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Abstract

Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks forsynchro-
nizingdisconnected updates to replicated data. To better understand the issues underlying the design ofgenericand
heterogeneoussynchronizers, we have implemented an experimental framework, called Harmony, that can be used to
build synchronizers for tree-structured data stored in a variety of concrete formats.

We present Harmony’s architecture, formalize its key components (a simple core synchronization algorithm to-
gether with a set of user-defined mappings between diverse concrete data formats and common abstract schemas
suitable for synchronization), and discuss how the framework can be used to synchronize a variety of specific types
of application data by suitable encodings into trees—including sets, records, tuples, relations, and, with some limita-
tions, lists and ordered XML data.
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1 Introduction

Optimistic replication is important in settings where weakconsistency guarantees are an acceptable price to pay
for higher availability and the ability to update data whiledisconnected. These uncoordinated updates must later
besynchronized(or reconciled) by combining non-conflicting updates and recognizing and dealing with conflicting
updates.

Our long-term aim is to develop a generic framework in which high-quality synchronizers for a wide variety
of application data formats can be implemented with minimaleffort. Our progress toward this goal is embodied
in a prototype synchronization framework called Harmony, which focuses on simple edge-labeled trees and offers
only limited support for ordered data. An instance of Harmony that synchronizes multiple calendar formats (Palm
Datebook, Unix ical, and iCalendar) is in daily use within our group; we have also used Harmony to build a “universal
bookmark synchronizer” handling the formats used by several common browsers (Mozilla, Safari, OmniWeb, Internet
Explorer 5, and Camino). Other potential Harmony instancesinclude synchronizers for address books, application
preference files, geneological data (family trees), file systems, structured documents, drawings, slide presentations,
bibliographic databases, and many other forms of semi-structured data.

Some existing synchronizers requiretight couplingbetween a synchronization agent and the application programs
whose data is being synchronized (so that, for example, the synchronizer can see a complete trace of the operations
that the application has performed on each replica of the data, and can propagate changes by undoing and/or replaying
operations of the same sorts). Others adopt aloosely coupledapproach with the goal of synchronizing off-the-shelf
applications that were implemented without replication and synchronization in mind. These synchronizers are likely
to use astate-basedapproach, in which the synchronizer manipulates application data in an external, on-disk repre-
sentation such as XML trees. We adopt the latter approach.

The architecture of Harmony has two major components: (1) a singlesynchronization enginethat takes two current
replicas and a common ancestor (all three represented as trees) as inputs and yields new replicas in which all non-
conflicting changes have been merged, and (2) a collection oflensesthat are used to prepare data for synchronization,
mapping from diverse concrete representations and a commonabstract form. Lenses bear the responsibility for “pre-
aligning” these abstract trees so that the simple recursivetree-walk performed by the synchronization engine will
encounter corresponding substructures at the same moment.This pre-alignment process avoids ann2 explosion of
alignment logic in the heterogeneous setting.

In building Harmony, we have focused a good deal of energy on developing mechanisms that are extremely simple
and easy to formalize. Our experience designing and implementing the popular Unison file synchronizer [3, 29] sug-
gests that these properties are prerequisites for a robust implementation and for avoiding behaviors that may surprise
users—or even damage their data—in subtle boundary cases.

The main topics of this paper are the core synchronization algorithm, its usefulness for synchronizing various
sorts of application data structures, and its precise relation to the rest of the Harmony architecture (the lenses). Our
contributions may be summarized as follows:

• We present (in Section 2) the overall architecture through aseries of small examples.

• We describe the core synchronization algorithm in detail (Sections 3 and 4). This algorithm, though simple, is
carefully crafted to deal sensibly with several basic classes ofconflicts, including (most interestingly) a notion
of “atomicity conflict.”

• We give a concise and rigorous statement of the properties that this algorithm (provably) satisfies (Section 4.3).

• The algorithm places some strong demands of completeness (applicability to a sufficiently large domain) on the
lenses that may validly be used with it. We characterize these requirements precisely and prove that, when used
with suitable lenses, the algorithm is total (Section 5).

Harmony’s domain-specific language for defining lenses, FOCAL, is described in detail in a companion pa-
per [14].

• We show how the algorithm can be used, by varying the encodings performed by lenses, to synchronize a variety
of specific types of application data, including sets, records, tuples, and relations (Section 6).
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Figure 1: Synchronizer Architecture

• We investigate how ordered data such as lists and XML can be handled in Harmony via similar encodings
(Section 7). Our treatment of ordered data is simplistic: inserting or deleting elements anywhere other than at
the end of a list may lead to unintuitive conflicts if changes have also occurred in the other replica. However,
we argue that it is at least safe, in the sense that unintuitivepropagationof changes (much worse than spurious
conflicts) is avoided.

Sections 8 and 9 discuss related and future work.
Some non-goals of the present paper are worth mentioning explicitly. First, our limited treatment of ordered data

is a pragmatic simplification that has allowed us to make progress on other aspects of synchronization. In effect, most
of the burden ofaligningstructures—lining up their common parts—is borne by the lenses that are used to prepare the
structures for synchronization; the synchronizer itself makes only very local decisions based on equality of labels. This
keeps the core algorithm simple and easy to reason about and—more importantly—puts alignment decisions where
they belong (in the hands of users, i.e., lens programmers),at the cost of limiting what can be done with ordered data.
Ultimately, we hope to extend the core synchronization algorithm to handle ordering, incorporating ideas from known
algorithms (see Section 8) for synchronizing various specific forms of ordered data, such as structured text and raw
XML documents. It is not immediately clear, however, how these techniques can be adapted to meet our requirements
of genericity and heterogeneity. For the same reason, we do not deal here with the problem of recognizing when large
substructures have beenmovedin one of the replicas: a move simply shows up as a delete from the old position and a
create in the new position. Finally, we focus on the case where just two replicas are to be synchronized. We conjecture
that most of the structures we introduce will generalize in anatural way to the more realistic case of multi-replica
synchronization, but dealing with many replicas raises additional issues that would overly complicate the discussion
at hand.

2 Architecture

Suppose we begin with a tree representing a small phone book:

O =

{

Pat 7→ 333-4444

Chris 7→ 888-9999

Throughout the paper, we work exclusively with unordered, edge-labeled trees, which we draw sideways to save space.
Each curly brace denotes a tree node, and each “X 7→ ...” denotes a child labeledX. In running text, we add closing
braces to show where trees end. Also, to avoid clutter, when an edge leads to an empty tree, we usually omit the braces,
the 7→ symbol, and the final childless node—e.g., “333-4444” above actually stands for “{333-4444 7→ {}}.”
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We now make two replicas of this structure,A andB, and modify one phone number in each of them:

A =

{

Pat 7→ 333-4444

Chris 7→ 555-6666

B =

{

Pat 7→ 111-2222

Chris 7→ 888-9999

Our synchronization tool takes these three structures as inputs and produce an output structureF that reflects the
changes made to both replicas:

F =

{

Pat 7→ 111-2222

Chris 7→ 555-6666

The original stateO is provided as one of the inputs to the synchronizer so that itcan tell which are the updated parts
of the replicas. In the simple two-replica case that we are considering in this paper, the archive can be maintained
simply by saving a copy of the final merged stateF at the end of each synchronization, to use as theO the next time
the synchronizer is run. (In a multi-replica system, an appropriate “last shared state” would be calculated in some
more complex manner, based on the causal history of the system.) Another point to notice is that only thestatesof
the replicas at the time of synchronization (plus the remembered stateO) are available to the synchronizer: we are
assuming, for the sake of loose coupling, that it has no access to the actual sequence of operations that producedA and
B fromO. Schematically the synchronizer may be visualized as the left-hand picture in Figure 1.

It is possible that some of the changes made to the two replicas are in conflict and cannot be merged. For example,
suppose that, beginning from the same originalO, we change bothPat’s andChris’s phone numbers inA and, inB,
delete the record forChris entirely.

A =

{

Pat 7→ 123-4567

Chris 7→ 555-6666

B =
{

Pat 7→ 333-4444

Clearly, there is no single phone bookF that incorporates both of the changes toChris. At this point, we must choose
between two evils:

1. We can weaken users’ expectations for thepersistenceof their changes to the replicas—i.e., we can decline to
promise that synchronization will never lose or back out anychanges that have explicitly been made to either
replica. For example, here, we might choose to back out the deletion ofChris:

F =

{

Pat 7→ 111-2222

Chris 7→ 555-6666

The user would then be notified of the lost changes and given the opportunity to re-apply them if desired.

2. Alternatively, we can keep persistence and instead give upconvergence—i.e., we can allow the replicas to remain
different after synchronization, propagating just the non-conflicting change toPat’s phone number and leaving
the conflicting information aboutChris untouched in each replica:

A’ =

{

Pat 7→ 123-4567

Chris 7→ 555-6666

B’ =
{

Pat 7→ 123-4567

Again, the user is now notified of the conflict and manually brings the replicas back into agreement by editing
one or both.
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There are arguments for both alternatives. For Harmony, we have chosen the latter—favoring persistence over
convergence—for two reasons. First, it is easier to specifyand reason about, since it avoids making any choices
about which conflicting information to retain and which to back out: it simply leaves those parts of the replicas un-
changed where conflicts are discovered. Second, it gives users the possibility of temporarily ignoring conflicts and
continuing to work, locally, with their replicas. By contrast, if a synchronizer backs out a change that a user has
made locally, then the usermuststop immediately and deal with the situation, or chaos can result. Section 8 discusses
these trade-offs further. With this refinement, the schematic view of the synchronizer looks like the middle picture in
Figure 1.

