally, Cunha [Cunha 2010] uses relational algebra to encompass many of the existing approaches
to bidirectional programming. For example, using ◦ to express relational composition, the GetPut

law states that get ◦ put ⊆≡V ◦π1, where π1 is the projection onto the first factor. In addition to its
generality, this łpoint-freež approach to defining bidirectional transformations has the advantage
of creating equational proofs of lens laws that proceed by folding and unfolding combinator laws.

Next we turn to related work in program synthesis. Much of the research in synthesis assumes
that the synthesizer is provided with a collection of examples. Optician and QRE-Enhanced Optician
differ in that they require the programmer to supply both examples and format descriptions in
the form of regular expressions or QREs, though these two systems are far from the only ones to
consider type-based synthesis. There is a trade-off here. On the one hand, a user must have some
programming expertise to write regular expression (or QRE) specifications, and it requires some
work. On the other hand, such specifications provide a great deal of information to the synthesis
system, which decreases the number of examples needed (often to zero), makes the system scale
well, and allows it to handle large, complex formats. By providing these format specifications, the
synthesis engine does not have to both infer the format of the data as well as the transformations
on it, obviating the need to infer tricky formats like those involving nested iterations.

There are many other recent results showing how to synthesize functions from type-based
specifications [Augustsson 2004; Feser et al. 2015; Frankle et al. 2015; Osera and Zdancewic 2015;
Polikarpova et al. 2016; Scherer and Rèmy 2015]. These systems enumerate programs of their target
language, orienting their search procedures to process only terms that are well-typed. Optician is
distinctive in that it synthesizes terms in a language with many type equivalences. Perhaps the

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:24 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

system most similar to Optician is InSynth [Gvero et al. 2013], a system for synthesizing terms in
the simply-typed lambda calculus that addresses equivalences on types. Instead of trying to directly
synthesize terms of the simply-typed lambda calculus, InSynth synthesizes a well-typed term in the
succinct calculus, a language with types that are equivalent łmodulo isomorphisms of products and
curryingž [Gvero et al. 2013]. The type structure used in Optician is significantly more complex. In
particular, because Optician types do not have full canonical forms, Miltner et al. [Miltner et al.
2017] used a pseudo-canonical form that captures part of the equivalence relation over types. To
preserve completeness, they pushed some of the remaining parts of the type equivalence relation
into a set of rewriting rules and other parts into the synthesis algorithm itself.

Morpheus [Feng et al. 2017] is another synthesis system that uses two communicating synthe-
sizers to generate programs. In both Morpheus and Optician, one synthesizer provides an outline
for the program, and the other fills in that outline with program details that satisfy the user’s
specifications. This approach works well in large search spaces that require some enumerative
search. One important way that Optician differs from Morpheus is that in Morpheus, an outline
is a sketchÐan expression containing holesÐwhereas an outline in Optician is a pair of regular
expressions, i.e., a type. Moreover, in order to implement an efficient search procedure, Anders et.
al had to create both a new type language and a new term language for lenses. Once they did so,
they proved their new, more constrained language designed for synthesis was just as expressive as
the original, more flexible and compositional language designed for human programmers.

9 CONCLUSION AND FUTURE WORK

In this paper, we showed how to synthesize a class of bijective quotient lenses using the bijective
lens synthesis system Optician as a plug-in for our synthesis algorithm. In order to achieve this,
we first introduced Quotient regular languages to specify regular languages with an equivalence
relation defined on them. Then, we introduced QRE lenses, which are bijective quotient lenses
that map between QREs via bijective lenses. We proved a normal form theorem for QREs that
enabled us to (1) extend the synthesis algorithm used by Optician to synthesize QRE lenses, and (2)
prove that if there is a QRE lens that satisfies the input specification, then the extended algorithm
returns such a lens. Finally we tested QRE-enhanced optician on the Optician benchmark suite and
demonstrated that QREs can save programmers significant effort compared to both Optician and
basic Boomerang, and that QRE-enhanced Optician maintains competitive performance over both
of these systems.

Looking ahead, we are experimenting with larger examples of quotiented bijective lenses. So far,
the three łspecializedž QRE combinators (squash, perm, and collapse) have proved sufficient, but
we expect eventually to encounter examples that will lead us to consider adding further combinators
to supplement these.

