
The Art of Reconciliation

Benjamin C. Pierce
University of Pennsylvania

1/70

The Dangers of Replication

Co m p u te rAg e n t A d dr e s sBo o k P D A

2/70

The Dangers of Replication

Co m p u te rAg e n t A d dr e s sBo o k P D A Ag e n t Co p yA d dr e s sBo o k C o p y

3/70

The Dangers of Replication

Co m p u te rAg e n t Up da te dA d dr e s sBo o k P D A Ag e n t Co p yUp d a te dA d dr e s sBo o k C o p y

4/70

The Dangers of Replication

Co m p u te rAg e n t Up da te dA d dr e s sBo o k P D A

Ag e n t Co p yUp da te dA d dr e s sBo o k C o p y

5/70

Optimistic Replication

• Many copies of data, held by geographically
distributed hosts (mobile agents, databases, user
filesystems, etc.)

• Any copy may be updated at any time

• Hosts occasionally reconcile (or synchronize) their
states

6/70

Advantages of Optimism

• Availability: hosts can update their copies of data
while disconnected

• Scalability: no “hot spots” for writes

• Quality control: updates can be “curated” before
being allowed into a replica

• Visibility/atomicity control: a set of updates can be
“kept local” until ready, then propagated to other
hosts (cf. CVS)

7/70

Challenges of Optimism

Pragmatic issues:

• How to make sure updates get propagated in a timely
manner (while dealing with failures, avoiding swamping
the network or using too much local storage, etc.)?

=⇒ Interesting when there are many replicas

Semantic issues:

• Precisely what does it mean to “synchronize” replicas?

=⇒ Interesting when replicated data has nontrivial
internal structure

8/70

Synchronizing States vs. Operations

Two basic approaches to semantics of synchronization:

• Operation-based synchronizers are given access to
complete traces of all the operations performed on
each replica of the data.
Examples: Bayou, IceCube

• State-based synchronizers are given just the states of
the replicas at particular moments in time.
Examples: Unison, Harmony

9/70

Tradeoffs

Operation-based:

• Pro: temporal sequencing of operations on each
replica visible to synchronizer

• Pro: operations can be chosen to encode high-level
application semantics

• Con: require relatively tight coupling with applications
=⇒ Appropriate for “synchronization middleware”

State-based:

• Con: less information available at sync time

• Pro: applications need not be “synchronization aware”
=⇒ Appropriate for loosely coupled architectures

10/70

The Harmony Project

Research goal:

Build a generic synchronization framework for
structured data stored as XML documents

11/70

The Harmony Project

Research goal:

Build a generic synchronization framework for
structured data stored as XML documents

For this talk:

Focus on semantic issues

... particular, on Harmony’s schema-directed
synchronization algorithm

11/70

Running Example

12/70

An XML Address Book

<xcard>

<vcard>

<n>Rocco</n>

<org>Edinburgh</org>

<email>denicola@dcs.ed</email>

</vcard>

<vcard>

<n>Davide</n>

<org>Edinburgh</org>

<email>sad@dcs.ed</email>

</vcard>

</xcard>

13/70

An Updated Address Book

<xcard>

<vcard>

<n>Rocco</n>

<org>Firenze</org>

<email>denicola@dsi.unifi</email>

</vcard>

<vcard>

<n>Davide</n>

<org>Edinburgh</org>

<email>sad@dcs.ed</email>

</vcard>

</xcard>

14/70

Another Update

<xcard><vcard>

<n>Rocco</n>

<org>Edinburgh</org>

<email>denicola@dcs.ed</email>

</vcard>

<vcard>

<n>Davide</n>

<org>Bologna</org>

<email>Davide@cs.unibo</email>

</vcard>

</xcard>

[Note that the formatting of the XML also changed a little
in this version.]

15/70

Synchronization

How do we reconcile these changes to get back to a
single, unified address book?

16/70

Synchronization: First Try

Using a textual merging tool like diff3 doesn’t get us very
far because of the “insignificant” formatting changes in
the second variant...

