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Abstract

Increased reliance on optimistic data replication hasddalirgeoning interest in tools and frameworks $gnchro-
nizingdisconnected updates to replicated data. To better uadersiie issues underlying the desigrgehericand
heterogeneousynchronizers, we have implemented an experimental framewalled Harmony, that can be used to
build synchronizers for tree-structured data stored inreetaof concrete formats.

We present Harmony's architecture, formalize its key congmis (a simple core synchronization algorithm to-
gether with a set of user-defined mappings between divenserete data formats and common abstract schemas
suitable for synchronization), and discuss how the franmkwan be used to synchronize a variety of specific types
of application data by suitable encodings into trees—iticlg sets, records, tuples, relations, and, with somedimit
tions, lists and ordered XML data.



1 Introduction

Optimistic replication is important in settings where weansistency guarantees are an acceptable price to pay
for higher availability and the ability to update data whilssconnected. These uncoordinated updates must later
be synchronizedor reconciled by combining non-conflicting updates and recognizing aedlidg with conflicting
updates.

Our long-term aim is to develop a generic framework in whiéghkguality synchronizers for a wide variety
of application data formats can be implemented with miniefédrt. Our progress toward this goal is embodied
in a prototype synchronization framework called Harmonfjol focuses on simple edge-labeled trees and offers
only limited support for ordered data. An instance of Hargntmat synchronizes multiple calendar formats (Palm
Datebook, Unix ical, and iCalendar) is in daily use withiimr gooup; we have also used Harmony to build a “universal
bookmark synchronizer” handling the formats used by séweramon browsers (Mozilla, Safari, OmniWeb, Internet
Explorer 5, and Camino). Other potential Harmony instaneelkide synchronizers for address books, application
preference files, geneological data (family trees), fildesys, structured documents, drawings, slide presengtion
bibliographic databases, and many other forms of semétsired data.

Some existing synchronizers requiight couplingbetween a synchronization agent and the application pnogra
whose data is being synchronized (so that, for example ythehsonizer can see a complete trace of the operations
that the application has performed on each replica of theg, daid can propagate changes by undoing and/or replaying
operations of the same sorts). Others adolpioaely couple@pproach with the goal of synchronizing off-the-shelf
applications that were implemented without replicatiod agpnchronization in mind. These synchronizers are likely
to use astate-base@pproach, in which the synchronizer manipulates appticadiata in an external, on-disk repre-
sentation such as XML trees. We adopt the latter approach.

The architecture of Harmony has two major components: (ljglessynchronization enginhat takes two current
replicas and a common ancestor (all three representedess fxe inputs and yields new replicas in which all non-
conflicting changes have been merged, and (2) a collectiteneéghat are used to prepare data for synchronization,
mapping from diverse concrete representations and a comabeiract form. Lenses bear the responsibility for “pre-
aligning” these abstract trees so that the simple recutsdeewalk performed by the synchronization engine will
encounter corresponding substructures at the same momikist pre-alignment process avoids ah explosion of
alignment logic in the heterogeneous setting.

In building Harmony, we have focused a good deal of energyemeldping mechanisms that are extremely simple
and easy to formalize. Our experience designing and impiéintethe popular Unison file synchronizer [3, 29] sug-
gests that these properties are prerequisites for a rabptmentation and for avoiding behaviors that may surprise
users—or even damage their data—in subtle boundary cases.

The main topics of this paper are the core synchronizatigardahm, its usefulness for synchronizing various
sorts of application data structures, and its preciseioglab the rest of the Harmony architecture (the lenses). Our
contributions may be summarized as follows:

e We present (in Section 2) the overall architecture througérées of small examples.

e We describe the core synchronization algorithm in detaic{®ns 3 and 4). This algorithm, though simple, is
carefully crafted to deal sensibly with several basic @dassfconflicts including (most interestingly) a notion
of “atomicity conflict.”

e \We give a concise and rigorous statement of the propertigtits algorithm (provably) satisfies (Section 4.3).

e The algorithm places some strong demands of completengsisc@bility to a sufficiently large domain) on the
lenses that may validly be used with it. We characterizegheguirements precisely and prove that, when used
with suitable lenses, the algorithm is total (Section 5).

Harmony’s domain-specific language for defining lensescAL, is described in detail in a companion pa-
per [14].

e We show how the algorithm can be used, by varying the encegiagormed by lenses, to synchronize a variety
of specific types of application data, including sets, rdsptuples, and relations (Section 6).
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Figure 1: Synchronizer Architecture

e We investigate how ordered data such as lists and XML can hdl&éa in Harmony via similar encodings
(Section 7). Our treatment of ordered data is simplistiseiting or deleting elements anywhere other than at
the end of a list may lead to unintuitive conflicts if changeaséalso occurred in the other replica. However,
we argue that it is at least safe, in the sense that uningyitnpagationof changes (much worse than spurious
conflicts) is avoided.

Sections 8 and 9 discuss related and future work.

Some non-goals of the present paper are worth mentioninlgcilyp First, our limited treatment of ordered data
is a pragmatic simplification that has allowed us to make egjon other aspects of synchronization. In effect, most
of the burden o&ligning structures—Ilining up their common parts—is borne by theéarthat are used to prepare the
structures for synchronization; the synchronizer itsedkas only very local decisions based on equality of labdigss T
keeps the core algorithm simple and easy to reason about rode-tmportantly—puts alignment decisions where
they belong (in the hands of users, i.e., lens programmer)e cost of limiting what can be done with ordered data.
Ultimately, we hope to extend the core synchronizationiym to handle ordering, incorporating ideas from known
algorithms (see Section 8) for synchronizing various djefidrms of ordered data, such as structured text and raw
XML documents. It is not immediately clear, however, howsthéechniques can be adapted to meet our requirements
of genericity and heterogeneity. For the same reason, wetdeaal here with the problem of recognizing when large
substructures have bearovedn one of the replicas: a move simply shows up as a delete fnemld position and a
create in the new position. Finally, we focus on the case &/ust two replicas are to be synchronized. We conjecture
that most of the structures we introduce will generalize imatural way to the more realistic case of multi-replica
synchronization, but dealing with many replicas raisestadthl issues that would overly complicate the discussion
at hand.

2 Architecture

Suppose we begin with a tree representing a small phone book:

o Pat — 333- 4444
N Chris — 888-9999

Throughoutthe paper, we work exclusively with unordereggeslabeled trees, which we draw sideways to save space.
Each curly brace denotes a tree node, and eAch:“...” denotes a child labeleH. In running text, we add closing
braces to show where trees end. Also, to avoid clutter, whextlge leads to an empty tree, we usually omit the braces,
the— symbol, and the final childless node—e.@33- 4444” above actually stands fo{333- 4444 — {}}”



We now make two replicas of this structufeandB, and modify one phone number in each of them:

A Pat — 333- 4444
N Chris — 555-6666

B Pat — 111-2222
N Chris — 888-9999

Our synchronization tool takes these three structures@msgsrand produce an output structlireéhat reflects the
changes made to both replicas:

Chris — 555-6666

The original stat®is provided as one of the inputs to the synchronizer so tteatrittell which are the updated parts
of the replicas. In the simple two-replica case that we aresickering in this paper, the archive can be maintained
simply by saving a copy of the final merged stktat the end of each synchronization, to use agQltlee next time
the synchronizer is run. (In a multi-replica system, an appate “last shared state” would be calculated in some
more complex manner, based on the causal history of themsystenother point to notice is that only ttstatesof
the replicas at the time of synchronization (plus the remenet stateO) are available to the synchronizer: we are
assuming, for the sake of loose coupling, that it has no adodbe actual sequence of operations that prodaced
B from O. Schematically the synchronizer may be visualized as fivdénd picture in Figure 1.