Along a different dimension, we would like to investigate whether the techniques proposed
here can be applied to synthesizing quotiented variants of richer classes of lenses, such as łclassicž
asymmetric lenses [Foster et al. 2007] or symmetric lenses [Hofmann et al. 2011]. The main technical
issues are developing synthesis procedures for the unquotientied variants of a given classÐwe are
currently attacking the case of symmetric lensesÐand showing that quotiented lenses in this class
can be normalized along the lines of Theorem 5.2.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:25

APPENDICES

A PROOF OF NORMAL FORM THEOREM FOR QRE LENSES

Theorem 5.2 claims that if there is a derivation q : Q1 ⇔ Q2, then there exists a bijective lens
ℓ : K(Q1) ⇔ K(Q2) such that:

JqK.get = JℓK ◦ canonize(Q1) and JqK.put = JℓK−1 ◦ canonize(Q2)

We now prove this theorem.

Proof. We proceed by induction over the derivation q : Q1 ⇔ Q2.

(1) lift(ℓ) : R/id(R) ⇔ S/id(S) where ℓ : R ⇔ S . Then:

Jlift(ℓ)K.get = JℓK = JℓK ◦ idL(R) = JℓK ◦ canonize(id(R)), and

Jlift(ℓ)K.put = JℓK−1
= JℓK−1 ◦ idL(S) = JℓK−1 ◦ canonize(id(S))

(2) lquot(Q1,q) : Q1 ; Q2 ⇔ Q3 where q : Q2 ⇔ Q3, Q1 is well formed and K(Q1) = W (Q2).
Then:

Jlquot(Q1,q)K.get = JqK.get ◦ canonize(Q1) and Jlquot(Q1,q)K.put = JqK.put

By the induction hypothesis, there exists a bijective lens ℓ : K(Q2) ⇔ K(Q3) such that:

JqK.get = JℓK ◦ canonize(Q2) and JqK.put = JℓK−1 ◦ canonize(Q3)

Consequently

Jlquot(Q1,q)K.get = (JℓK ◦ canonize(Q2)) ◦ canonize(Q1) = JℓK ◦ (canonize(Q1 ; Q2))

Jlquot(Q1,q)K.put = JℓK−1 ◦ canonize(Q3)

(3) rquot(q,Q3) : Q1 ⇔ Q2 ; Q3 where q : Q1 ⇔ Q2, Q3 is well formed and K(Q3) = W (Q2).
Proceed as in the previous case.

(4) q1 ; q2 : c ⇔ Q2 where q1 : c ⇔ Q1 and q2 : Q1 ⇔ Q2. Then:

Jq1 ; q2K.get = Jq2K.get ◦ Jq1K.get and Jq1 ; q2K.put = Jq1K.put ◦ Jq2K.put

By the induction hypothesis, there exist bijective lenses, ℓ1 : K(c) ⇔ K(Q1) and ℓ2 : K(Q1) ⇔

K(Q2) such that,

Jq1K.get = Jℓ1K ◦ canonize(c) Jq2K.get = Jℓ2K ◦ canonize(Q1)

Jq1K.put = Jℓ1K
−1
◦ canonize(Q1) Jq2K.put = Jℓ2K

−1
◦ canonize(Q2)

Consequently:

Jq1 ; q2K.get = Jq2K.get ◦ Jq1K.get

= (Jℓ2K ◦ canonize(Q1)) ◦ (Jℓ1K ◦ canonize(c))

= Jℓ2K ◦ (canonize(Q1) ◦ Jℓ1K) ◦ canonize(c)

= (Jℓ2K ◦ Jℓ1K) ◦ canonize(c)

= Jℓ1 ; ℓ2K ◦ canonize(c)

A similar argument shows that Jq1 ; q2K.put = Jℓ1 ; ℓ2K
−1 ◦ canonize(c)

(5) q∗ : Q1
∗ ⇔ Q2

∗ where q : Q1 ⇔ Q2,W (Q1)
∗! andW (Q2)

∗! and K(Q1)
∗! and K(Q2)

∗!. Then:

Jq∗K.get = (JqK.get)∗ and Jq∗K.put = (JqK.put)∗

By the induction hypothesis there exists a bijective lens ℓ : K(Q1) ⇔ K(Q2) such that:

JqK.get = JℓK ◦ canonize(Q1) and JqK.put = JℓK−1
◦ canonize(Q2)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:26 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

Consequentlty:

Jq∗K.get = (JℓK ◦ canonize(Q1))
∗
= JℓK∗ ◦ canonize(Q1)

∗
= Jℓ∗K ◦ canonize(Q∗1)

Jq∗K.put = (JℓK−1 ◦ canonize(Q2))
∗
= (JℓK−1)∗ ◦ canonize(Q2)

∗
= Jℓ∗K−1 ◦ canonize(Q∗2)

(6) q1 ·q2 : Q1 ·Q2 ⇔ Q3 ·Q4, where q1 : Q1 ⇔ Q3, q2 : Q2 ⇔ Q4,W (Q1) ·
!W (Q2), K(Q1) ·