17/70

Synchronization: First Try

diff3 -m egA egO egB

<<<<<<< egA <vcard>

<xcard> <n>Davide</n>

<vcard> <org>Edinburgh</org>

<n>Rocco</n> <email>sad@dcs.ed</email>

<org>Firenze</org> </vcard>

<email>denicola@dsi.unifi</email> =======

</vcard> <xcard><vcard>

<vcard> <n>Rocco</n>

<n>Davide</n> <org>Edinburgh</org>

<org>Edinburgh</org> <email>denicola@dcs.ed</email>

<email>sad@dcs.ed</email> </vcard>

</vcard> <vcard>

||||||| egO <n>Davide</n>

<xcard> <org>Bologna</org>

<vcard> <email>Davide@cs.unibo</email>

<n>Rocco</n> </vcard>

<org>Edinburgh</org> >>>>>>> egB

<email>denicola@dcs.ed</email> </xcard>

</vcard>

18/70

We Need A More Abstract View

The problem here is obvious: we want to synchronize our
address books as trees, not as strings of characters.

19/70

Data Model

20/70

Trees

Harmony’s core data model is the simplest we could think
of — unordered, edge-labeled trees with all children of a
node labeled differently.

(I.e., each tree is a partial function from labels to subtrees.)

name 7→
{Roo 7→ {org 7→

{Edinburgh 7→ {email 7→
{deniola�ds.ed 7→ {

21/70

Lists

The list
[v1 . . . vn]

is represented by the tree

*h 7→ v1

*t 7→

*h 7→ v2*t 7→

{

. . . 7→

{*h 7→ vn*t 7→ {

22/70

XML

The XML element

<tag>

subelt1 ... subeltn

</tag>

is represented by the tree

tag 7→

〈subelt1〉
...

〈subeltn〉
[XML with attributes is handled by a slightly more complex
encoding.]

23/70

Back to the Example: Original State

xard 7→

vard 7→

name 7→
[Roo 7→ [org 7→

[Edinburgh 7→ [email 7→
[denoola�ds.ed 7→ [

vard 7→

name 7→
[Davide 7→ [org 7→

[Edinburgh 7→ [email 7→
[sad�ds.ed 7→ [

24/70

Back to the Example: First Variant

xard 7→

vard 7→

name 7→
[Roo 7→ [org 7→

[Firenze 7→ [email 7→
[denoola�dsi.unifi 7→ [

vard 7→

name 7→
[Davide 7→ [org 7→

[Edinburgh 7→ [email 7→
[sad�ds.ed 7→ [

25/70

Back to the Example: Second Variant

xard 7→

vard 7→

name 7→
[Roo 7→ [org 7→

[Edinburgh 7→ [email 7→
[denoola�ds.ed 7→ [

vard 7→

name 7→
[Davide 7→ [org 7→

[Bologna 7→ [email 7→
[Davide�s.unibo 7→ [

26/70

Back to the Example: Merged State

xard 7→

vard 7→

name 7→
[Roo 7→ [org 7→

[Firenze 7→ [email 7→
[denoola�dsi.unifi 7→ [

vard 7→

name 7→
[Davide 7→ [org 7→

[Bologna 7→ [email 7→
[Davide�s.unibo 7→ [

27/70

Alignment

28/70

Alignment

We solved the previous problem by noticing that what first
appeared to be a conflict was actually a problem of
alignment.

alignment
=

deciding which parts of the replicas “correspond”

Alignment is the sine qua non of synchronization.

29/70

Alignment

We solved the previous problem by noticing that what first
appeared to be a conflict was actually a problem of
alignment.

alignment
=

deciding which parts of the replicas “correspond”

Alignment is the sine qua non of synchronization.

But we are not finished dealing with alignment yet...

29/70

Another Alignment Difficulty

Suppose that our second address book happens to get
stored in reverse order...

<xcard><vcard>

<n>Davide</n>

<org>Bologna</org>

<email>Davide@cs.unibo</email>

</vcard>

<vcard>

<n>Rocco</n>

<org>Edinburgh</org>

<email>denicola@dcs.ed</email>

</vcard>

</xcard>

30/70

Alignment Strategies

Two possibilities:

• Global: Compare the parts of the two replicas and
try to come up with a “best alignment” of matching
substructures

• Local: Reorganize both replicas so that the alignment
becomes obvious.

31/70

Approaches to Alignment

Both have pros and cons:
• Global alignment:

• Pro: Better at dealing with inherently “list-structured” data
such as documents

• Con: Heuristic

• Local alignment:
• Pro: Simple

• Con: Sometimes too simple

Past research has focused on global alignment strategies.