Itis possible that some of the changes made to the two reieain conflict and cannot be merged. For example,
suppose that, beginning from the same origBake change botRat 's andChr i s’s phone numbers iA and, inB,
delete the record fathr i s entirely.

_— {Pat'—>111—2222

A _ [Pat—123-4567
N Chris — 555-6666
B — {Pat s 333- 4444

Clearly, there is no single phone boBlthat incorporates both of the change€to i s. At this point, we must choose
between two evils:

1. We can weaken users’ expectations for leesistencef their changes to the replicas—i.e., we can decline to
promise that synchronization will never lose or back out elngnges that have explicitly been made to either
replica. For example, here, we might choose to back out thetide of Chr i s:

F - Pat — 111-2222
~ |Chris— 555- 6666
The user would then be natified of the lost changes and givenpportunity to re-apply them if desired.

2. Alternatively, we can keep persistence and instead giv®nvergence-i.e., we can allow the replicas to remain
different after synchronization, propagating just the4eonflicting change t&at 's phone number and leaving
the conflicting information abowghr i s untouched in each replica:

o [Pat 1234567
N Chri s — 555- 6666
B = {Pat s 123- 4567

Again, the user is now notified of the conflict and manuallysi the replicas back into agreement by editing
one or both.



There are arguments for both alternatives. For Harmony, axe lthosen the latter—favoring persistence over
convergence—for two reasons. First, it is easier to spewily reason about, since it avoids making any choices
about which conflicting information to retain and which tackaut: it simply leaves those parts of the replicas un-
changed where conflicts are discovered. Second, it gives tise possibility of temporarily ignoring conflicts and
continuing to work, locally, with their replicas. By constaif a synchronizer backs out a change that a user has
made locally, then the useruststop immediately and deal with the situation, or chaos canlteSection 8 discusses
these trade-offs further. With this refinement, the schenvaw of the synchronizer looks like the middle picture in
Figure 1.

Our next task is to deal witheterogeneoudata representations. For example, suppose that our tweegdhmok
replicas are stored concretely like this:

A =

Pat — 333-4444
Jo — 314-1593

Fi r st Nane — Pat
Last Nane — Sher nan
Phone +— 299- 7924
Cty — Sydney
FirstName — Chris
B = | D923 s Last Name — St ephenson
Phone +— 555- 6666
Cty — Quhlm
Fi r st Nane — Al ex
| D995 — ¢ Last Nanme — | cal
Phone — 271- 8281

| D235 —

The format of the first is as before. The second has a more exsplicture, containing some additional information
that, in this example, we are choosing not to synchronizalmse it cannot be represented in the first replica. (For
the sake of the example, we are assuming that the key fidid ist Nane and that the_ast Nane field is not
synchronized. The fieldsi r st Name, Last Name andPhone are required by the concrete format; the others are
optional.) Note that we have deleted the recorddor i s from replicaA, added a new record fdro to A, and added

a new record foAl ex to B.

Before we can synchronize these structures, we need tddranghem into a common form. In general, both
structures may need to be transformed to some common “ab&iren” different from either; in this example, we can
simply take the abstract schema to be the same as tlegarfdO) and transform jusB. To transfornB to this form,
some fields need to be suppressed and some need to be renmmealjevel of structure (theDnnn edges) needs to
be flattened.

Chri s — 555- 6666
B = Pat +— 299- 7924

Al ex — 271-8281
The results of synchronization are identical abstracticapi

Pat — 299- 7924
AN = B = Jo — 314- 1593
Al ex — 271- 8281

Of course, the mapping from concrete to abstract structsie@dy half the story: after synchronization, we need to put
our updated replicas back in their original, concrete fofmdo this, we need to supply, for each abstraction function,
a correspondingoncretionfunction that, intuitively, inverts its behavior. (Moreqmisely: the concretion function
takes an updated abstract structure and an original censtretcture and returns an updated concrete structure.) We



call these pairs of abstraction and concretion functlenses The architecture now looks like the right-hand picture
in Figure 1. Notice that no lens is applied@in the picture: we assume that the archive is kept in absfvatt.
In the present example, the concretion function nB{ggogether withB) into the following updated versioiB()
of B:
Fi r st Name — Pat

Last Nane — Sher nan
Phone — 299- 7924
C ty — Sydney
Fi r st Nane — Al ex

| D995 — ¢ Last Name — | cal
Phone — 271- 8281
Fi rst Nane — Jo

| D999 — ¢ Last Nanme — UNKNOAN
Phone — 314- 1593

| D235 —

B/I —

Note that thd Dnnn label and the requiredast Nane field are not available when creating the concrete entry for
Jo in B, so the concretion function must make up some values, hB8®9 and UNKNOWN. These points give an
indication of the numerous subtle details that must be heghidl the programming of even fairly simple lenses.

The problem of pushing abstract updates down into conctetetsres is an instance of the classical problem of
view updatd8, 4, 13]. In [14] we discuss this aspect of Harmony in monetdeOur aim here, however, is to describe
an architecturefor synchronization in which lenses are used to map hetemmes concrete formats into common
abstract ones prior to synchronization and map updatedagbs$tees back to updated concrete structures after syn-
chronization. This architecture can be instantiated with golution (or partial solution) to the view update problem
so long as it satisfies certain constraints, described itide8, which guarantee it will “fit properly” with our syn-
chronization algorithm. In our Harmony prototype, we'vesidgged and implemented one particular partial solution,
specialized to work with tree-structured data at both thecoete and the abstract level. Our approach is to supply
“Harmony programmers” with a domain-specific language fqressing lenses. In this language, every expression
denotes a lens and all expressible lenses are guaranteedntbiguously map modifications to the abstract view
to modifications to the underlying concrete view. (More jgely: we can show by construction that all expressible
lenses obey a set of simple laws related to Bancilhon andapy/sview update under constant complemeodition
[4] and isomorphic to Gottlob et aldynamic view$13]).

3 Conflicts

We saw in the previous section that the handling of conflitdyga critical role in the design of a synchronizer.
Before coming to the formal definition of our synchronizatedgorithm, we need to discuss conflicts in a little more
depth. They come in several specific forms, each of whictceffihe definition of the synchronization algorithm at a
particular point.

Delete/create conflicts

The simplest form of conflictis a situation where a tree naakelieen deleted in one replica, while, in the other replica,
a new child has been added to it or to one of its descendantuichn cases, there is clearly no way of merging the
changes into a single tree reflecting both. However, tleeaenontrivial question of how close we want to come. For



example, if the original tree and the current replicas are

Phone — 333- 4444
0] = Pat —

URL — her e@ her e. net
A = {
B _ Pat s Phone — 222- 0000

URL — her e@ her e. net

then it might be argued that, since nothing was changed isub#&ee labeletRL in replicaB and since, in replica
A, this subtree got deleted, the synchronizer should prdpaba deletion fromA to B, leavingB' = {Pat +—
{Phone — 222- 0000}}. While this behavior might be justifiable purely from the piodf view of persistence of
changes, we feel that users would be unhappy if synchrooizabuld result in “partly deleted” structures lilg .
Following Balasubramaniam and Pierce [3], we prefer to mdfais case as a conflict at path(here, the root); our
synchronization algorithm will return the original re@g&unchanged.