!K(Q2),
W (Q3) ·

! W (Q4) and K(Q3) ·
! K(Q4). Then:

Jq1 · q2K.get = Jq1K.get · Jq2K.get and Jq1 · q2K.put = Jq1K.put · Jq2K.put

By the induction hypothesis, there exist bijective lenses ℓ1 : K(Q1) ⇔ K(Q3) and ℓ2 : K(Q2) ⇔

K(Q4) such that,

JqK.get = Jℓ1K ◦ canonize(Q1) Jq2K.get = Jℓ2K ◦ canonize(Q2)

JqK.put = Jℓ1K
−1
◦ canonize(Q3) Jq2K.put = Jℓ2K

−1
◦ canonize(Q4)

Consequently:

Jq1 · q2K.get = (Jℓ1K ◦ canonize(Q1)) · (Jℓ2K ◦ canonize(Q2))

= (Jℓ1K · Jℓ2K) ◦ (canonize(Q1) · canonize(Q2))

= Jℓ1 · ℓ2K ◦ canonize(Q1 ·Q2)

Similarly, Jq1 · q2K.put = Jℓ1 · ℓ2K
−1 ◦ canonize(Q3 ·Q4)

(7) swap(q1,q2) : Q1 · Q2 ⇔ Q4 · Q3, where q1 : Q1 ⇔ Q3, q2 : Q2 ⇔ Q4, W (Q1) ·
! W (Q2),

K(Q1) ·
! K(Q2),W (Q4) ·

! W (Q3) and K(Q4) ·
! K(Q3). Then:

Jswap(q1,q2)K.get(s1 · s2) = Jq2K.get(s2) · Jq1K.get(s1), and

Jswap(q1,q2)K.put(t1, t2) = Jq1K.put(t1) · Jq2K.put(t2)

By the induction hypothesis, there exist bijective lenses ℓ1 : K(Q1) ⇔ K(Q3) and ℓ2 : K(Q2) ⇔

K(Q4) such that,

Jq1K.get = Jℓ1K ◦ canonize(Q1) Jq2K.get = Jℓ2K ◦ canonize(Q2)

Jq1K.put = Jℓ1K
−1
◦ canonize(Q3) Jq2K.put = Jℓ2K

−1
◦ canonize(Q4)

Consequently:

Jswap(q1,q2)K.get(s1 · s2) = Jq2K.get(s2) · Jq1K.get(s1)

= (Jℓ2K ◦ canonize(Q2))(s2) · (Jℓ1K ◦ canonize(Q1))(s1)

= (Jswap(ℓ1, ℓ2)K) ◦ (canonize(Q1) · canonize(Q2))(s1, s2)

Similarly, Jswap(q1,q2)K.put = (Jswap(ℓ1, ℓ2)K)
−1 ◦ (canonize(Q4) · canonize(Q3))

(8) q1 = q1 | q2 where q1 : Q1 ⇔ Q3, q2 : Q2 ⇔ Q4, L(W (Q1))∩L(W (Q2)) = ∅ and L(W (Q3))∩

L(W (Q4)) = ∅. Then:

Jq1 | q2K.get(s) =

{

Jq1K.get(s) if s ∈ L(W (Q1))

Jq2K.get(s) if s ∈ L(W (Q2))

Jq1 | q2K.put(s) =

{

Jq1K.put(s) if s ∈ L(W (Q3))

Jq2K.put(s) if s ∈ L(W (Q4))

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

Synthesizing Quotient Lenses 80:27

By the induction hypothesis, there exist bijective lenses ℓ1 : K(Q1) ⇔ K(Q3) and ℓ2 : K(Q2) ⇔

K(Q4) such that,

Jq1K.get = Jℓ1K ◦ canonize(Q1) Jq2K.get = Jℓ2K ◦ canonize(Q2)

Jq1K.put = Jℓ1K
−1
◦ canonize(Q3) Jq2K.put = Jℓ2K

−1
◦ canonize(Q4)

Consequently:

Jq1 | q2K.get(s) =

{

Jℓ1K ◦ canonize(Q1)(s) if s ∈ L(W (Q1))

Jℓ2K ◦ canonize(Q2)(s) if s ∈ L(W (Q2)),

so Jq1 | q2K.get = Jℓ1 | ℓ2K ◦ canonize(Q1 | Q2). Similarly, Jq1 | q2K.put = Jℓ1 | ℓ2K
−1 ◦

canonize(Q3 | Q4).
This completes the proof.