Our next task is to deal withheterogeneousdata representations. For example, suppose that our two phone book
replicas are stored concretely like this:

A =

{

Pat 7→ 333-4444

Jo 7→ 314-1593

B =























































































ID235 7→



















FirstName 7→ Pat

LastName 7→ Sherman

Phone 7→ 299-7924

City 7→ Sydney

ID923 7→



















FirstName 7→ Chris

LastName 7→ Stephenson

Phone 7→ 555-6666

City 7→ Qwghlm

ID995 7→











FirstName 7→ Alex

LastName 7→ Ical

Phone 7→ 271-8281

The format of the first is as before. The second has a more complex structure, containing some additional information
that, in this example, we are choosing not to synchronize because it cannot be represented in the first replica. (For
the sake of the example, we are assuming that the key field isFirstName and that theLastName field is not
synchronized. The fieldsFirstName, LastName andPhone are required by the concrete format; the others are
optional.) Note that we have deleted the record forChris from replicaA, added a new record forJo to A, and added
a new record forAlex to B.

Before we can synchronize these structures, we need to transform them into a common form. In general, both
structures may need to be transformed to some common “abstract form” different from either; in this example, we can
simply take the abstract schema to be the same as that ofA (andO) and transform justB. To transformB to this form,
some fields need to be suppressed and some need to be renamed; also, a level of structure (theIDnnn edges) needs to
be flattened.

B =

8

>

<

>

:

Chris 7→ 555-6666

Pat 7→ 299-7924

Alex 7→ 271-8281

The results of synchronization are identical abstract replicas:

A′ = B′ =

8

>

<

>

:

Pat 7→ 299-7924

Jo 7→ 314-1593

Alex 7→ 271-8281

Of course, the mapping from concrete to abstract structuresis only half the story: after synchronization, we need to put
our updated replicas back in their original, concrete form.To do this, we need to supply, for each abstraction function,
a correspondingconcretionfunction that, intuitively, inverts its behavior. (More precisely: the concretion function
takes an updated abstract structure and an original concrete structure and returns an updated concrete structure.) We
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call these pairs of abstraction and concretion functionslenses. The architecture now looks like the right-hand picture
in Figure 1. Notice that no lens is applied toO in the picture: we assume that the archive is kept in abstractform.

In the present example, the concretion function mapsB′ (together withB) into the following updated version (B′′)
of B:

B′′ =















































































ID235 7→



















FirstName 7→ Pat

LastName 7→ Sherman

Phone 7→ 299-7924

City 7→ Sydney

ID995 7→











FirstName 7→ Alex

LastName 7→ Ical

Phone 7→ 271-8281

ID999 7→











FirstName 7→ Jo

LastName 7→ UNKNOWN

Phone 7→ 314-1593

Note that theIDnnn label and the requiredLastName field are not available when creating the concrete entry for
Jo in B, so the concretion function must make up some values, hereID999 andUNKNOWN. These points give an
indication of the numerous subtle details that must be handled in the programming of even fairly simple lenses.

The problem of pushing abstract updates down into concrete structures is an instance of the classical problem of
view update[8, 4, 13]. In [14] we discuss this aspect of Harmony in more depth. Our aim here, however, is to describe
an architecturefor synchronization in which lenses are used to map heterogeneous concrete formats into common
abstract ones prior to synchronization and map updated abstract trees back to updated concrete structures after syn-
chronization. This architecture can be instantiated with any solution (or partial solution) to the view update problem,
so long as it satisfies certain constraints, described in Section 5, which guarantee it will “fit properly” with our syn-
chronization algorithm. In our Harmony prototype, we’ve designed and implemented one particular partial solution,
specialized to work with tree-structured data at both the concrete and the abstract level. Our approach is to supply
“Harmony programmers” with a domain-specific language for expressing lenses. In this language, every expression
denotes a lens and all expressible lenses are guaranteed to unambiguously map modifications to the abstract view
to modifications to the underlying concrete view. (More precisely: we can show by construction that all expressible
lenses obey a set of simple laws related to Bancilhon and Spyratos’sview update under constant complementcondition
[4] and isomorphic to Gottlob et al’sdynamic views[13]).

3 Conflicts

We saw in the previous section that the handling of conflicts plays a critical role in the design of a synchronizer.
Before coming to the formal definition of our synchronization algorithm, we need to discuss conflicts in a little more
depth. They come in several specific forms, each of which affects the definition of the synchronization algorithm at a
particular point.

Delete/create conflicts

The simplest form of conflict is a situation where a tree node has been deleted in one replica, while, in the other replica,
a new child has been added to it or to one of its descendants. Insuch cases, there is clearly no way of merging the
changes into a single tree reflecting both. However, thereis a nontrivial question of how close we want to come. For
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example, if the original tree and the current replicas are

O =

(

Pat 7→

(

Phone 7→ 333-4444

URL 7→ here@there.net

A =
n

B =

(

Pat 7→

(

Phone 7→ 222-0000

URL 7→ here@there.net

then it might be argued that, since nothing was changed in thesubtree labeledURL in replicaB and since, in replica
A, this subtree got deleted, the synchronizer should propagate the deletion fromA to B, leavingB’ = {Pat 7→
{Phone 7→ 222-0000}}. While this behavior might be justifiable purely from the point of view of persistence of
changes, we feel that users would be unhappy if synchronization could result in “partly deleted” structures likeB’.
Following Balasubramaniam and Pierce [3], we prefer to regard this case as a conflict at pathA (here, the root); our
synchronization algorithm will return the original replicas unchanged.

Delete/delete conflicts

Another form of conflict occurs when some subtree has been deleted in one replica and one ofits subtrees has been
deleted in the other. For example:

O =

(

Pat 7→

(

Phone 7→ 333-4444

URL 7→ here@there.net

A =
n

B =
n

Pat 7→
n

Phone 7→ 333-4444

The choice to regard this situation as a conflict is not forced—one could argue that, since the changes atA are a superset
of the changes atB, we should just propagate the larger deletion. However, this choice would lead to a somewhat more
complex specification of the algorithm in the next section, so we have chosen here the more conservative alternative
of treating this case as a conflict.

Create/create conflicts

The case in which different structures have been created at the same point in the two replicas is also interesting. For
example:

O =
n

A =
n

Pat 7→
n

Phone 7→ 333-4444

B =
n

Pat 7→
n

URL 7→ here@gone.com

Should this be considered a conflict, or should we merge the new substructures?

A′ = B′ =

(

Pat 7→

(

Phone 7→ 333-4444

URL 7→ here@gone.com

Formally, in contrast to the delete/delete case, it is slightly easierto treat such situations as non-conflicting (treating
them as conflicting requires one additional clause in Definition 4.3). However, on pragmatic grounds, the situation is
unclear: in the applications we have experimented with, we have found many examples where it would be inconvenient
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to have a conflictandmany situations where it would be dangerous not to! Fortunately, the latter class can also be
handled by the mechanism ofatomicity conflicts, which we introduce next. We use@ labels, described below, to
explicitly partition the set of create/create situations into those we should treat as conflicts and those we should not.

Atomicity conflicts

The data structure on which Harmony primitively operates—unordered, edge-labeled trees—lends itself to a very
straightforward recursive-tree-walking synchronization algorithm. For each node, we look at the set of child labels
on each side; the ones that exist only on one side have been created or deleted (depending on the original replica),
and are treated appropriately, taking into account delete/modify conflicts; for the ones that exist on both sides, we
synchronize recursively (this algorithm is described in more detail in Section 4). However, this procedure, as we have
just described it, is too permissive: in some situations, itgives us toofewconflicts! Consider the following example.
(We revert to the fully explicit notation for trees here, to remind the reader that each “leaf value” is really just a label
leading to an empty subtree.)

O =
n

Pat 7→
n

Phone 7→
n

333-4444 7→ {

A =
n

Pat 7→
n

Phone 7→
n

111-2222 7→ {

B =
n

Pat 7→
n

Phone 7→
n

987-6543 7→ {

If we apply the naive synchronization algorithm sketched above to these replicas, we get:

A′ = B′ =

(

Pat 7→

(

Phone 7→

(

111-2222 7→ {

987-6543 7→ {

The subtree labeled333-4444 has been deleted in both replicas, and remains so in bothA’ andB’. The subtree
labeled111-2222 has been created inA, so we can propagate the creation toB’ (there is no question of a create/create
conflict here: this edge was created just inA); similarly, we can propagate the creation of987-6543 toA’. But this is
wrong: as far as the user is concerned, Pat’s phone number waschangedin different ways in the two replicas: what’s
wanted is a conflict. Indeed, if the phonebook schema only allows a single number per person, then the new replica is
not only not what is wanted—it is not even well formed!

We have experimented with many possible mechanisms for preventing this kind of mangling. The one described
below is the one we’ve found to work best in terms of handling all the examples we’ve needed it for, with a single,
fairly intuitive, mechanism.1 Section 9 sketches an idea for a related but more powerful mechanism based on types.