Delete/delete conflicts

Another form of conflict occurs when some subtree has beetatkln one replica and one ib$ subtrees has been
deleted in the other. For example:

Phone — 333- 4444
(@] = Pat —

URL — here@ her e. net
A = {
B — {Pat - {Phone — 333- 4444

The choice to regard this situation as a conflict is not foreede could argue that, since the changesante a superset

of the changes &, we should just propagate the larger deletion. Howeves ghoice would lead to a somewhat more
complex specification of the algorithm in the next sectiamyw® have chosen here the more conservative alternative
of treating this case as a conflict.

Create/create conflicts

The case in which different structures have been creatdwaame point in the two replicas is also interesting. For
example:

0 - |
A = {Pat — {Pnone - 333- 4444
B = {Pat — {URL — here@one. com

Should this be considered a conflict, or should we merge tihvesnestructures?

, , Phone — 333- 4444
A = B = Pat —
URL — her e@one. com

Formally, in contrast to the delete/delete case, it is fijgbasierto treat such situations as non-conflicting (treating
them as conflicting requires one additional clause in Dédimi.3). However, on pragmatic grounds, the situation is
unclear: in the applications we have experimented with, aveiound many examples where it would be inconvenient



to have a conflicand many situations where it would be dangerous not to! Forelpathe latter class can also be
handled by the mechanism afomicity conflicts which we introduce next. We use labels, described below, to
explicitly partition the set of create/create situatiom®ithose we should treat as conflicts and those we should not.

Atomicity conflicts

The data structure on which Harmony primitively operatesierdered, edge-labeled trees—lends itself to a very
straightforward recursive-tree-walking synchronizatagorithm. For each node, we look at the set of child labels
on each side; the ones that exist only on one side have beatedrer deleted (depending on the original replica),
and are treated appropriately, taking into account detetdify conflicts; for the ones that exist on both sides, we
synchronize recursively (this algorithm is described irengbetail in Section 4). However, this procedure, as we have
just described it, is too permissive: in some situationgivies us todew conflicts! Consider the following example.
(We revert to the fully explicit notation for trees here, @nind the reader that each “leaf value” is really just a label
leading to an empty subtree.)

o = {Pat — {Phone — {333- 4444 — {
A = {Pat - {Phone - {111- 2222 1 {
8 = {Pat— {Phone— {987-6543~ {

If we apply the naive synchronization algorithm sketcheohatto these replicas, we get:

AN = B = Pat — < Phone — 111-2222 4
987- 6543 — {

The subtree labele833- 4444 has been deleted in both replicas, and remains so inAothndB’ . The subtree
labeledl11- 2222 has been created & so we can propagate the creatiomto(there is no question of a create/create
conflict here: this edge was created jusfnsimilarly, we can propagate the creatiord&®7- 6543 to A’ . But this is
wrong: as far as the user is concerned, Pat’s phone numbethaagedn different ways in the two replicas: what’s
wanted is a conflict. Indeed, if the phonebook schema onbyvalla single number per person, then the new replica is
not only not what is wanted—it is not even well formed!

We have experimented with many possible mechanisms foeptigg this kind of mangling. The one described
below is the one we've found to work best in terms of handlihghee examples we've needed it for, with a single,
fairly intuitive, mechanisnt. Section 9 sketches an idea for a related but more powerfuhamsm based on types.

We introduce a special nantg and stipulate that, during synchronization, trees reditlyeedges labele@ must
be completely identical; otherwise a conflict is signalédhe parenbf @, and synchronization stops. (This is stated
more precisely in Section 4.3.) If an entire subtree must bdified atomically, we simply insef® as its parent, as
shown in the example below. If some other structure onust be maintained, we insé®tas a sibling ot, and encode
the structure of that must be preserved as a subtre@pénd depend upon the local lenses to maintain the necessary

1A review of our earlier attempts may be of interest to someleem We started by labeling trees with atomic bit If a subtree were
atomic then we raised a conflict unless updates occured gnome replica. This definition was too strict. All we neededpteserve was the
structure (the well-formedness) of each replica, but teinition did not allow non-conflicting updates to valuestie subtree. At the time, the
only structural property we used in practice was limitingtaia trees to a single child; therefore we labeled treesIHSEETON to enforce that
restriction. Synchronization that resulted in multiplél@fen for such a tree would, instead, raise a conflict. Evaliy, we needed richer encodings
and correspondingly more general notions of atomicity écisfl Our next attempt was to tag a treg, atomicby giving it a child @, but only
raise conflicts if the domains (the labels of the immediaitddm of A) differed between replicas. This was unsatisfying, beeatisometimes
discovered conflicts “too late”. For example, we wanted @trdncoding to trigger a conflict at the root of the “cons’celhen the head was
modified incompatibly on both archives. However, the conflies raised at the head, letting the synchronizer inspectathand occasionally
generate ill-formed lists. Our solution was to push the écindine level up the tree (a form of one-deep lookahead).eldbmain ofA(@) did not
equal the domain aB(@), then we triggered the conflict at tparentsof @, namely atd and B. Once again, this resulted in discovering conflicts
“too late” when we looked at richer encodings — if the schewaflict occured two levels deep, we still wanted to trigger ¢onflict at the root of
the atomic structure. Our current definition cleanly sejgaréhe schema definition (an arbitrarily deep represemtathder the@ child) from the
data (the other children of the root). We rely on the lensédsdally maintain the consistency between the schema anditae



relationship betweenand@. We show in Section 7 how we can use this to control the symibheo's behavior on
complex ordered structures such as lists.
If we insert@ edges above the phone numbers in all three replicas in thepaa

o = {pat — {Phone — {@~ {333-4444 — {
A = {pat —{Phone {@ {111-2202 {
B = {Pat . {Phone — {@ - {987- 6543 — {

then the rule for@ yields a conflict and the sychronizer returns the originalicas unchanged.

4 Synchronization

A key feature of Harmony’s design is that it offers juste algorithm for actually performing synchronization; the
behavior of the synchronization tool as a whole is tuned fotipular applications not by changing the functioning
of this algorithm, but by writing lenses that format conerapplication data as abstract trees of a suitable shape. In
particular, lenses can control how the synchronizer behhyg1) “pre-aligning” information so that, for example,
key fields are moved high in the abstract tree, where theyméte the “path” by which records are reached by the
synchronization algorithm, and (2) choosing where to in@éabels to control the atomicity of synchronization.

After introducing some notation for trees, we describe thee algorithm and relate its behavior to a formal
specificatior?. We close the section by establishing some key invariantsyfochronization of structures involving
atomicity.

4.1 Notation

We write N for the set of character strings afidfor the set of unordered, edge-labeled trees whose lab=drawn
from NV and where the labels of the immediate children of each naglparwise distinct.

A tree can be viewed as a partial function from names to otleest we write(n) for the immediate subtree of
t labeled with the name. We writedom(t) for the domain of a treé—i.e. the set of the names of its immediate
children.