In Harmony, we have chosen to explore local strategies
and see how far we can go.

32/70

Back to the Example

Before synchronization, we transform the concrete address
book trees into “bushes” where each address record is
reached by an edge labeled with its name component.

33/70

Transforming Away Ordering

xard 7→

vard 7→

name 7→
[Davide 7→ [org 7→

[Bologna 7→ [email 7→
[Davide�s.unibo 7→ [

vard 7→

name 7→
[Roo 7→ [org 7→

[Edinburgh 7→ [email 7→
[denoola�ds.ed 7→ [

34/70

Transforming Away Ordering

xard 7→

vard 7→

Davide 7→

org 7→
[Bologna 7→ [email 7→

[Davide�s.unibo 7→ [

vard 7→

Roo 7→

org 7→
[Edinburgh 7→ [email 7→

[denoola�ds.ed 7→ [

35/70

Transforming Away Ordering

xard 7→

Davide 7→

org 7→
[Bologna 7→ [email 7→

[Davide�s.unibo 7→ [

Roo 7→

org 7→
[Edinburgh 7→ [email 7→

[denoola�ds.ed 7→ [

36/70

Transforming Away Ordering

xard 7→

Davide 7→

org 7→
[Bologna 7→ [email 7→

[Davide�s.unibo 7→ [

Roo 7→

org 7→
[Edinburgh 7→ [email 7→

[denoola�ds.ed 7→ [

37/70

Transforming Away Ordering

Davide 7→

org 7→
[Bologna 7→ [email 7→

[Davide�s.unibo 7→ [

Roo 7→

org 7→
[Edinburgh 7→ [email 7→

[denoola�ds.ed 7→ [

38/70

Transforming Away Ordering

Davide 7→

org 7→
{Bologna 7→ {email 7→

{Davide�s.unibo 7→ {

Roo 7→

org 7→
{Edinburgh 7→ {email 7→

{denoola�ds.ed 7→ {

39/70

Lenses

Of course, after synchronization, we need our data back
in its original concrete form.

I.e., the reorganization transformation must be “wrapped
around” both sides of the core synchronization engine.
These bi-directional transformations are called lenses.

Sync

Orig

BA

A' B'

40/70

A Programming Language for Lenses

Harmony includes a domain-specific programming
language in which all well-typed expressions denote
“well-behaved” lenses. [See our POPL ’05 paper.]

For this talk, though, let’s concentrate on the
synchronization engine.

41/70

Conflicts

42/70

Conflicts

We have seen that, by changing representation, we can
eliminate a variety of spurious conflicts.

However...

43/70

Some Conflicts are Inevitable

The essence of optimistic replication (and the reason that
it is called optimistic) is that replicas can sometimes be
updated in truly conflicting ways.

44/70

Some Conflicts are Inevitable

The essence of optimistic replication (and the reason that
it is called optimistic) is that replicas can sometimes be
updated in truly conflicting ways.

In the present setting, a conflict occurs when some
subtree of one replica is deleted and the corresponding
subtree of the other replica is modified.

44/70

Dealing with Conflicts

When a conflict occurs, we have an uncomfortable choice:

1. give up persistence

=⇒ synchronization “backs out” changes made by
the user at one of the replicas

2. give up convergence

=⇒ synchronization leaves the replicas unequal

For a state-based synchronizer like Harmony, the second
seems more natural.

45/70

Synchronization Algorithm

46/70

Notation

• names, ranged over by k

• a path p is a sequence of names

• a tree is a finite function from names to trees

• the contents of a tree a at some name k, written
a(k), is either a tree or ⊥

• write T for the set of all trees

• T⊥ = T ∪ {⊥}

47/70

The Archive

We have seen that the synchronizer needs to be told the
“last synchronized state” of the two replicas.

We call this the archive.

Sy n c
Ar c h iv e

48/70

The Archive

In order to synchronize repeatedly, the archive must also
be an output of the synchronization algorithm.