We introduce a special name@, and stipulate that, during synchronization, trees reached by edges labeled@ must
be completely identical; otherwise a conflict is signalledat the parentof @, and synchronization stops. (This is stated
more precisely in Section 4.3.) If an entire subtree must be modified atomically, we simply insert@ as its parent, as
shown in the example below. If some other structure ont must be maintained, we insert@ as a sibling oft, and encode
the structure oft that must be preserved as a subtree of@, and depend upon the local lenses to maintain the necessary

1A review of our earlier attempts may be of interest to some readers. We started by labeling trees with anatomic bit. If a subtree were
atomic then we raised a conflict unless updates occured on only one replica. This definition was too strict. All we needed topreserve was the
structure (the well-formedness) of each replica, but this definition did not allow non-conflicting updates to values in the subtree. At the time, the
only structural property we used in practice was limiting certain trees to a single child; therefore we labeled trees as SINGLETON to enforce that
restriction. Synchronization that resulted in multiple children for such a tree would, instead, raise a conflict. Eventually, we needed richer encodings
and correspondingly more general notions of atomicity conflicts. Our next attempt was to tag a tree,A, atomicby giving it a child@, but only
raise conflicts if the domains (the labels of the immediate children of A) differed between replicas. This was unsatisfying, because it sometimes
discovered conflicts “too late”. For example, we wanted our list encoding to trigger a conflict at the root of the “cons cell” when the head was
modified incompatibly on both archives. However, the conflict was raised at the head, letting the synchronizer inspect the tail and occasionally
generate ill-formed lists. Our solution was to push the conflict one level up the tree (a form of one-deep lookahead). If the domain ofA(@) did not
equal the domain ofB(@), then we triggered the conflict at theparentsof @, namely atA andB. Once again, this resulted in discovering conflicts
“too late” when we looked at richer encodings — if the schema conflict occured two levels deep, we still wanted to trigger the conflict at the root of
the atomic structure. Our current definition cleanly separates the schema definition (an arbitrarily deep representation under the@ child) from the
data (the other children of the root). We rely on the lenses tolocally maintain the consistency between the schema and thedata.
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relationship betweent and@. We show in Section 7 how we can use this to control the synchronizer’s behavior on
complex ordered structures such as lists.

If we insert@ edges above the phone numbers in all three replicas in the example,

O =
n

Pat 7→
n

Phone 7→
n

@ 7→
n

333-4444 7→ {

A =
n

Pat 7→
n

Phone 7→
n

@ 7→
n

111-2222 7→ {

B =
n

Pat 7→
n

Phone 7→
n

@ 7→
n

987-6543 7→ {

then the rule for@ yields a conflict and the sychronizer returns the original replicas unchanged.

4 Synchronization

A key feature of Harmony’s design is that it offers justonealgorithm for actually performing synchronization; the
behavior of the synchronization tool as a whole is tuned for particular applications not by changing the functioning
of this algorithm, but by writing lenses that format concrete application data as abstract trees of a suitable shape. In
particular, lenses can control how the synchronizer behaves by (1) “pre-aligning” information so that, for example,
key fields are moved high in the abstract tree, where they determine the “path” by which records are reached by the
synchronization algorithm, and (2) choosing where to insert @ labels to control the atomicity of synchronization.

After introducing some notation for trees, we describe the core algorithm and relate its behavior to a formal
specification.2 We close the section by establishing some key invariants forsynchronization of structures involving
atomicity.

4.1 Notation

We writeN for the set of character strings andT for the set of unordered, edge-labeled trees whose labels are drawn
from N and where the labels of the immediate children of each node are pairwise distinct.

A tree can be viewed as a partial function from names to other trees; we writet(n) for the immediate subtree of
t labeled with the namen. We writedom(t) for the domain of a treet—i.e. the set of the names of its immediate
children.

Whenn /∈ dom(t), we definet(n) to be the “missing tree”⊥. A replica may be either a tree or⊥. Our synchro-
nization algorithm below takes replicas as inputs and returns replicas as outputs; regarding “missing” as a possible
replica state allows the algorithm to treat creation and deletion uniformly. By convention, we takedom(⊥) = ∅.

The archive that is stored between synchronizations must keep track of where conflicts have occurred. To this end,
we introduce a special “pseudo-tree”X representing a conflict. We writeTX for the set of extended trees that may
containX as a subtree. We writeT⊥ for the setT ∪{⊥} andTX⊥ for the setTX ∪{⊥}; we call the latter setarchives.
We definedom(X ) = {nX}, wherenX is a special name that cannot occur in ordinary trees.

A pathis a sequence of names. We write• for the empty path andp/q for the concatenation of pathsp andq. The
contentsof a tree, replica, or archivet at a pathp, writtent(p), is defined as follows:

t(•) = t

t(p) = X if t = X

t(n/p) = (t(n))(p) if t 6= X andn ∈ dom(t)

t(n/p) = ⊥ if t 6= X andn 6∈ dom(t)

2This section differs from previously circulated manuscripts of this paper in two significant respects: we show explicitly how the result archive
O is calculated by the algorithm, and we have changed the details of the treatment of the@ label to obtain a correct handling of the result archive
in the case of conflicts involving ordered data.
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sync(O, A, B) =
if A = B then (A,A,B) -- equal replicas: done
else if A = O then (B,B,B) -- no change to A: propagate B
else if B = O then (A,A,A) -- no change to B: propagate A
else if O = X then (O,A,B) -- unresolved conflict
else if A = missing then (X,A,B) -- delete/modify conflict
else if B = missing then (X,A,B) -- delete/modify conflict
else if @ in dom(A) and @ not in dom(B)

or @ in dom(B) and @ not in dom(A)
or @ in dom(A) and @ in dom(B) and A(@) != B(@)
then (X,A,B) -- atomicity conflict

else -- else proceed recursively
(O’,A’,B’)

where O’(k),A’(k),B’(k) = sync(O(k),A(k),B(k))
for all k in dom(A) union dom(B)

Figure 2: Core Synchronization Algorithm

In the proofs we often proceed by induction on the height of a tree. We defineheight(⊥) = height(X ) = 0 and
the height of any other tree to beheight(t) = 1 + max({height(t(k)) | k ∈ dom(t)}). Note that the height of the
empty tree (a node with no children) is1, to avoid confusing it with the missing or the conflict tree.

4.2 Synchronization Algorithm

We now describe our synchronization algorithm, depicted inFigure 2. Its general structure is the following: we first
check for trivial cases (replicas being equal to each other or unmodified), then we check for conflicts, and in the general
case we recurse on each child label and combine the results.

In practice, synchronization will be performed repeatedly, with additional updates applied to one or both of the
replicas between synchronizations. To support this, a new archive needs to be constructed by the synchronizer. Its
calculation is straightforward: we use the synchronized version at every path where the replicas agree and insert a
conflict markerX at paths where replicas are in conflict.

Formally, the algorithm takes as inputs an archiveO and two current replicasA andB and outputs a new archive
O′ and two new replicasA′ andB′. Any of the inputs and outputs may be⊥, which stands for a completely missing
(or deleted) replica, and both the input and output archive may contain the special conflict treeX—that is, the type of
sync is TX⊥ × T⊥ × T⊥ → TX⊥ × T⊥ × T⊥.

In the case whereA andB already agree (they are both the same tree or both⊥), they are immediately returned,
and the new archive is set to their value. If one of the replicas is unchanged (equal to the archive), then all the changes
in the other replica can safely be propagated, so we simply return three copies of it as the result replicas and archive.
Otherwise, both replicas have changed, in different ways. In this case, if the archive is a conflict, then the conflict
is preserved andA andB are returned unmodified. If one replica is missing (it has been deleted), then we have a
delete/modify conflictsince the other replica has changed, so we simply return the original archive and replicas.

If both A andB are atomic (i.e., both have a child named@), we check whether their subtrees rooted at@ are
identical. If not, then anatomicity conflictis generated and we return the inputs unchanged. If only one of A and
B is marked atomic, then anatomicity conflictis again signalled (this should never happen if the lenses are written
correctly).

Finally, in the general case, the algorithm recurses. In this case, subtrees under identical names are synchronized
together.
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4.3 Safety and Maximality

We now give a formal specification of the properties we want our synchronization algorithm to satisfy and prove that it
does indeed satisfy them. We follow the basic approach used for specifying the Unison file synchronizer [29], adapting
it to our setting and extending it to describe the generationof the new archive.

Our specification is based on a notion oflocal equivalence, that relates two trees (or replicas or archives) if their
top-level nodes are similar— i.e., roughly, if both are present or both are missing.

4.1 Definition [Local equivalence]: We say that two elements ofTX⊥ are locally equivalent, writtent ∼ t′, iff

• t = t′ = X ; or

• t = t′ = ⊥; or

• t andt′ are proper trees with@ 6∈ dom(t) ∪ dom(t′); or

• t andt′ are proper trees with@ ∈ dom(t) ∩ dom(t′) andt(@) = t′(@).