Whenn ¢ dom(t), we definet(n) to be the “missing tree’L. A replicamay be either a tree ar. Our synchro-
nization algorithm below takes replicas as inputs and nstueplicas as outputs; regarding “missing” as a possible
replica state allows the algorithm to treat creation anetitst uniformly. By convention, we takéom(_L) = (.

The archive that is stored between synchronizations megt tack of where conflicts have occurred. To this end,
we introduce a special “pseudo-tre&”representing a conflict. We writgy for the set of extended trees that may
containX as a subtree. We writE, forthe setl’ U{_L} andTx, forthe setl’y U{_L}; we call the latter sedrchives
We definedom(X) = {nx}, whereny is a special name that cannot occur in ordinary trees.

A pathis a sequence of names. We wrétéor the empty path ang/q for the concatenation of pathsandg. The
contentof a tree, replica, or archiveat a pattp, writtent(p), is defined as follows:

t(e) =1t

tip) =X ift=2X
t(n/p) = (t(n))(p) if t £ X andn € dom(t)
t(n/p) =1 if t # X andn ¢ dom(t)

2This section differs from previously circulated manustsipf this paper in two significant respects: we show expfitcibw the result archive
O is calculated by the algorithm, and we have changed thelslefaihe treatment of the label to obtain a correct handling of the result archive
in the case of conflicts involving ordered data.



sync(Q, A B) =

if A=Bthen (A A B) -- equal replicas: done

else if A= Othen (B,B,B) -- no change to A: propagate B
else if B=Othen (A AA -- no change to B: propagate A
else if O= Xthen (O A B) -- unresol ved conflict

else if A= mnmissing then (X A B) -- delete/nmodify conflict

else if B = missing then (X A B) -- delete/nmodify conflict

else if @in don(A) and @not in dom B)
or @in domB) and @not in don(A)
or @in domA) and @in donm(B) and A(@ !'= B(@
then (X, A B) -- atomicity conflict
el se -- else proceed recursively
(O,A,B)
where O (k), A (k),B (k) = sync(Q(k), A(k), B(k))
for all k in dom(A) union don(B)

Figure 2: Core Synchronization Algorithm

In the proofs we often proceed by induction on the height aéa.tWe definéieight (L) = height(X) = 0 and
the height of any other tree to Beight(t) = 1 + max({height(t(k)) | k € dom(¢)}). Note that the height of the
empty tree (a node with no children)iisto avoid confusing it with the missing or the conflict tree.

4.2 Synchronization Algorithm

We now describe our synchronization algorithm, depicteBligure 2. Its general structure is the following: we first
check for trivial cases (replicas being equal to each othenmodified), then we check for conflicts, and in the general
case we recurse on each child label and combine the results.

In practice, synchronization will be performed repeatedligh additional updates applied to one or both of the
replicas between synchronizations. To support this, a mehivee needs to be constructed by the synchronizer. Its
calculation is straightforward: we use the synchronizedioa at every path where the replicas agree and insert a
conflict markerX’ at paths where replicas are in conflict.

Formally, the algorithm takes as inputs an archivand two current replicad and B and outputs a new archive
O’ and two new replicagl’ and B’. Any of the inputs and outputs may be which stands for a completely missing
(or deleted) replica, and both the input and output archigg oontain the special conflict tréé—that is, the type of
sync iSTXl XT| xT| =Ty xT| xT,.

In the case wherd and B already agree (they are both the same tree or hdththey are immediately returned,
and the new archive is set to their value. If one of the replisainchanged (equal to the archive), then all the changes
in the other replica can safely be propagated, so we simplyrr¢hree copies of it as the result replicas and archive.
Otherwise, both replicas have changed, in different wagsthis case, if the archive is a conflict, then the conflict
is preserved andl and B are returned unmodified. If one replica is missing (it hasbeeleted), then we have a
delete/modify conflictince the other replica has changed, so we simply returnrigimal archive and replicas.

If both A and B are atomic (i.e., both have a child name} we check whether their subtrees rootediaare
identical. If not, then ammtomicity conflictis generated and we return the inputs unchanged. If only éntand
B is marked atomic, then astomicity conflictis again signalled (this should never happen if the lensesvatten
correctly).

Finally, in the general case, the algorithm recurses. kdhise, subtrees under identical names are synchronized
together.

10



4.3 Safety and Maximality

We now give a formal specification of the properties we wamtsynchronization algorithm to satisfy and prove that it
does indeed satisfy them. We follow the basic approach wegpécifying the Unison file synchronizer [29], adapting
it to our setting and extending it to describe the generaifdhe new archive.

Our specification is based on a notionle¢al equivalencethat relates two trees (or replicas or archives) if their
top-level nodes are similar— i.e., roughly, if both are preor both are missing.

4.1 Definition [Local equivalence]: We say that two elements @fy, are locally equivalent, writteh~ ¢, iff
e t=t'=X;or
et=t'=1;o0r
e ¢ andt’ are proper trees witlk ¢ dom(t) U dom(t'); or
e ¢ andt’ are proper trees witkh € dom(t) N dom(¢') andt(@) = ¢'(@).

A first approximation of local equivalence is the presencmfafrmation: two trees are locally equivalent iff both
are conflicting, both are missing, or neither is missing.ngghis notion of local equivalence, one can prove that two
trees are identical iff they are locally equivalent at aliisa However this definition is too local to capture the notio
of atomicity, which considers not just a node, but a largercttire (the whole subtree bela®). Thus our definition
of local equivalence requires the less local constraiheeithat neither tree be atomic or else that both trees beéatom
and both@ children identical. This results in more conflicts in theecaatomic trees.

4.2 Lemma: The local equivalence relation is an equivalence.

Proof: The definition is obviously reflexive and symmetric. For Bilimity, choose any, ¢',t” € T« such that
t ~t'andt’ ~ ¢". We showt ~ t"” by cases on the local equivalence rule applied to derive’.

o If t=¢ = X, then ag’ ~ ¢’ we must have’ = X, hencet ~ t".
o Ift=¢ = _1,thenag’ ~ ¢’ we must have” = 1, hencet ~ t".

e If both¢ andt’ are proper trees and neither is atomic, ther’by ¢, we know that” is not L, is notX’, and
cannot be atomic (a$ is not atomic). Hence we have- t".

e If both ¢t and¢’ are atomic and(@Q) = /(@), then byt ~ ¢, we must have” atomic and’(Q) = " (@).
Hence we have ~ t". O

In the following we silently rely on the fact that is an equivalence relation.
4.3 Definition [Conflict]: We say thab, a, andb conflict, writtenconflict(o, a, b), if
((0=X)A(a#b)V ((a=b)A(o#a)A(o#D)

Intuitively, « andb conflict if there is a conflict recorded in the archive that hasbeen resolved, or if they are not
locally equivalent and both have changed since the stateded in the archive. The conflicts described in Section 3,
such as atomicity or delete/delete conflicts, are captuyetiddefinition of local equivalence.

A run of a synchronizer is a six-tuple, a, b, o, a’,b’) of trees, representing the original synchronized state
the states of the two replicas before synchronization), the new archiveo’), and the states of the replicas after
synchronizatioria’, b').