□

B PROOF OF CORRECTNESS OF SYNTHQRELENS

Theorem 6.1 states that Given QREs Q1 and Q2, and a set of examples {(x1,y1), . . . , (xn ,yn)},
if there is a QRE lens q : Q1 ⇔ Q2 such that q.get(xi) ≡Q2 yi and q.put(yi) ≡Q1 xi , then
SynthQRELens(Q1,Q2, exs) will return such a lens. We prove that here.

Lemma B.1 (Algorithm Soundness). If q = SynthQRELens(Q1,Q2, exs), then q : Q1 ⇔ Q2 and

q.get(xi) ≡Q2 yi and q.put(yi) ≡Q1 xi for all (xi ,yi) ∈ exs .

Proof. As q = SynthQRELens(Q1,Q2, exs), we know that q = rquot(lquot(Q1, ℓ),Q2). Further-
more, we know that ℓ = SynthBijectiveLens(R1,R2, exs

′), where exs ′ = Map(exs, f un (exl , exr) →

(canonize(Q1)(exl), canonize(Q2)(exr))). By the correctness of SynthBijectiveLens, we know that
ℓ.get(x ′i) = y

′
i and ℓ.put(y ′i) = x ′i for all (x ′i ,y

′
i) ∈ exs

′. By definitions of rquot and lquot, this means
that:
rquot(lquot(Q1, ℓ),Q2).get(xi)
= ℓ.дet(canonize(Q1)(xi))

= ℓ.дet(x ′i) = y
′
i = canonize(Q2)(yi) ≡Q2 yi and

rquot(lquot(Q1, ℓ),Q2).put(yi)
= ℓ.put(canonize(Q2)(yi))

= ℓ.put(y ′i) = x ′i = canonize(Q1)(xi) ≡Q1 xi as desired. □

Lemma B.2 (Algorithm Completeness). If there exists a QRE lens q : Q1 ⇔ Q2 such that

q.get(xi) ≡Q2 yi and q.put(yi) ≡Q1 xi for all (xi ,yi) ∈ exs , then SynthQRELens(Q1,Q2, exs) termi-

nates.

Proof. By Theorem 5.2, there exists a bijective lens ℓ : K(Q1) ⇔ K(Q2), such that q′ =
rquot(lquot(Q1, ℓ),Q2) is semantically equal to q.

This means that q′.get(xi) ≡Q2 yi and q′.put(yi) ≡Q1 xi for all (xi ,yi) ∈ exs . Unfolding the
definitions of rquot and lquot, we get:
q′.get(xi) = ℓ.get(canonize(Q1)(xi)) = canonize(Q2)(yi) and
q′.put(yi) = ℓ.put(canonize(Q2)(yi)) = canonize(Q1)(xi) for all (xi ,yi) ∈ exs .

By correctness of SynthBijectiveLens, we know that SynthBijectiveLens(R1,R2, exs
′) termi-

nates, so the entire algorithm terminates. □

With soundness and completeness, we trivially get the correctness theorem.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

80:28 S. Maina, A. Miltner, K. Fisher, B. C. Pierce, D. Walker, S. Zdancewic

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their useful feedback and discussions and Nate Foster for
his extensive assistance in integrating QRE-enhanced QRE-enhanced Optician into Boomerang.
This research has been supported in part by DARPA award FA8750-17-2-0028 and ONR 568751
(SynCrypt).

REFERENCES

Lennart Augustsson. 2004. [Haskell] Announcing Djinn, version 2004-12-11, a coding wizard. Mailing List. http:

//www.haskell.org/pipermail/haskell/2005-December/017055.html.

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. 2008. Boomerang:

Resourceful Lenses for String Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’08). ACM.

Claus Brabrand, Anders Mùller, and Michael I. Schwartzbach. 2008. Dual Syntax for XML Languages. Inf. Syst. 33, 4-5 (June

2008).

James Cheney. 2008. FLUX: functional updates for XML. In ACM Sigplan Notices, Vol. 43. ACM, 3ś14.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2008. The essence of form abstraction. In Asian Symposium on

Programming Languages and Systems. Springer, 205ś220.

Alcino Cunha. 2010. A relational approach to bidirectional transformations. (2010).

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based Synthesis of

Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI 2017). ACM. http://doi.acm.org/10.1145/3062341.3062351

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output

Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI).

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators for

Bidirectional Tree Transformations: A Linguistic Approach to the View-update Problem. ACM Trans. Program. Lang.