A first approximation of local equivalence is the presence ofinformation: two trees are locally equivalent iff both
are conflicting, both are missing, or neither is missing. Using this notion of local equivalence, one can prove that two
trees are identical iff they are locally equivalent at all paths. However this definition is too local to capture the notion
of atomicity, which considers not just a node, but a larger structure (the whole subtree below@). Thus our definition
of local equivalence requires the less local constraint either that neither tree be atomic or else that both trees be atomic
and both@ children identical. This results in more conflicts in the case of atomic trees.

4.2 Lemma: The local equivalence relation is an equivalence.

Proof: The definition is obviously reflexive and symmetric. For transitivity, choose anyt, t′, t′′ ∈ TX⊥ such that
t ∼ t′ andt′ ∼ t′′. We showt ∼ t′′ by cases on the local equivalence rule applied to derivet ∼ t′.

• If t = t′ = X , then ast′ ∼ t′′ we must havet′′ = X , hencet ∼ t′′.

• If t = t′ = ⊥, then ast′ ∼ t′′ we must havet′′ = ⊥, hencet ∼ t′′.

• If both t andt′ are proper trees and neither is atomic, then byt′ ∼ t′′, we know thatt′′ is not⊥, is notX , and
cannot be atomic (ast′ is not atomic). Hence we havet ∼ t′′.

• If both t andt′ are atomic andt(@) = t′(@), then byt′ ∼ t′′, we must havet′′ atomic andt′(@) = t′′(@).
Hence we havet ∼ t′′. �

In the following we silently rely on the fact that∼ is an equivalence relation.

4.3 Definition [Conflict]: We say thato, a, andb conflict, writtenconflict(o, a, b), if

((o = X ) ∧ (a 6= b)) ∨ ((a � b) ∧ (o 6= a) ∧ (o 6= b))

Intuitively, a andb conflict if there is a conflict recorded in the archive that hasnot been resolved, or if they are not
locally equivalent and both have changed since the state recorded in the archive. The conflicts described in Section 3,
such as atomicity or delete/delete conflicts, are captured by the definition of local equivalence.

A run of a synchronizer is a six-tuple(o, a, b, o′, a′, b′) of trees, representing the original synchronized state(o),
the states of the two replicas before synchronization(a, b), the new archive(o′), and the states of the replicas after
synchronization(a′, b′).

We now state the properties our synchronizer must satisfy: the result of synchronization must reflect all user
changes, it must not include changes that do not come from either replica, and trees under a conflicting node should
remain untouched.
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4.4 Definition [Local safety]: A run is locally safeiff

1. It never overwrites changes locally:

o � a =⇒ a′ ∼ a

o � b =⇒ b′ ∼ b

2. It never “makes up” content locally:

a � a′ =⇒ b ∼ a′

b � b′ =⇒ a ∼ b′

o′ 6= X =⇒ o′ ∼ a′ ∧ o′ ∼ b′

3. It stops at conflicting paths (leaving replicas in their current states and recording the conflict):

conflict(o, a, b) =⇒ (a′ = a) ∧ (b′ = b) ∧ (o′ = X )

4.5 Definition [Safe run]: A run (o, a, b, o′, a′, b′) is safe, writtensafe(o, a, b, o′, a′, b′), iff for every pathp, the sub-
run (o(p), a(p), b(p), o′(p), a′(p), b′(p)) is locally safe.

4.6 Lemma: The identity run(o, a, b,X , a, b) is safe.

Proof: Let p be a path. We haveX (p) = X . Asa′ = a, b′ = b, ando′ = X , local safety conditions (1,2) are satisfied
at every path. Asa′ = a, b′ = b, ando′ = X , local safety condition (3) is also satisfied at every path. �

4.7 Lemma: Let (o, a, b, o′, a′, b′) be a safe run. For any pathp, the run(o(p), a(p), b(p), o′(p), a′(p), b′(p)) is safe.

Proof: Immediate by definition of safety. �

Of course, safety is not all we want. We also want to insist that a good synchronizer should propagate as many
changes as possible.

4.8 Definition [Maximality]: A safe run(o, a, b, o′, a′, b′) is maximaliff it propagates at least as many changes as
any other safe run, i.e.

∀o′′, a′′, b′′. safe(o, a, b, o′′, a′′, b′′) =⇒

{

∀p. a′′(p) ∼ b′′(p) =⇒ a′(p) ∼ b′(p)

∀p. o′′(p) 6= X =⇒ o′(p) 6= X .

We can now state precisely what we mean by claiming that Harmony’s synchronization algorithm is correct.

4.9 Theorem: If sync(o, a, b) evaluates to(o′, a′, b′), then(o, a, b, o′, a′, b′) is maximal.

Proof: We proceed by induction on the sum of the depth ofo, a, andb, with a case analysis according to the first rule
in the algorithm that applies.

casea = b: We need to show that(o, a, a, a, a, a) is maximal. We first check that it is safe. Letp be a path. Local
safety condition (1) is satisfied sincea′(p) = a(p) ∼ a(p) andb′(p) = a(p) = b(p) ∼ b(p). Local safety
condition (2) is satisfy for the same reasons, and becauseo′(p) = a(p) ∼ a(p) = a′(p) = b′(p). As we have
a = b, we havea(p) ∼ b(p) hence there is no conflict at pathp.

The first condition for maximality is immediate as for all pathsp, a′(p) = a(p) ∼ a(p) = b′(p). The second
condition is also satisfied, sinceo′ = a, hence we haveo′(p) 6= X for all pathsp.
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casea = o: We need to show that(o, o, b, b, b, b) is maximal. We first check that it is safe. Letp be a path. Local
safety condition (1) is satisfied sincea = o andb′ = b. Local safety condition (2) is satisfied sincea′ = b, since
b = b′, and sinceo′ = b = a′ = b′. Finally,o(p), a(p), andb(p) cannot conflict sincea = o ando′ = b 6= X at
all paths.

The first condition for maximality is immediate, sincea′(p) ∼ b′(p) for all pathsp. The second condition is
also satisfied, sinceo′ = b, hence we haveo′(p) 6= X for all pathsp.

caseb = o: Identical to the previous case, inverting the roles ofa andb.

caseo = X : By Lemma 4.6, the run(X , a, b,X , a, b) is safe. We now show that we haveconflict(X , a, b). This is
immediately the case since we know thata 6= b (as the first case of the algorithm did not apply). By safety
condition 3, the only safe run is(X , a, b,X , a, b), hence it is maximal.

casea = ⊥: By lemma 4.6, the run is safe. We now prove that it is maximal. To this end, we first prove that we have
conflict(o, a, b). As no previous rule applies, we must haveb 6= a = ⊥, o 6= a = ⊥, andb 6= o. Sincea = ⊥
andb 6= ⊥, we also havea � b. Hence we haveconflict(o, a, b).

As before, by safety condition 3, the only safe run is(X , a, b,X , a, b), hence it is maximal.

caseb = ⊥: Identical to the previous case, inverting the roles ofa andb.

atomicity conflict case: This run being the identity run, it is safe by lemma 4.6.

To prove maximality, we proceed as in the previous cases, proving that we haveconflict(o, a, b).

Since previous cases of the algorithm are not satistfied, we immediately haveo 6= a ando 6= b. We now prove
thata � b.

First of all, we havea 6= X andb 6= X .

As the previous cases of the algorithm are not satisfied, we havea 6= ⊥ andb 6= ⊥, discarding the second case
of the definition of local equivalence. As we have@ ∈ dom(a) or @ ∈ dom(b) (or both), the third case of the
definition of∼ cannot apply. Finally, in the case where@ ∈ dom(a) ∩ dom(b), as we havea(@) 6= b(@), the
fourth case of the definition cannot apply. Thus we havea � b.

We conclude by local safety condition (3) that the only safe run is the identity run.

recursive case:The induction hypothesis immediately tells us that this runis locally safe at every path except possibly
the root. We now check that it is also locally safe at the root.

We first show thata ∼ b. Since previous cases of the algorithm do not apply, we havea 6= ⊥ andb 6= ⊥. If
neithera nor b is atomic, we havea ∼ b. If one is atomic, then, as the atomicity conflict case of the algorithm
did not apply, so is the other and we havea(@) = b(@), thusa ∼ b.

We now showa ∼ a′, a′ ∼ b′, ando′ ∼ a′. As a′, o′, andb′ are built as the result of the recursive calls, we
havea′ 6= ⊥, b′ 6= ⊥, o′ 6= ⊥, ando′ 6= X (recall the difference between the empty tree and the missing tree).
So these equivalences depend on the atomicity of the input and output of the algorithm. We now consider the
atomicity ofa andb, study the result of the recursive call of the algorithm on the atomic child. We describe
each case as the tuple(ta, tb) meaninga(@) = ta andb(@) = tb.

(⊥,⊥): This case is immediate, as the synchronization under@ yields(⊥,⊥,⊥), hence neithera, a′, b′, noro′

is atomic.

(ta,⊥) and(⊥, tb): This case cannot occur as it is an atomicity conflict.

(ta, tb): Since there was no atomicity conflict, we haveta = tb. Hence synchronization succeeds for the@ child
(using the first branch of the algorithm) and we havea′(@) = a(@) = b(@) = b′(@) = o′(@) = taHence
a ∼ a′ ∼ b′ ∼ o′.
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Similarly, we show thatb ∼ b′ and thato′ ∼ b′.