We now state the properties our synchronizer must sati$fg: résult of synchronization must reflect all user
changes, it must not include changes that do not come frdraraiéplica, and trees under a conflicting node should
remain untouched.
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4.4 Definition [Local safety]: A run islocally safeiff

1. It never overwrites changes locally:

!
ora — a ~a

ob = b ~b

2. It never “makes up” content locally:
axwa = b~ad
beb = a~V
o #X = o ~d Nd ~ 1
3. It stops at conflicting paths (leaving replicas in theireat states and recording the conflict):
conflict(o,a,b) = (a' =a) AN (' =b) A (o = X)
4.5 Definition [Safe run]: Arun(o,a,b,0’,d’, V') is safe written safe(o, a, b, o', a’, b'), iff for every pathp, the sub-
run (o(p), a(p), b(p), o' (p), a'(p), b’ (p)) is locally safe.
4.6 Lemma: The identity run(o, a, b, X, a, b) is safe.

Proof: Letpbe apath. We hav& (p) = X. Asa’ = a, b’ = b, ando’ = X, local safety conditions (1,2) are satisfied
at every path. As’ = a, b’ = b, ando’ = X, local safety condition (3) is also satisfied at every path. O

4.7 Lemma: Let (o, a,b,0’,a’,b") be a safe run. For any paghthe run(o(p), a(p), b(p), o' (p), a’(p), b’ (p)) is safe.
Proof: Immediate by definition of safety. O

Of course, safety is not all we want. We also want to insist éhgood synchronizer should propagate as many
changes as possible.

4.8 Definition [Maximality]: A safe run(o,a,b,0’,d’,b’) is maximaliff it propagates at least as many changes as
any other safe run, i.e.

Vp. a”"(p) ~ 0" (p) = d'(p) ~ V' (p)

v/l’ ”,b”. , ,b, I/’ /I,bll —
O safe0 .0, 0% L V) {Vp.o’%p)#x — (p) £ X.

We can now state precisely what we mean by claiming that Hayragynchronization algorithm is correct.
4.9 Theorem: If sync(o, a, b) evaluates tqo’, a’, v’), then(o, a, b, o', a’, b") is maximal.

Proof: We proceed by induction on the sum of the depth,ef, andb, with a case analysis according to the first rule
in the algorithm that applies.

casea = b: We need to show thdb, a, a, a, a, a) is maximal. We first check that it is safe. Lebe a path. Local
safety condition (1) is satisfied sine&(p) = a(p) ~ a(p) andd’(p) = a(p) = b(p) ~ b(p). Local safety
condition (2) is satisfy for the same reasons, and becaligg = a(p) ~ a(p) = d’(p) = V' (p). As we have
a = b, we havea(p) ~ b(p) hence there is no conflict at path

The first condition for maximality is immediate as for all pap, a’(p) = a(p) ~ a(p) = b’ (p). The second
condition is also satisfied, sineé= a, hence we have/(p) # X for all pathsp.
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casea = o: We need to show thdb, 0,b, b, b,b) is maximal. We first check that it is safe. Letbe a path. Local
safety condition (1) is satisfied sinae= 0 andb’ = b. Local safety condition (2) is satisfied sin¢e= b, since
b=1"V,andsince’ = b=d' =10 Finally,o(p), a(p), andb(p) cannot conflict since = o ando’ = b # X at
all paths.

The first condition for maximality is immediate, sina&p) ~ b'(p) for all pathsp. The second condition is
also satisfied, sinc& = b, hence we have'(p) # X for all pathsp.
caseb = o: ldentical to the previous case, inverting the roleg ahdb.

caseo = X: By Lemma 4.6, the rufX’, a,b, X, a,b) is safe. We now show that we havenflict(X,a,b). This is
immediately the case since we know thatZ b (as the first case of the algorithm did not apply). By safety
condition 3, the only safe run (st a, b, X, a, b), hence it is maximal.

caseas = 1: Bylemma 4.6, the run is safe. We now prove that it is maximalthis end, we first prove that we have
conflict(o,a,b). As no previous rule applies, we must havg a = 1,0 # a = L, andb # o. Sincea = L
andb # L, we also have ~ b. Hence we haveonflict(o, a,b).

As before, by safety condition 3, the only safe rufis a, b, X, a, b), hence it is maximal.
caseb = L: ldentical to the previous case, inverting the roles ahdb.

atomicity conflict case: This run being the identity run, it is safe by lemma 4.6.
To prove maximality, we proceed as in the previous casesjmgthat we haveonflict(o, a, b).

Since previous cases of the algorithm are not satistfiednweeidiately have # o ando # b. We now prove
thata ~ b.

First of all, we have: # X andb # X.

As the previous cases of the algorithm are not satisfied, wede& | andb # 1, discarding the second case
of the definition of local equivalence. As we halec dom(a) or @ € dom(b) (or both), the third case of the
definition of ~ cannot apply. Finally, in the case whetiec dom(a) N dom(b), as we have,(Q) # (@), the
fourth case of the definition cannot apply. Thus we have b.

We conclude by local safety condition (3) that the only safeis the identity run.

recursive case: The induction hypothesis immediately tells us that thisisuocally safe at every path except possibly
the root. We now check that it is also locally safe at the root.

We first show thatt ~ b. Since previous cases of the algorithm do not apply, we haye l andb # L. If
neithera norb is atomic, we havea ~ b. If one is atomic, then, as the atomicity conflict case of tige@thm
did not apply, so is the other and we hav@) = b(Q@), thusa ~ b.

We now showe ~ o', @’ ~ b/, ando’ ~ o’. Asd’, o/, andd’ are built as the result of the recursive calls, we
havea' # L,V # 1,0 # 1, ando’ # X (recall the difference between the empty tree and the ngjssae).
So these equivalences depend on the atomicity of the inglibatput of the algorithm. We now consider the
atomicity of e andb, study the result of the recursive call of the algorithm oadbomic child. We describe
each case as the tugle,, t,) meaningu(@) = ¢, andb(Q) = .

(L, 1): This case isimmediate, as the synchronization umdgields (L, L, 1), hence neithet, o’, &, noro’
is atomic.
(ta, L)and(L,t,): This case cannotoccur as it is an atomicity conflict.

(ta,tp): Since there was no atomicity conflict, we haye= t,. Hence synchronization succeeds for&hehild
(using the first branch of the algorithm) and we hal@) = a(Q) = b(Q@Q) = b'(Q) = o' (@) = t,Hence

a~a ~b ~0o.
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Similarly, we show thab ~ o' and that' ~ b'.

Asa~ad',b~1, o ~d,ando’ ~ V', local safety conditions (1,2) are immediately satisfigdc&a ~ b, and
sinceo # X (otherwise the recursive case of the algorithm would noelaehed), there is no conflict at the root
and local safety condition (3) is also satisfied. We concthdéthe run is safe.

To conclude, we must also prove that this run is maximal. S@le:, b, 0", a”, V") be another safe run. Let
be a path.

e If p is not the empty path, then it may be decomposedki#@g’. By induction, the run
(o(k),a(k),b(k),o (k),ad'(k),b'(k)) is maximal. By Lemma 4.7(0(k), a(k),b(k), 0" (k),a” (k),b" (k))
is a safe run. We havwe’(p) = a”(k/p") = (a”(k))(p"), andd” (p) = b"(k/p’) = (" (k))(p).