Syst. 29, 3, Article 17 (May 2007). https://doi.org/10.1145/1232420.1232424

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. 2008. Quotient Lenses. SIGPLAN Not. 43, 9 (Sept. 2008),

383ś396. https://doi.org/10.1145/1411203.1411257

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2015. Example-Directed Synthesis: A Type-

Theoretic Interpretation (extended version). Technical Report MS-CIS-15-12. University of Pennsylvania.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In ACM SIGPLAN Notices,

Vol. 46. ACM.

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete Completion Using Types and Weights. In

Proceedings of the 2013 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Frank Hilken, Martin Gogolla, Loli Burgueño, and Antonio Vallecillo. 2016. Testing models and model transformations

using classifying terms. Software & Systems Modeling (2016), 1ś28.

Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2011. Symmetric lenses. In ACM SIGPLAN Notices, Vol. 46. ACM,

371ś384.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. 2004. A Programmable Editor for Developing Structured Documents

Based on Bidirectional Transformations. In Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-based Program Manipulation (PEPM ’04). ACM, New York, NY, USA, 178ś189. https://doi.org/10.1145/1014007.

1014025

Shinya Kawanaka and Haruo Hosoya. 2006. biXid: A Bidirectional Transformation Language for XML. In Proceedings of the

Eleventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’06). ACM.

David Lutterkort. 2008. Augeasśa configuration API. In Linux Symposium, Ottawa, ON. 47ś56.

Kazutaka Matsuda and Meng Wang. 2013. FliPpr: A prettier invertible printing system. In European Symposium on

Programming. Springer, 101ś120.

Anders Miltner, Kathleen Fisher, Benjamin C Pierce, David Walker, and Steve Zdancewic. 2017. Synthesizing bijective lenses.

Proceedings of the ACM on Programming Languages 2, POPL (2017), 1.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. 2004. An Algebraic Approach to Bi-directional Updating. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2ś20. https://doi.org/10.1007/978-3-540-30477-7_2

Shin-Cheng MU, Zhenjiang HU, and Masato TAKEICHI. 2006. Bidirectionalizing Tree Transformation Languages: A Case

Study. Computer Software 23, 2 (2006), 129ś141. https://doi.org/10.11309/jssst.23.2_129

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

http://www.haskell.org/pipermail/haskell/2005-December/017055.html
http://www.haskell.org/pipermail/haskell/2005-December/017055.html
http://doi.acm.org/10.1145/3062341.3062351
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1411203.1411257
https://doi.org/10.1145/1014007.1014025
https://doi.org/10.1145/1014007.1014025
https://doi.org/10.1007/978-3-540-30477-7_2
https://doi.org/10.11309/jssst.23.2_129

Synthesizing Quotient Lenses 80:29

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM.

Hugo Pacheco, Tao Zan, and Zhenjiang Hu. 2014. BiFluX: A bidirectional functional update language for XML. In Proceedings

of the 16th International Symposium on Principles and Practice of Declarative Programming. ACM, 147ś158.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16).

ACM. http://doi.acm.org/10.1145/2908080.2908093

Raghu Rajkumar, Nate Foster, Sam Lindley, and James Cheney. 2014. Lenses for web data. Electronic Communications of the

EASST 57 (2014).

Gabriel Scherer and Didier Rèmy. 2015. Which simple types have a unique inhabitant?. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming (ICFP).

Seppo Sippu and Eljas Soisalon-Soininen. 1988. Regular Languages. Springer Berlin Heidelberg, Berlin, Heidelberg, 65ś114.

https://doi.org/10.1007/978-3-642-61345-6_3

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 80. Publication date: September 2018.

http://doi.acm.org/10.1145/2908080.2908093
https://doi.org/10.1007/978-3-642-61345-6_3

	Abstract
	1 Introduction
	2 Background: Bijective String Languages
	3 QRE Lenses by Example
	3.1 Specifying BibTeX Using QREs
	3.2 QRE Lenses and QRE Lens Synthesis

	4 Quotient Regular Expressions
	4.1 Syntax and Semantics of QREs
	4.2 The normalize Combinator
	4.3 QRE Combinator Semantics
	4.4 Ambiguity and Well-Formed QREs
	4.5 Well-formedness of QREs

	5 QRE Lenses
	5.1 Bijective String Lenses
	5.2 Syntax of QRE Lenses
	5.3 Semantics of QRE Lenses
	5.4 Normal Forms of QRE Lenses

	6 Synthesizing QRE Lenses
	7 Implementation and Evaluation
	7.1 Benchmark Suite Construction
	7.2 Ease of Use
	7.3 Maintaining Competitive Performance

	8 Related Work
	9 Conclusion and Future Work
	Appendices
	A Proof of Normal Form Theorem for QRE lenses
	B Proof of Correctness of SynthQRELens
	Acknowledgments
	References