As a ∼ a′, b ∼ b′, o′ ∼ a′, ando′ ∼ b′, local safety conditions (1,2) are immediately satisfied. Sincea ∼ b, and
sinceo 6= X (otherwise the recursive case of the algorithm would not be reached), there is no conflict at the root
and local safety condition (3) is also satisfied. We concludethat the run is safe.

To conclude, we must also prove that this run is maximal. So let (o, a, b, o′′, a′′, b′′) be another safe run. Letp
be a path.

• If p is not the empty path, then it may be decomposed ask/p′. By induction, the run
(o(k), a(k), b(k), o′(k), a′(k), b′(k)) is maximal. By Lemma 4.7,(o(k), a(k), b(k), o′′(k), a′′(k), b′′(k))
is a safe run. We havea′′(p) = a′′(k/p′) = (a′′(k))(p′), andb′′(p) = b′′(k/p′) = (b′′(k))(p′).

– If a′′(p) ∼ b′′(p), thena′′(p) = (a′′(k))(p′) ∼ (b′′(k))(p′) = b′′(p), hence we have (by maximality
of the run(o(k), a(k), b(k), o′(k), a′(k), b′(k))) that(a′(k))(p′) ∼ (b′(k))(p′), hencea′(p) ∼ b′(p).

– If o′′(p) 6= X , then (o′′(k))(p′) 6= X , hence we have (by maximality of the run
(o(k), a(k), b(k), o′(k), a′(k), b′(k))) that(o′(k))(p′) 6= X , henceo′(p) 6= X .

• Let us now assume thatp is the empty path.

– We havea′ ∼ b′, so the first maximality condition is satisfied at the root.

– We haveo′ 6= X , so the second maximality condition is satisfied at the root. �

4.4 Properties of Atomicity

We next collect some properties that are guaranteed by atomicity and used in our encodings. To this end, we first need
a few additional definitions and lemmas about the synchronization algorithm.

4.10 Lemma: Let o be any archive, leta andb be two replicas different from⊥, and let(o′, a′, b′) = sync(o, a, b).
Theno′, a′, andb′ are all different from⊥.

Proof: We proceed by cases on the clause in the algorithm that applies.

casea = b: In this caseo′ = a′ = a 6= ⊥ ando′ = b′ = b 6= ⊥.

casea = o: In this caseo′ = a′ = b′ = b 6= ⊥.

caseb = o: In this caseo′ = a′ = b′ = a 6= ⊥.

caseo = X : In this caseo′ = X 6= ⊥, a′ = a 6= ⊥, andb′ = b 6= ⊥.

casea = ⊥: Can’t happen (we assumeda 6= ⊥).

caseb = ⊥: Can’t happen.

atomicity conflict case: In this casea′ = a 6= ⊥ andb′ = b 6= ⊥, ando′ = X 6= ⊥.

recursive case:As o′, a′, andb′ are trees explicitly built in this case, they cannot be⊥. �

4.11 Definition [Tree Prefix]: The relation< onT × T is defined as the smallest relation such that:

• {} < t for anyt ∈ T ;

• if dom(t1) = dom(t2) and∀k ∈ dom(t1).t1(k) < t2(k), thent1 < t2.

We write t \ n for the tree{k 7→ t(k) | k ∈ dom(t) \ {n}} whosen child and accompanying subtree have been
removed.

4.12 Lemma: Supposet ∈ T and(o′, a′, b′) = sync(o, a, b). If t < a andt < b, thent < a′ andt < b′.
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Proof: By induction on the size oft. First, we remark that sincet < a andt < b, we havea 6= ⊥ andb 6= ⊥, hence
a′ 6= ⊥ andb′ 6= ⊥ by Lemma 4.10.

The base caset = {} is immediate as neithera′ nor b′ is missing.
For the inductive case, we proceed by cases on the branch of the algorithm used, using the induction hypothesis

only for the recursive branch.

casea = b: Immediate sincea′ = b′ = a = b.

casea = o: Immediate sincea′ = b′ = b.

caseb = o: Immediate sincea′ = b′ = a.

conflict cases: Immediate sincea′ = a andb′ = b.

recursive case:Let k ∈ dom(t). Then we havet(k) < a(k) andt(k) < b(k). Hence by induction we havet(k) <
a′(k) andt(k) < b′(k). Moreover neithera′(k) norb′(k) is missing, hencek ∈ dom(a′) andk ∈ dom(b′).

Let k 6∈ dom(t), thenk 6∈ dom(a′) andk 6∈ dom(b′). By the first branch of the algorithm when synchronizing
underk, we havek 6∈ dom(a′) andk 6∈ dom(b′). Thus we conclude thatdom(a′) = dom(b′) = dom(t), and
thatt < a′ andt < b′. �

4.13 Lemma: Supposea andb are atomic trees such that@ does not occur indom(a(@)) or dom(b(@)), and let
(o′, a′, b′) = sync(o, a, b). If a(@) < a \@ andb(@) < b \@, then we havea′(@) < a′ \@ and eithera′(@) = a(@)
or a′(@) = b(@).

Proof: We proceed by cases on the branch taken by the algorithm.

casea = b: Immediate sincea′ = a.

casea = o: Immediate sincea′ = b.

caseb = o: Immediate sincea′ = a.

conflict cases: Immediate sincea′ = a.

recursive case: In this case we know thata(@) = b(@) = t, hence by synchronizing under the@ child we have
a′(@) = t. If a(@) = {}, then the result is immediate, asa′ is not⊥. Otherwise, we havedom(a(@)) =
dom(a \ @) = dom(b \ @) = D. Let k ∈ D, then we havet(k) < a(k) andt(k) < b(k). By Lemma 4.12,
we havet(k) < a′(k). This also implies thata′(k) 6= ⊥, hencek ∈ dom(a′). Hence we havedom(a(@)) ⊆
dom(a′ \ @). Let k be a name that is neither@ nor in dom(a(@)), thenk 6∈ dom(a) and k 6∈ dom(b),
hence (by the first case of the synchronization algorithm with a(k) = b(k) = ⊥), we havek 6∈ dom(a′).
Hence we havedom(a(@)) = dom(a′ \ @) and for all k ∈ dom(a(@)), (a(@))(k) < (a′ \ @)(k), thus
a′(@) = a(@) < a′ \ @. �

4.14 Lemma: Supposea andb are atomic and(o′, a′, b′) = sync(o, a, b). If a(@) 6= b(@), then eithera′ = a or
a′ = b.

Proof: We proceed by cases on the branch taken by the algorithm.

casea = b: This case cannot arise, sincea(@) 6= b(@).

casea = o: Immediate sincea′ = b.

caseb = o: Immediate sincea′ = a.

conflict cases: Immediate sincea′ = a.

recursive case:This case cannot occur as there is an atomicity conflict. �
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Lemmas 4.13 and 4.14 give us a useful framework for proving that our synchronization algorithm preserves par-
ticular atomic encodings of data structures. That is, assuming that we can make a purelylocal guarantee that any
modification affecting well-formedness of an encoding is reflected by a change to the subtree under@, then synchro-
nization of two instances of an encoded data structure is guaranteed to produce a valid encoded data structure. This
follows because the lemmas, as a pair, prove that the only waythe synchronization algorithm can reach the recursive
branch (the only one in which synchronization can merge pieces ofa andb) is if a(@) = b(@).

5 Putting the Pieces Together

As our approach is parameterized by a lens language that mapsconcrete representations into abstract trees and maps
back synchronized abstract trees into concrete format, we need a way of guaranteeing that a successful run of the
synchronization algorithm produces trees that can be handled by the lens language.

A lensl from some set C of concrete structures to a set A of abstract trees comprises aget function fromC to A
and aput function fromA × C to C. (See [14] for more details.) WriteAX for the subset ofTX formed by taking a
tree fromA and replacing any number of subtrees byX . Write A⊥ for the setA ∪ {⊥} andAX⊥ for AX ∪ {⊥}.

5.1 Definition: The set of treesA is said to beclosed under synchronizationiff, for all o ∈ AX⊥, all a, b ∈ A⊥, and
(o′, a′, b′) = sync(o, a, b), we haveo′ ∈ AX⊥ anda′, b′ ∈ A⊥.

Now, given two concrete setsC1 andC2, a common abstract setA, and lensesl1 from C1 to A andl2 from C2 to
A, if A is closed under synchronization, then we can rest assured that the whole process of applying lenses to concrete
replicas, synchronizing, and using the lenses to put the results back in concrete form will always succeed.

The closure of a given setA under synchronization is often obvious, but this is not always the case. Section 7
explores some interesting examples.

6 The Art of Alignment

When programming specific synchronizers using Harmony, onekey issue consists of choosing a schema for the ab-
stract trees so that our straightforward, tree-walking-by-names synchronization algorithm aligns data structures cor-
rectly. In this section we introduce synchronization-friendly abstract schemas for some commonly encountered data
structures. We elide the details of how to actually construct lenses performing the mappings between diverse con-
crete application formats and the schemas sketched here; Hamony’s domain-specific lens programming language,
FOCAL [14], is one possibility, but the issues here are orthogonalto how lenses are implemented.

Sets

We first consider sets of unstructured values. In this case, alignment only consists of deciding whether a given value
is present in both sets.