— If a’(p) ~ v'(p), thena”(p) = (a’(k))(p") ~ (b"(k))(p") = b"(p), hence we have (by maximality
of the run(o(k), a(k), b(k). o' (k), a' (k), ' (k) that (a'(k))(p') ~ (b'(k))(p'), henced (p) ~ b'(p).
—If o"(p) # X, then (0o"(k))(p') # X, hence we have (by maximality of the run

(o(k), a(k), b(k), o' (), d(k), V' (k))) that(o'(k))(p') # X, hence'(p) # X.

e Let us now assume thatis the empty path.

— We haver’ ~ ¥, so the first maximality condition is satisfied at the root.
— We haver’ # X, so the second maximality condition is satisfied at the root. O

4.4 Properties of Atomicity

We next collect some properties that are guaranteed by eityrand used in our encodings. To this end, we first need
a few additional definitions and lemmas about the synchatioia algorithm.

4.10 Lemma: Let o be any archive, let andb be two replicas different from., and let(o’, a’,b’) = sync(o, a, b).
Theno', o/, andb’ are all different fromL.

Proof: We proceed by cases on the clause in the algorithm that applie

casea = b: Inthiscase’ =a' =a# Lando =V =b# L.

casea = o: Inthiscase =a' =V =b# 1.

caseb = o: Inthiscase =a' =0 =a # L.

caseo = X: Inthiscase/ =X # 1,d' =a# L,andb =b # 1.

caseqs = 1: Can’'thappen (we assumed#~ ).

caseb = 1: Can't happen.

atomicity conflict case: Inthiscaser’ = a # L andd’ = b # L,ando’ = X # L.

recursive case:As o/, a’, andd’ are trees explicitly built in this case, they cannotlbe O

4.11 Definition [Tree Prefix]: The relation< onT x T is defined as the smallest relation such that:
o {} <tforanyteT;
o if dom(t1) = dom(t2) andvk € dom(t1).t1(k) < t2(k), thent; < to.

We writet \ n for the tree{k — ¢(k) | k € dom(¢) \ {n}} whosen child and accompanying subtree have been
removed.

4.12 Lemma: Supposeé € T and(o’,a’,b’) = sync(o, a,b). If t < aandt < b, thent < o’ andt < ¥'.
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Proof: By induction on the size of First, we remark that sinde< « andt < b, we haven # | andb # L, hence
a’ # 1L andd’ # 1 by Lemma 4.10.

The base case= {} is immediate as neither nord’ is missing.

For the inductive case, we proceed by cases on the brancle aelgbrithm used, using the induction hypothesis
only for the recursive branch.

casea = b: Immediate sinca’ = b’ = a = b.
casea = o: Immediate since’ = b’ = b.

caseb = o: Immediate since’ = v’ = a.

conflict cases: Immediate since’ = a andb’ = b.

recursive case:Let k € dom(t). Then we have(k) < a(k) andt(k) < b(k). Hence by induction we hawgk) <
a’'(k) andt(k) < o' (k). Moreover neithet/ (k) norb/(k) is missing, hencé € dom(a’) andk € dom(b').

Letk ¢ dom(t), thenk & dom(a’) andk ¢ dom(b'). By the first branch of the algorithm when synchronizing
underk, we havek ¢ dom(a’) andk ¢ dom(b'). Thus we conclude thatom(a’) = dom(b’) = dom(t), and
thatt < o’ andt < ¥'. O

4.13 Lemma: Suppose: andb are atomic trees such th@t does not occur irlom(a(@)) or dom(b(@)), and let
(o',a’,b') = sync(o,a,b). If a(Q) < a\ @andb(Q) < b\ @, then we have'(Q) < ¢’ \ @ and either/(Q) = a(Q)
orad’' (@) = b(@).

Proof: We proceed by cases on the branch taken by the algorithm.
casea = b: Immediate since’ = a.

casea = o: Immediate since’ = b.

caseb = o: Immediate since’ = a.

conflict cases: Immediate since’ = a.

recursive case: In this case we know that(@) = (@) = ¢, hence by synchronizing under tleechild we have
a' (@) = t. If a(@) = {}, then the result is immediate, aSis not L. Otherwise, we havdom(a(@)) =
dom(a\ @) = dom(b\ @) = D. Letk € D, then we have(k) < a(k) andt(k) < b(k). By Lemma 4.12,
we havet(k) < o'(k). This also implies that'(k) # L, hencek € dom(a’). Hence we havdom(a(@)) C
dom(a’ \ @). Letk be a name that is neithé nor in dom(a(@)), thenk ¢ dom(a) andk ¢ dom(b),
hence (by the first case of the synchronization algorithnh witt) = b(k) = L), we havek ¢ dom(a’).
Hence we havelom(a(@)) = dom(a’ \ @) and for allk € dom(a(@)), (a(@))(k) < (a’ \ @Q)(k), thus
ad(Q) =a(@) <d \ Q. O

4.14 Lemma: Suppose: andb are atomic ando’, a’,b") = sync(o,a,b). If a(@) # (@), then either’ = a or
a =b.

Proof: We proceed by cases on the branch taken by the algorithm.
casea = b: This case cannot arise, singéQ) # b(Q).

casea = o: Immediate sinca’ = b.

caseb = o: Immediate since’ = a.

conflict cases:Immediate since’ = a.

recursive case: This case cannot occur as there is an atomicity conflict. O
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Lemmas 4.13 and 4.14 give us a useful framework for proviagjdlur synchronization algorithm preserves par-
ticular atomic encodings of data structures. That is, agsyithat we can make a purelgcal guarantee that any
modification affecting well-formedness of an encoding ftested by a change to the subtree undethen synchro-
nization of two instances of an encoded data structure isagteed to produce a valid encoded data structure. This
follows because the lemmas, as a pair, prove that the onlytleagynchronization algorithm can reach the recursive
branch (the only one in which synchronization can mergegsieta andb) is if a(Q) = b(Q).

5 Putting the Pieces Together

As our approach is parameterized by a lens language that coapsete representations into abstract trees and maps
back synchronized abstract trees into concrete format, eeel @ way of guaranteeing that a successful run of the
synchronization algorithm produces trees that can be kdru} the lens language.

A lensi from some set C of concrete structures to a set A of abstrees tomprises getfunction fromC to A
and aputfunction fromA x C to C. (See [14] for more details.) Writd - for the subset of’y formed by taking a
tree fromA and replacing any number of subtreestyWrite A, forthe setAU { L} andAx, for Ax U {L}.

5.1 Definition: The set of trees! is said to beclosed under synchronizatiaff, forall o € Ay, alla,b € A, and
(o/,a',b') = sync(o,a,b), we have’ € Ay, anda’, b/ € A, .

Now, given two concrete sets; andC;, a common abstract sdt, and lense$, from C; to A andl, from Cs to
A, if Ais closed under synchronization, then we can rest assuaethtinwhole process of applying lenses to concrete
replicas, synchronizing, and using the lenses to put thétegsack in concrete form will always succeed.

The closure of a given set under synchronization is often obvious, but this is not gsvthe case. Section 7
explores some interesting examples.