Sy n c
Ar c h iv e

Ar c h iv e

49/70

Synchronization Algorithm (First Try)

sync ∈ (T⊥X × T⊥ × T⊥) −→ (T⊥X × T⊥ × T⊥)

sync(o, a, b) =

if a = b then(a, a, b) – equal replicas: done
else if a = o then (b, b, b) – no change to a: propagate b

else if b = o then (a, a, a) – no change to b: propagate a

else if o = X then (o, a, b) – unresolved conflict
else if a = ⊥ then (X , a, b) – delete/modify conflict
else if b = ⊥ then (X , a, b) – delete/modify conflict
else – proceed recursively...

let (o′(k), a′(k), b′(k)) = sync(o(k), a(k), b(k))

∀k ∈ dom(a) ∪ dom(b)

(o′, a′, b′)

50/70

More Difficulties

Our current synchronization algorithm is a bit too eager:
it will often merge changes in ways that yield mangled
results.

o =
{org 7→

{Edinburgh 7→ {

a =
{org 7→

{INRIA 7→ {

b =
{org 7→

{Bologna 7→ {

a′ = b′ =

{org 7→

{INRIA 7→ {Bologna 7→ {

51/70

More Difficulties

Similarly, suppose we want every address book entry to
contain either an email address or an organization.

• start with a record containing both email and org

• delete email in one replica
• delete org in the other replica
• note that all three variants satisfy

• now synchronize...

52/70

More Difficulties

Similarly, suppose we want every address book entry to
contain either an email address or an organization.

• start with a record containing both email and org

• delete email in one replica
• delete org in the other replica
• note that all three variants satisfy

• now synchronize...

• both deletions get propagated, yielding an ill-formed
result.

52/70

The Role of Schemas

53/70

Schema-Aware Synchronization

A simple way to prevent the synchronizer from returning
ill-formed structures is to tell it not to!

Synchronization algorithm should...

• check output replicas against intended schema

• signal a conflict if either check fails

Formally...

54/70

A Simple Schema-Aware Synchronizer

bettersync(S, o, a, b) =

let (o′, a′, b′) = sync(o, a, b)

in if (a′ 6∈ S) or (b′ 6∈ S)

then (X , a, b) – schema conflict
else (o′, a′, b′)

55/70

Throwing out Baby with Bathwater

This is too coarse-grained: A conflict anywhere will lead to
a synchronization failure everywhere!

We want something more local...

56/70

Final Synchronization Algorithm

sync(S, o, a, b) =

if a = b then(a, a, b) – equal replicas: done
else if a = o then (b, b, b) – no change to a: propagate b

else if b = o then (a, a, a) – no change to b: propagate a

else if o = X then (o, a, b) – unresolved conflict
else if a = ⊥ then (X , a, b) – delete/modify conflict
else if b = ⊥ then (X , a, b) – delete/modify conflict
else – proceed recursively...

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))

∀k ∈ dom(a) ∪ dom(b)

in if (a′ 6∈ S) or (b′ 6∈ S)

then (X , a, b) – schema conflict
else (o′, a′, b′)

57/70

Final Synchronization Algorithm

sync(S, o, a, b) =

if a = b then(a, a, b) – equal replicas: done
else if a = o then (b, b, b) – no change to a: propagate b

else if b = o then (a, a, a) – no change to b: propagate a

else if o = X then (o, a, b) – unresolved conflict
else if a = ⊥ then (X , a, b) – delete/modify conflict
else if b = ⊥ then (X , a, b) – delete/modify conflict
else – proceed recursively...

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))

∀k ∈ dom(a) ∪ dom(b)

in if (a′ 6∈ S) or (b′ 6∈ S)

then (X , a, b) – schema conflict
else (o′, a′, b′)

57/70

Path Consistency

To ensure that we can “project” a schema one a given
name, we need to consider only schemas of a restricted
form.

Definition: A schema S is path consistent iff, for all trees
t, t′ ∈ S and paths p, we have

t(p) =/ ⊥ ∧ t′(p) =/ ⊥ =⇒ t[p 7→ t′(p)] ∈ S,

where t[p 7→ t′(p)] is the tree obtained by replacing the
subtree of t at p by the corresponding subtree of t′.

58/70

Path Consistency

Path-consistent schemas are a “semantic analog” of
single-type tree grammars used in W3C Schema.

The are expressive enough to describe a wide range of
examples.

59/70

Specification of Synchronization

60/70

Specification

A good synchronizer should...

1. Never “back out” changes

2. Never “make up” contents

3. Stop at conflicting paths (leaving replicas in their
current states)

4. Always leave the replicas in a well-typed form

safety conditions

5 Propagate as many changes as possible without
violating above rules

maximality condition

61/70

The (Theoretical) Punchline

Theorem: The final (schema-aware) synchronization
algorithm satisfies all these conditions.
Proof: [See paper.]