Since an unordered, edge-labeled tree may be viewed as a set of children bearing pairwise distinct names, a
synchronization-friendly schema for a set of values simplyis a tree where each value is encoded in the name of a
child: the set with elementsvalue1. . .valuen is encoded as the tree{value1, . . . , valuen}.

Records

A record is a data structure wherefieldspoint to data, and fields should be aligned according to theirnames. In order
to align the data under each field, one simply needs to represent the record as a bush, with each child bearing the name
of a field and pointing to the data:{field1 7→ t1, . . . fieldn 7→ tn}.

Tuples

A tuple may be considered as a record indexed by position. Hence the tuple(t1, t2, t3) may be encoded as the tree
{1 7→ t1;2 7→ t2;3 7→ t3}.
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K A B

k1 a1 b1

k2 a2 b2

can be represented as:

8

>

>

>

>

<

>

>

>

>

:

k1 7→

(

A 7→ a1

B 7→ b1

k2 7→

(

A 7→ a2

B 7→ b2

Figure 3: Representing relations as trees

Relations

Relations, and other data structures consisting of a set of structured elements, present interesting alignment challenges.
Considering a relation as a set of tuples, one needs to identify which tuple of the archive should be associated to which
tuple of each replica. Consider for instance the following relations:

O = {(Pat,333-4444); (Chris, 888-9999)}

A = {(Pat,111-2222); (Chris, 888-9999)}

B = {(Pat,123-4567); (Jo,888-9999)}

If one chooses a schema where tuples are unstructured values, encoding(Pat,333-4444) as a single string such
asPat:333-4444 (using: as a separator so that it is easy to extract the components later), then the result of
synchronization is the tree:

8

>

<

>

:

Pat:111-2222

Pat:123-4567

Jo:888-9999

The surprising duplication of the entry for Pat results fromthe fact that the tuple was considered unstructured, hence
Pat:111-2222 andPat:123-4567 are two independent non-conflicting additions.

A schema-based solution to this issue consists of choosing one attribute that is a key, and encode a relation as a
tree whose children are the key values pointing to a record containing the other attributes, as depicted in Figure 3.

A satisfying representation for our simple example would thus be (for instance forO):
8

<

:

Pat 7→
n

Phone 7→
n

@ 7→ 333-4444

Chris 7→
n

Phone 7→
n

@ 7→ 888-9999

(The phone numbers are atomic to make them values. The synchronization ofO, A, andB hence leads to an atomic
conflict.)

Note that this schema fails if the value of the key is changed,as this change would in fact be interpreted as
a complete deletion and addition of a record. This issue is easily circumvented when every tuple contains a non-
modifiable key, such as a unique identifier.

7 Ordered Structures

The final technical section discusses the treatment of ordered structures such as lists, text, and ordered XML data. A
key observation is that ordered structures come in two distinct flavors: one where the number of elements is variable but
where the absolute position of elements is what matters to the application or user whose data we are synchronizing—
we call theseextensible tuples—and a richer one—full-blownlists—where it is the relative position of the elements that
is significant. For extensible tuples, we can give an abstract schema for which Harmony’s synchronization algorithm
behaves very intuitively. For lists, we must be content withbehavior that issafe—i.e., the synchronizer propagates
changes correctly in a limited range of situations (such as when only one replica has been modified), and in all other
situations it signals a conflict (rather than producing malformed or counter-intuitive results).
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Extensible Tuples

An extensible tuple is an application data structure consisting of an arbitrary-length sequence of elements, on which
the possible “edits” may be thought of as consisting of adding and deleting elements at the end and/or changing the
internals of individual elements. We will write

0

B

B

B

B

@

t1

t2

...

tn

—or, in linear form,(t1 . . . tn)— for the tree representing the extensible tuple with elements t1 throughtn.
One might initially hope that the encoding of ordinary (fixed-width) tuples from the previous section would also

work for extensible tuples. However, in the presence of conflicts, our synchronization algorithm may produce outputs
that do not conform to the abstract schema. For example, if the inputs to the synchronizer are

O =

8

>

>

>

<

>

>

>

:

1 7→ x

2 7→ y

3 7→ z

4 7→ w

A = {

B =

8

>

>

>

<

>

>

>

:

1 7→ x

2 7→ y

3 7→ c

4 7→ w

(i.e., all the elements have been deleted fromA, while the third has been changed inB), then the output will be:

O
′ =

n

3 7→ X

A
′ = {

B
′ =

n

3 7→ c

The synchronization algorithm does not understand (because our abstract schema does not specify) that a tuple with a
third element but no first or second makes no sense.

A better idea is to represent extensible tuples using nestedpairs, as in the standard “cons cell” representation of
lists from Lisp. Roughly, the representation we want is this:

8

>

>

>

<

>

>

>

:

*h 7→ t1

*t 7→

8

>

<

>

:

*h 7→ t2

*t 7→

(

. . . 7→

(

*h 7→ tn

*t

That is, a treet represents an extensible tuple iff it is empty or has exactlytwo children, one named*h and another
named*t, with t(*t) also an extensible tuple. However, we again need to make surethat the structure of the encoding
is preserved by synchronization. Consider, for instance, the following inputs:

O =

(

*h 7→
n

Pat 7→ 333-4444

*t 7→ {

A = {

B =

(

*h 7→
n

Pat 7→ 111-2222

*t 7→ {
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The changes to the first element result in a delete/modify conflict, but the deletion of the remainder successfully
synchronizes, yielding a malformed structure as the new version of replicaB (A′ is equal toA):

B
′ =

n

*h 7→
n

Pat 7→ 111-2222

In order to avoid this problem, the abstract schema for extensible tuples needs to encode the constraint that the domain
of a tree representing a tuple must be treated atomically. Toeach node, we add an@ child describing the local tuple
structure—{@ 7→ {}} for the end of the tuple (i.e., nil) and{@ 7→ {*h,*t}} for internal nodes (cons cells). The
synchronization now results in an atomic conflict at the rootof the tree.

O =

8

>

>

>

>

>

<

>

>

>

>

>

:

@ 7→

(

*h

*t

*h 7→
n

Pat 7→ 333-4444

*t 7→
n

@ 7→ {

A =
n

@ 7→ {

B =

8

>

>

>

>

>

<

>

>

>

>

>

:

@ 7→

(

*h

*t

*h 7→
n

Pat 7→ 111-2222

*t 7→
n

@ 7→ {

In non-conflicting situations, this abstract schema produces the intuitively expected propagation of updates. Consider
for instance the following pre-synchronization state:O = (a; b; c), A = (a; b′; c), andB = (a; b; c′; d). Synchroniza-
tion returns to the expected state[a; b′; c′; d]. We now show that the set of encodings of extensible tuples isclosed
under synchronization.

7.1 Proposition: Let o ∈ TX⊥, leta andb be well-formed encodings of extensible tuples as trees, andlet (o′, a′, b′) =
sync(o, a, b). Thena′ andb′ are also well-formed encodings of extensible tuples.

Proof: A tree representing an extensible tuple is well formed if either it is empty or (i) it has 3 children@, *h,
and*t, (ii) the children of@ are*h and*t, and (iii) the subtree under*t is itself a well-formed extensible tuple.
Without loss of generality, supposea is not longer thanb. We proceed by induction on the length ofa. For the base
case, leta be the empty tuple (i.e., the empty tree). Ifb is also empty, thena′ = b′ = a and we are done. Ifb is
non-empty, it follows thata(@) 6= b(@). By Lemma 4.14, eithera′ = a or a′ = b (and, equivalently for b’), and
again the proposition holds. For the induction case, suppose the proposition holds for alla with length less thann.
By Lemma 4.13a′(@) = a(@) = b(@), guaranteeing thata′(@) is in valid form. Moreover, by the same Lemma,
a′(@) < a′ \@ so thata′ contains both*h and*t. Moreover,a′ cannot contain any other childk, unlessk ∈ dom(a)
or k ∈ dom(b). It remains only to show thata′(*t) is a well-formed extensible tuple. Buta′(*t) is the result of
evaluatingsync(o(*t), a(*t), b(*t)), which is well formed by the induction hypothesis. �

Lists

Ordered data in many applications relies onrelative position. Detecting changes in relative position is a global process
and our synchronization algorithm is essentially local, soour algorithm in its current form is not well-suited to this
form of synchronization. The best we can hope for is to behavesafely—i.e., never to produce mangled or ill-formed
replicas—while propagating changes successfully just in some simple situations where it is absolutely clear what to
do. (Fortunately, these simple situations are common in practice. For example, if a list has been edited only in one
of the replicas—or if just the elements of the list have been edited, without changing the list structure—we can safely
propagate the changes to the other replica.)

The extensible tuple schema proposed above is inadequate for real lists: it may lead to conflicting cases where the
conflict is detected too late. To see why, consider the following example.
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O = [{Pat 7→ 333}; {Chris 7→ 888}]

A = [{Chris 7→ 123}]

B = [{Pat 7→ 333}; {Chris 7→ 888}; {Jo 7→ 314}]

The first element of the list is successfully synchronized, but a delete/modify conflict is detected when synchronizing
the rest of the list. The result of synchronization forB is:

B
′ = [{Chris 7→ 123}; {Chris 7→ 888}; {Jo 7→ 314}]

This result is probably unsatisfactory, since the list now contains two entries forChris.
In order to avoid these cases, we propose an alternative schema, calledatomic list schema, for lists whose relative

order matters. This schema allows the domain of an element ofthe list to be different in both replicas only when the
element and the rest of the list have not changed in one replica. To this end, the atomic child includes the list element
itself, to guarantee that identical elements are synchronized together, as in:
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Intuitively, elements of the list are identified by their domain, and synchronization proceeds until a trivial case applies
(unchanged replica or identical replicas), or when the two replicas disagree on the domain of one element, result-
ing in an atomicity conflict. In the previous example, this would for instance be the case at the very beginning of
synchronization.