6 The Art of Alignment

When programming specific synchronizers using Harmony kefyessue consists of choosing a schema for the ab-
stract trees so that our straightforward, tree-walkingabynes synchronization algorithm aligns data structuoes c
rectly. In this section we introduce synchronization4fidéy abstract schemas for some commonly encountered data
structures. We elide the details of how to actually constieicses performing the mappings between diverse con-
crete application formats and the schemas sketched herapiies domain-specific lens programming language,
FocAL [14], is one possibility, but the issues here are orthogtmhbw lenses are implemented.

Sets

We first consider sets of unstructured values. In this cdigmment only consists of deciding whether a given value
is present in both sets.

Since an unordered, edge-labeled tree may be viewed as 4 seildven bearing pairwise distinct names, a
synchronization-friendly schema for a set of values simgplg tree where each value is encoded in the name of a
child: the set with elementsal uel...val uenis encoded as the trdeal uel, ..., val uen}.

Records

A record is a data structure wheffeldspoint to data, and fields should be aligned according to tieines. In order
to align the data under each field, one simply needs to représ=record as a bush, with each child bearing the name
of a field and pointing to the datéfi el d1 —¢;, ... fiel dn—¢,}.

Tuples

A tuple may be considered as a record indexed by position.céldre tuplg(ty, 2, t3) may be encoded as the tree
{1 t1;2 — ;3 — t3}.
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Figure 3: Representing relations as trees

Relations

Relations, and other data structures consisting of a sétuaitared elements, present interesting alignment angdls.
Considering a relation as a set of tuples, one needs to fgerttich tuple of the archive should be associated to which
tuple of each replica. Consider for instance the followielgtions:

O = {(Pat ,333- 4444); (Chri s,888-9999)}
A ={(Pat,111-2222);(Chri s,888-9999)}
B = {(Pat,123-4567);(J0,888-9999)}

If one chooses a schema where tuples are unstructured yvahmsding(Pat ,333- 4444) as a single string such
asPat : 333- 4444 (using: as a separator so that it is easy to extract the componeat}, [ien the result of
synchronization is the tree:

Pat: 111-2222

Pat : 123- 4567

Jo: 888-9999

The surprising duplication of the entry for Pat results fribva fact that the tuple was considered unstructured, hence
Pat: 111- 2222 andPat : 123- 4567 are two independent non-conflicting additions.

A schema-based solution to this issue consists of choosiaatiribute that is a key, and encode a relation as a
tree whose children are the key values pointing to a recanthiing the other attributes, as depicted in Figure 3.

A satisfying representation for our simple example wouldstbe (for instance faD):

Pat {Phone . {@ s 333- 4444
Chris — {Phone — {@ — 888- 9999

(The phone numbers are atomic to make them values. The symizhtion ofO, A, andB hence leads to an atomic
conflict.)

Note that this schema fails if the value of the key is changeadthis change would in fact be interpreted as
a complete deletion and addition of a record. This issue sflyeeircumvented when every tuple contains a non-
modifiable key, such as a unique identifier.

7 Ordered Structures

The final technical section discusses the treatment of eddgtructures such as lists, text, and ordered XML data. A
key observation is that ordered structures come in twordistiavors: one where the number of elements is variable but
where the absolute position of elements is what mattersstapiplication or user whose data we are synchronizing—
we call thesextensible tuples-and a richer one—full-blowlists—where it is the relative position of the elements that
is significant. For extensible tuples, we can give an abssettema for which Harmony’s synchronization algorithm
behaves very intuitively. For lists, we must be content viéhavior that issafe—i.e., the synchronizer propagates
changes correctly in a limited range of situations (such lasnionly one replica has been modified), and in all other
situations it signals a conflict (rather than producing mraifed or counter-intuitive results).
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Extensible Tuples

An extensible tuple is an application data structure coingi®f an arbitrary-length sequence of elements, on which
the possible “edits” may be thought of as consisting of agldind deleting elements at the end and/or changing the
internals of individual elements. We will write

ts

ta

tn
—or, in linear form,(¢; . . . t,,)— for the tree representing the extensible tuple with elesgrthrought,, .
One might initially hope that the encoding of ordinary (fixealth) tuples from the previous section would also

work for extensible tuples. However, in the presence of adsflour synchronization algorithm may produce outputs
that do not conform to the abstract schema. For exampleg ifhuts to the synchronizer are

1—x
2y
3—2z
4 —w

1—x
2y
3—cC
4 —w

(i.e., all the elements have been deleted frdapwhile the third has been changeda), then the output will be:

O’:{3»—>X
=1
B’:{ch

The synchronization algorithm does not understand (becausabstract schema does not specify) that a tuple with a
third element but no first or second makes no sense.
A better idea is to represent extensible tuples using nestid, as in the standard “cons cell” representation of

lists from Lisp. Roughly, the representation we want is:this

*h'—>t1

*h0—>t2

e *t H{...H{*thn
*t

That is, a tree represents an extensible tuple iff it is empty or has exauttychildren, one nametlh and another
namedtt , with ¢(*t ) also an extensible tuple. However, we again need to makelsairthe structure of the encoding
is preserved by synchronization. Consider, for instarfezfdllowing inputs:

o[t {Pat s 333- 4444
*t »—>{
A={

b *hH{Pat — 111- 2222
*t »—>{
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The changes to the first element result in a delete/modifflicgnbut the deletion of the remainder successfully
synchronizes, yielding a malformed structure as the nesioeof replicaB (A’ is equal toA):

B = {*h s {Pat s 111- 2222

In order to avoid this problem, the abstract schema for extdatuples needs to encode the constraint that the domain
of a tree representing a tuple must be treated atomicallgath node, we add am child describing the local tuple
structure—{@ — {}} for the end of the tuple (i.e., nil) ang@ — {*h,*t }} for internal nodes (cons cells). The
synchronization now results in an atomic conflict at the afdhe tree.

*
@l—>{ h
*t
O=10%ho §Pat s 333- 4444

*t'_>

@ {

a={a—{

*

@l—>{ h
*t

B=9%h {pat — 111-2222
@ {

*t —
In non-conflicting situations, this abstract schema predube intuitively expected propagation of updates. Camsid
for instance the following pre-synchronization state= (a; b; c), A = (a;V'; ¢), andB = (a; b; ¢; d). Synchroniza-
tion returns to the expected stdte b’; ¢’; d]. We now show that the set of encodings of extensible tupletosed
under synchronization.

7.1 Proposition: Leto € T, leta andb be well-formed encodings of extensible tuples as treeslefid, a’, b') =
sync(o, a,b). Thena' andd’ are also well-formed encodings of extensible tuples.

Proof: A tree representing an extensible tuple is well formed ifiitit is empty or (i) it has 3 childre@, * h,
and*t, (ii) the children of@ are* h and*t , and (iii) the subtree undén is itself a well-formed extensible tuple.
Without loss of generality, supposds not longer thad. We proceed by induction on the length«f For the base
case, leta be the empty tuple (i.e., the empty tree).blis also empty, them’ = b’ = a and we are done. B is
non-empty, it follows that:(@) # b(@Q). By Lemma 4.14, eithet’ = a or o’ = b (and, equivalently for b’), and
again the proposition holds. For the induction case, suppues proposition holds for all with length less tham.
By Lemma 4.13/(Q) = o(@) = b(@), guaranteeing that'(Q) is in valid form. Moreover, by the same Lemma,
a' (@) < o'\ @ so thata’ contains both h and*t . Moreovera’ cannot contain any other child unlessk € dom(a)

or k € dom(b). It remains only to show that'(*t ) is a well-formed extensible tuple. But(*t) is the result of
evaluatingsync(o(*t ), a(*t ), b(*t )), which is well formed by the induction hypothesis. O

Lists

Ordered data in many applications reliesrelative position Detecting changes in relative position is a global process
and our synchronization algorithm is essentially localpso algorithm in its current form is not well-suited to this
form of synchronization. The best we can hope for is to belsafely—i.e., never to produce mangled or ill-formed
replicas—while propagating changes successfully jusbmessimple situations where it is absolutely clear what to
do. (Fortunately, these simple situations are common intjge For example, if a list has been edited only in one
of the replicas—or if just the elements of the list have bedited, without changing the list structure—we can safely
propagate the changes to the other replica.)