62/70

Related Work

63/70

Related Projects

• IceCube
• ongoing project at MSR (Shapiro, Rowstrom, Kemmarek, ...)

• operation-based synchronization middleware

• sophisticated algorithms for finding “best” merges of
operation sequences from different replicas

• Bayou
• late ’90s project at Xerox PARC (Edwards, Mynatt, Petersen,
Spreitzer, Terry, Theimer, ...)

• operation-based

• not as flexible as IceCube, but addressed distribution / scale
issues very seriously

• Unison
• late ’90s project at Penn (Jim, Pierce, Vouillon)

• state-based file synchronizer

• formal specification similar to Harmony’s

64/70

Related work

• Ramsey and Csirmaz
• Careful algebraic specification of a file synchronizer similar to
Unison, in an operation-based style

• LibreSource
• current project at INRIA Lorraine [Molli, Oster, Skaf-Molli,
Imine, etc.]

• basic idea: operation transform
Define, for each pair of operations, op1 and op2, a
transformed version of op1, written T (op1, op2), that
achieves “the same effect” as op1 but makes sense in a
context where op2 has been executed.

65/70

Finishing Up...

66/70

Harmony Status

• Core implementation and several demos running
• universal bookmark synchronizer (Internet Explorer, Mozilla,
Safari, ...)

• synchronizer for calendars in several formats

• (simple) structured text file synchronizer

• bibtex synchronizer

• 2 users :-)

67/70

Planned Demos

• address books

• preference files

• diagrams

• biological database annotations

• slide presentations (Powerpoint, Keynote)

• richer structured documents (Word, LaTeX, DocBook,
etc.)

• What would you like to synchronize??

68/70

Ongoing Work

• public release
[sometime between Tiger and Longhorn :-)]

• multi-replica synchronization
[some preliminary work is described in a recent draft
paper]

• beyond tree-structured data
• hybridizing local and global synchronization techniques to
handle list-structured data

• synchronizing dags [with Sanjeev Khanna and Alan Schmitt]

• synchronizing relational data, sets, bags, etc., etc.

69/70

Acknowledgments

Main collaborators on this work: Nate Foster, Michael
Greenwald, and Alan Schmitt

Other Harmony contributors: Malo Denielou, Owen
Gunden, Sanjeev Khanna, Christian Kirkegaard, Keshav
Kunal, Jonathan Moore, and Zhe Yang

http://www.cis.upenn.edu/∼bcpierce/harmony

70/70

	The Dangers of Replication
	The Dangers of Replication
	The Dangers of Replication
	The Dangers of Replication
	Optimistic Replication
	Advantages of Optimism
	{Challenges of Optimism}
	Synchronizing States vs. Operations
	Tradeoffs
	The Harmony Project
	Running Example
	An XML Address Book
	An Updated Address Book
	Another Update
	Synchronization
	Synchronization: First Try
	Synchronization: First Try
	We Need A More Abstract View
	Data Model
	Trees
	Lists
	XML
	Back to the Example: Original State
	Back to the Example: First Variant
	Back to the Example: Second Variant
	Back to the Example: Merged State
	Alignment
	Alignment
	Another Alignment Difficulty
	Alignment Strategies
	Approaches to Alignment
	Back to the Example
	Transforming Away Ordering
	Transforming Away Ordering
	Transforming Away Ordering
	Transforming Away Ordering
	Transforming Away Ordering
	Transforming Away Ordering
	Lenses
	A Programming Language for Lenses
	Conflicts
	Conflicts
	Some Conflicts are Inevitable
	Dealing with Conflicts
	Synchronization Algorithm
	Notation
	The Archive
	The Archive
	Synchronization Algorithm (First Try)
	More Difficulties
	More Difficulties
	The Role of Schemas
	Schema-Aware Synchronization
	A Simple Schema-Aware Synchronizer
	Throwing out Baby with Bathwater
	Final Synchronization Algorithm
	Path Consistency
	Path Consistency
	Specification of Synchronization
	Specification
	The (Theoretical)
Punchline
	Related Work
	Related Projects
	Related work
	Finishing Up...
	Harmony Status
	Planned Demos
	Ongoing Work
	Acknowledgments