We write[t1 . . . tn] for the tree representing the ordered list of elementst1 throughtn.

7.2 Proposition: Let o ∈ TX⊥, let a and b be well-formed encodings of lists as trees, and let(o′, a′, b′) =
sync(o, a, b). Thena′ andb′ are also well formed encodings of lists.

Proof: A list encodingt is well formed if eithert is the empty tree or else (i)t has three children@, *h, and*t, (ii)
dom(t(@)) = {*h,*t}, (iii) t(@)(∗h) < t(*h), and (iv)t(*t) is itself a well-formed list. Without loss of generality,
supposea is not longer thanb. We proceed by induction on the length ofa. For the base case, supposea is the empty
list. If b is also empty, thena′ = b′ = a, and we are done. Ifb is non-empty, it follows thata(@) = ⊥ 6= b(@). By
Lemma 4.14, eithera′ = a or a′ = b (and equivalently for b’), and again the proposition holds.For the induction case,
suppose the proposition holds for alla with length less thann. By Lemma 4.13, eithera′(@) = a(@) ora′(@) = b(@),
both of which are already known to be well-formed subtrees of@ under the encoding of lists. Moreover,a′(@) < a′\@
so by the same lemma,a′ contains both*h and*t, and alsoa′(@)(*h) < a′(*h). (The same is true ofb′.) a′ cannot
contain any other childk, unlessk ∈ dom(a) or k ∈ dom(b). It remains only to show thata′(*t) is a well-formed list.
Buta′(*t) is the result of evaluatingsync(o(*t), a(*t), b(*t)), which is well formed by the induction hypothesis.�

XML

Building on the encoding for lists, it is easy to find an encoding for XML data. The XML element

<tag attr1="val1" ... attrm="valm">
subelt1 ... subeltn

</tag>
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is encoded into a tree of this form:
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The sub-elementssubelt1 to subeltn are placed in alist under a distinguished child named*subelts, pre-
serving their ordering.. Attributes are encoded as unordered children, reflecting their treatment in XML. A leaf of an
XML document—a “parsed character data” element containinga text stringstr—is converted to a tree of the form
{PCDATA -> @ -> str}.

The reader may wonder why, since our goal is to handle XML data, we did not use a form of trees closer to XML’s
data model in the other sections of the paper, avoiding the need for such complex encodings. Indeed, an early version
of Harmony tookorderedtrees as primitive, allowing us to bypass this encoding. However, we discovered that this
extra structure greatly increased the complexity of formalizing and implementing our lens programming language,
FOCAL. On balance, the overall complexity of the system was minimized by making the core data structure as simple
as possible and doing some extra programmingin FOCAL to deal with XML structures in encoded form.

8 Related Work

The Harmony framework combines a core synchronization component and a view update component for dealing with
heterogeneity. The view update language is described in [14], and we refer the reader there for related work. In this
section, we focus mainly on related work on optimistic replication and synchronization.

Harmony is an instance of a large class of systems that perform optimistic replication. The reader is directed to
an excellent article by Saito and Shapiro [36] surveying thearea. In the taxonomy of the survey, Harmony is a multi-
master state-transfer system, recognizing sub-objects and manually resolving conflicts. However, some important
distinctions raised in this paper are not adequately covered in the aforementioned taxonomy.

In particular, Harmony is a generic synchronization framework, with a goal of supporting reconciliation even of
instances of distinct off-the-shelf applications, running on heterogeneous platforms. This goal drives us to an extremely
loose coupling between the synchronizer and the applications it is synchronizing, which in turn motivates our use of
the state-transfer approach. Our goal of synchronizing distinct applications, with different concrete representations of
the shared state, drives us to use lenses to transform our concrete views to abstract trees that are instances of a shared,
per-application, schema. Our desire to use only mechanismsthat are simple to understand and easy to formalize has
led us to experiment with pushing almost the entire burden ofaligning substructures within replicas to the lenses,
which allows us to have a single, simple, generic algorithm for performing synchronization. Independently, we strive
for predictable behavior even when running unsupervised, which leads us to value persistence over convergence. Both
the heterogeneity of our replicas and the state-based approach of our reconciler have led us into under-investigated
areas in the design space of optimistic reconciliation.

Loosely vs. tightly coupled reconcilers

Harmony is a generic framework centered around a loose coupling between the reconciler and the application whose
state is being replicated. The goal of loose coupling led us to use a state-based approach to reconciliation, rather than
an operation-based approach. In general, reconcilers cannot expect to be able to know the operation history if they are
to synchronize off-the-shelf, proprietary applications that have not been constructed to be “synchronization aware.”
In addition, the behavior of a state-based reconciler is much simpler, which makes it easier for users to predict the
outcome of reconciliation.

However, there are also drawbacks to the state-based approach when compared to operation-based architectures.
State-based architectures have less information available at synchronization time; they cannot exploit knowledge of
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temporal sequencing that is available in operation logs. The operation logs can sometimes determine that two mod-
ifications are not in conflict, if one is in the operation history of the other. Further, in a tightly coupled architecture,
the designer can choose to expose operations that encode thehigh-level application semantics. The synchronizer will
then manipulate operations that are close to the actual useroperations. This can preserve a primitive type of atomic-
ity: treating user-level operations as primitives makes itmore likely from the perspective of the user that, even under
conflict, the system will be in a “reasonable” state.

The distinction between state-based and operation-based synchronizers is not black and white: various hybrids
are possible. For example, we can build a state-based systemwith an operation-based core by comparing previous
and current states to obtain a hypothetical (typically, minimal) sequence of operations. But this involves complex
heuristics, which can conflict with our goal of presenting predictable behavior to the user. Similarly, some loosely-
coupled systems can build an operation-based system with a state-transfer core by using an operation log in order to
determine what part of the state to transfer.

One seemingly novel feature of Harmony is that wetransformour data structures several times in the course of
reconciliation. However, a form of tranformation also occurs in some operation-based reconcilers. Operation-based
reconcilers attempt to merge their log of operations in sucha way that, after quiescence, if each replica applies its
merged log to the last synchronized state, then all replicasshare a uniform state. There are, broadly speaking, three
alternatives to merging logs: (1) reorder operations on allreplicas to achieve an identical schedule (c.f. Bayou [10]),
(2) partially reorder operations, exploiting semantic knowledge to leave equivalent sequences unordered (c.f. Ice-
Cube [18]), or (3) perform no reordering, but transform the operations themselves, so that the different schedules
on each different replica all have a uniform result (c.f. [25]). The best schedule is one in which conflicts between
operations are minimized.

The third approach mentioned above, calledoperational transformation, performs transformations as does Har-
mony. However, the nature of the transformations are substantially different: Systems that use operational transfor-
mation (e.g. [7, 28, 38, 24, 17, 25]) transform operations; Harmony transforms local data structures. operational
transformation systems transform concurrent operations to reach convergence, Harmony transforms heterogeneous
concrete formats to align them. We will return to the relationship between operational transformation and Harmony
when we discuss convergence.

Reconciliation Systems

Many other systems support optimistic replicas. Few support heterogeneous replicas, or do much schema-based
pre-alignment, but many have other similarities to our work. Harmony is a generic state-based reconciler that is
parameterized by the lenses that transform each concrete representation to a shared abstract view (and back again).
IceCube [31, 18] is a generic operation-based reconciler, that is parameterized by expressing syntactic/static and
semantic/dynamic ordering constraints between operations. Molli et al [24, 17, 25], have also implemented a generic
operation-based reconciler, using operational transformation. It is parameterized by writing transformation functions
for all operations, satisfying a set of formal conditions. Like Harmony they formally specify the behavior of their
system.

Bengal [11] is operation-based only in the sense that it traps each operation and records it in a log, but in fact it
uses the operation log strictly as an optimization to avoid scanning the entire replica during update detection. Like
Harmony, Bengal is a loosely-coupled synchronizer. It exploits exported OLE/COM hooks, and can extend any
commercial database system that uses OLE/COM hooks to support optimistic replication. However, it is not generic
because it only supports databases, it is not heterogeneousbecause reconciliation can only occur between replicas of
the same database, and it requires users to writeconflict resolversif they want to avoid manually resolving conflicts.

FCDP [19] is intended to be a generic state-based reconcilerparameterized by ad-hoc translations from heteroge-
neous concrete representations to XML and back again. Thereis no formal specification and reconciliation takes place
at “synchronization servers” that are assumed to be more powerful machines permanently connected to the network.
Broadly speaking, FCDP can be considered an instance of the Harmony architecture—but without the formal under-
pinnings. FCDP is less generic (our lens language makes it easier to extend Harmony to new applications), but it is
better able to deal with certain edits to documents than Harmony. However, FCDP is more rigid than Harmony in its
treatment of ordered lists. FCDP fixes a specific semantics for ordered lists—particularly suited for document editing.
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This interpretation may sometimes be problematic, as we sawin Section 7.
File system synchronizers (such as [37, 27, 15, 35, 3, 33]) and PDA synchronizers (such as Palm HotSync), are

not generic, but they do generally share Harmony’s state-based approach.

Convergence and Partial Convergence

Harmony, unlike many reconcilers, does not guarantee convergence in the case of conflicts. A successful run of a
reconciler aims to converge; that is, all of the replicas in the system should eventually reach a uniform state. In the
case of conflicts, reconcilers can choose one of three broad strategies.

• They can resolve conflicts. This is impossible to do in the general case without discarding updates.

• They can converge without resolving the conflict. In other words, they can keep enough information to record
bothconflicting updates, and converge to a single state in which both replicas include the union of the conflicting
updates.

• They can choose to diverge. They can maintain the conflictingupdates locally, only, and not converge until the
conflicts are (manually) resolved.

The first option is clearly undesirable, and most modern reconcilers will not simply discard updates (they follow
a “no lost updates” policy). We note that Harmony, unlike many other reconcilers, chooses the third option (diver-
gence) over the second option (unconditional convergence). Systems such as Ficus [34], Rumor [15], Clique [35],
Bengal [11], and TAL/S5 [24, 17, 25] converge by making additional copies of primitive objects that conflict and
renaming one of the copies. CVS embeds markers in the bodies of files where conflicts occurred. In contrast, systems
such as Harmony and Ice-cube [18] will not reconcile objectsaffected by conflicting updates. Systems that allow
reconciliation to end with divergent replicas have a further choice. They must choose whether to leave the replicas
completely untouched by reconciliation, or to try to achieve partial convergence. Harmony aims for partial conver-
gence. In Section 4 we show that Harmony is amaximal synchronizer, propagating as many changes as possible
without losing any updates.

In practice, the difference between systems that allow divergence and systems that guarantee convergence does
not seem fundamental. However, we find advantages to Harmony’s choice of persistence over convergence from an
engineering point of view.

First, by maintaining divergent replicas, it is easier to make unsupervised reconciliations safer. (Unsupervised
reconciliations seem extremely desirable from the point ofview of system administration. Automation by running
nightly reconciliation scripts as well as triggering reconciliation on dis/connection from/to networks seems required
in order to make administration manageable.) Divergent systems are more likely to allow users to proceed with their
work (the set of replicas may be globally inconsistent, but it is more likely that each replica is locally consistent).
Convergent systems are more likely to force a user to resolvea conflict after aremoteuser initiated a synchronization
attempt. For example, consider conflicting updates to a file with strict syntax requirements (e.g. LaTeX or C). The
convergent system’s attempt to record both updates may result in a file that causes subsequent processing to fail.

Second, divergent systems are less likely to hide conflicts for long periods of time. Divergent systems will continue
to remind the users of the conflict at every synchronization attempt until the conflict is resolved. (Partial convergence
will ensure that the set of such synchronization failures isas small as possible.) Convergent systems will reconcile
without problem after a single completed synchronization attempt, even if conflicts persist, because the replicas willbe
identical. Further, convergent systems must take care thatthe conflicting updates are marked by out-of-band markers
that truly cannot appear in the normal course of system operation, and that cannot disappear without the underlying
conflict simultaneously being resolved.

Finally, a primary goal of Harmony is a clear specification—both formal and intuitive—of its behavior. If we claim
that Harmonyalwaysconverges then we must prove that it converges even if a synchronization attempt is aborted or
preempted before completion. This seems difficult to guarantee, and harder to prove. If we claim that it converges in
only somecases, but not in others, then we must carefully identify thecases in which it converges and which it does
not. Such a complex specification seems likely to be both error-prone and non-intuitive.
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Like Harmony, the synchronizer of Molli et al [24, 17, 25] uses formal specifications to ensure safety, but unlike
Harmony it chooses convergence over persistence of user changes. The advantage of persistence over convergence
is more compelling for Harmony than for Molli’s system, because of our interest in unsupervised runs. As such, it
is important to specify to users precisely when Harmony willdetect conflicts. Molli’s synchronizer is satisfied with
recording multiple conflicting versions in the reconciled replicas, and restricts its specification to the correctnessof its
transformation functions.

At first glance, this may seem preferable to our approach, if one believes that conflicts are far rarer in operational
transformation systems than in Harmony. However, unique, unambiguous operational transforms may not always ex-
ist, increasing the likelihood of conflicts. Operational transforms resolve conflicting schedules by transforming local
operations to undo the local operation, then perform the remote operation, and finally redo the local operation. Un-
derstanding the correct behavior of “undo” in a collaborative environment is a prerequisite to the correct behavior of
operational transformation. Munson and Dewan [26] note that group “undo” may remove the need for a merge capa-
bility in optimistic replication. Prakash and Knister [30]provide formal properties that individual primitive operations
in a system must satisfy in order to be “undo”able in a groupware setting. Abowd and Dix [2] formally describe
thedesiredbehavior of undo (and hence of conflict resolution) in “groupware”, and identify cases in which undo is
fundamentally ambiguous. In such ambiguous cases—even if the primitive operations are defined to have unique undo
functions—the user’s intention cannot be preserved and it is preferable to report conflict than to lose a user’s modifi-
cation. Lechtenborger [20] shows that update operations are undoable by other update operations precisely in the case
that constant complement translators exist.

Heterogeneous Replicas

Unsurprisingly, given our goal of reconciling heterogeneous data sources, we find strong connections with the area of
data integration.

Answering queries from heterogeneous data sources is a well-studied area in the context of data integration [12, 1,
16, 39]. If we consider the (non-trivial) problem of augmenting a data integration system with view update (another
well-studied area—see [14] for a survey), then the result can be used to implement an optimistic replication system
that can reconcile conflicts between heterogeneous data sources3. However, to the best of our knowledge, no generic
synchronizer other than Harmony supports reconciliation over truly heterogeneous replicas. FCDP [19] is designed
to be generic, but the genericity is limited to using XML as the internal representation, and currently only reconciles
documents. Some file synchronizers do support diversity in small ways. For example, file synchronizers often grapple
with different representations of file names and propertieswhen reconciling between two different system types. Some
map between length-limited and/or case insensitive names and their less restrictive counterparts (c.f. [3, 35]). Others
map complex file attributes (e.g. the Macintosh resource fork) into directories, rather than files, on the remote replicas.

Harmony’s emphasis on schema-based pre-alignment is influenced by examples we have found in the context of
data integration where heterogeneity is a primary concern.Alignment, in the form of schema-mapping, has been
frequently used to good effect (c.f. [32, 23, 5, 9, 22]). The goal of alignment, there, is to construct views over
heterogeneous data, much as we transform concrete views into abstract views with a shared schema to make alignment
trivial for the reconciler.

Some synchronizers differ mainly in their treatment of alignment strategy. For example, in terms of features, the
main difference between Unison [3, 29] (which has almost trivial alignment) and CVS, is the comparative alignment
strategy (based on the standard Unix tooldiff3) used by CVS. At this stage, Harmony’s core synchronization
algorithm is deliberately simplistic, particularly with respect to ordered data. As we develop an understanding of how
to integrate more sophisticated alignment algorithms in a generic and principled way, we hope to incorporate them into
Harmony. Of particular interest are diff3 and its XML based descendants, such as Lindholm’s 3DM [21], the work of
Chawathe et al [6], and FCDP [19].

3The inverse does not follow. Harmony cannot be used to both solve the general view update problem and support general dataintegration.
Harmony addresses only a subset of the view-update problem that we found necessary to support reconciliation. Similarly, it can integrate concrete
views only when the common abstract schema and the lenses that transform views from concrete to abstract, and back again,obey closure properties
dictated by our synchronization algorithm.
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9 Future Work

The Harmony prototype currently supports several synchronizer instances. One of these is in daily use within our group
for synchronizing small (hundreds of records) calendar files in various formats. Several others are under development.
We are also working hard on user interface issues.

In the longer term, a number of directions warrant further investigation.
First, the two-replica-plus-archive algorithm and specification that we have given here should be extended to

handle multiple replicas. This extension raises some interesting puzzles concerning the handling of the case where the
replicas are different from the archive but equal to each other. We have a preliminary design for this extension that
seems promising.

Second, we would like to combine the core features of Harmonywith a more sophisticated treatment of ordered
structures, as found, for example, in Lindholm’s 3DM [21], the work of Chawathe et al [6], and FCDP [19]. Similarly,
although the Harmony framework has been designed with unordered tree synchronization in mind, it may be general-
izable to richer structures such as DAGs. We also wonder whether at least parts of the framework could be adapted to
a relational setting.

Finally, we have observed that the create/create and atomicity conflicts discussed in Section 3 can both be viewed
as specific instances of a more general notion ofschema(or type) conflicts. In the final example in that section, for
instance, the atomicity edge encodes the constraint that nodes representing “values” should be single-valued, in the
sense that the result of synchronizing two values will always be two values (i.e., either two copies of the same value,
or a conflict). If we could make the synchronizer aware of the schema of the abstract structures, then we would have a
more direct, and more powerful, way of avoiding these situations and many others.
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