The extensible tuple schema proposed above is inadequatafdists: it may lead to conflicting cases where the
conflict is detected too late. To see why, consider the fatiguexample.
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O = [{Pat — 333};{Chris — 888}]
A=[{Chris ~— 123}]
B = [{Pat — 333};{Chri s — 888};:{Jo — 314}]

The first element of the list is successfully synchronized sbdelete/modify conflict is detected when synchronizing
the rest of the list. The result of synchronization f®is:

B’ = [{Chris — 123};{Chris — 888};{Jo — 314}]

This result is probably unsatisfactory, since the list nontains two entries fochr i s.

In order to avoid these cases, we propose an alternativensgtoalledatomic list schemgdor lists whose relative
order matters. This schema allows the domain of an elemehtdfst to be different in both replicas only when the
element and the rest of the list have not changed in one eeflicthis end, the atomic child includes the list element
itself, to guarantee that identical elements are syncheahiogether, as in:

*
@'_){ h — Pat
*t

*h'—>{Pat — 333
_ * i
0= @H{hHQﬂI’IS
*t
*
t = Y*h {onris — 888
@ {

*t

Intuitively, elements of the list are identified by their daim, and synchronization proceeds until a trivial caseiappl
(unchanged replica or identical replicas), or when the teglicas disagree on the domain of one element, result-
ing in an atomicity conflict. In the previous example, thisulbfor instance be the case at the very beginning of
synchronization.

We write[t; .. .t,] for the tree representing the ordered list of elementhrought,,.

7.2 Proposition: Let o € Tx,, let a andb be well-formed encodings of lists as trees, and(Eta',0') =
sync(o, a,b). Thena’ andd’ are also well formed encodings of lists.

Proof: A list encodingt is well formed if eithert is the empty tree or else (f)has three childre@, * h, and* t, (ii)
dom(t(@)) = {*h,*t }, (iii) t(@Q)(xh) < t(*h), and (iv)t(*t ) is itself a well-formed list. Without loss of generality,
suppose: is not longer tha. We proceed by induction on the lengthafFor the base case, suppases the empty
list. If bis also empty, then’ = b’ = a, and we are done. Ifis non-empty, it follows that(@) = L # b(@). By
Lemma 4.14, eithed’ = a ora’ = b (and equivalently for b’), and again the proposition holésrt the induction case,
suppose the proposition holds for alvith length less than. By Lemma 4.13, either’ (Q) = a(@) ora’(Q) = b(Q@),
both of which are already known to be well-formed subtree® ahder the encoding of lists. Moreovef(@) < o'\ @
so by the same lemma, contains bottt h and*t , and alsa’(@)(* h) < a/(* h). (The same is true df.) o’ cannot
contain any other child, unless: € dom(a) ork € dom(b). It remains only to show that (*t ) is a well-formed list.
Buta’(*t ) is the result of evaluatingync(o(*t ), a(*t ), b(*t )), which is well formed by the induction hypothedis.

XML
Building on the encoding for lists, it is easy to find an enogdior XML data. The XML element
<tag attrl="val 1" ... attrm="val m'>
subeltl ... subeltn
</ tag>
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is encoded into a tree of this form:

attrl—vall

attrm—valm

tag —
subel t1

*subelts —

subel tn

The sub-elementsubel t 1 to subel t n are placed in dist under a distinguished child namé&adubel t s, pre-
serving their ordering.. Attributes are encoded as unediehildren, reflecting their treatment in XML. A leaf of an
XML document—a “parsed character data” element containitext stringst r —is converted to a tree of the form
{ PCDATA -> @-> str}.

The reader may wonder why, since our goal is to handle XML,de¢adid not use a form of trees closer to XML's
data model in the other sections of the paper, avoiding thd f@ such complex encodings. Indeed, an early version
of Harmony tookorderedtrees as primitive, allowing us to bypass this encoding. el we discovered that this
extra structure greatly increased the complexity of fornvad) and implementing our lens programming language,
FocaL. On balance, the overall complexity of the system was miréahiby making the core data structure as simple
as possible and doing some extra programnmngocAL to deal with XML structures in encoded form.

8 Related Work

The Harmony framework combines a core synchronization aorept and a view update component for dealing with
heterogeneity. The view update language is described ip §idl we refer the reader there for related work. In this
section, we focus mainly on related work on optimistic reglion and synchronization.

Harmony is an instance of a large class of systems that peidptimistic replication The reader is directed to
an excellent article by Saito and Shapiro [36] surveyingatea. In the taxonomy of the survey, Harmony is a multi-
master state-transfer system, recognizing sub-objedsv@anually resolving conflicts. However, some important
distinctions raised in this paper are not adequately caMerthe aforementioned taxonomy.

In particular, Harmony is a generic synchronization framekywith a goal of supporting reconciliation even of
instances of distinct off-the-shelf applications, rurgiim heterogeneous platforms. This goal drives us to anrartye
loose coupling between the synchronizer and the applitsiitds synchronizing, which in turn motivates our use of
the state-transfer approach. Our goal of synchronizinipdisapplications, with different concrete represetasiof
the shared state, drives us to use lenses to transform oaraterviews to abstract trees that are instances of a shared,
per-application, schema. Our desire to use only mecharttsmgre simple to understand and easy to formalize has
led us to experiment with pushing almost the entire burdealighing substructures within replicas to the lenses,
which allows us to have a single, simple, generic algoritbnperforming synchronization. Independently, we strive
for predictable behavior even when running unsupervisbi;mleads us to value persistence over convergence. Both
the heterogeneity of our replicas and the state-based agipaf our reconciler have led us into under-investigated
areas in the design space of optimistic reconciliation.

Loosely vs. tightly coupled reconcilers

Harmony is a generic framework centered around a loose tmupétween the reconciler and the application whose
state is being replicated. The goal of loose coupling ledusse a state-based approach to reconciliation, rather than
an operation-based approach. In general, reconcilerstarpect to be able to know the operation history if they are
to synchronize off-the-shelf, proprietary applicatiohatthave not been constructed to be “synchronization atare.
In addition, the behavior of a state-based reconciler ismuimpler, which makes it easier for users to predict the
outcome of reconciliation.

However, there are also drawbacks to the state-based ajpndeen compared to operation-based architectures.
State-based architectures have less information avaiktbdynchronization time; they cannot exploit knowledge of
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temporal sequencing that is available in operation logs deration logs can sometimes determine that two mod-
ifications are not in conflict, if one is in the operation higtof the other. Further, in a tightly coupled architecture,
the designer can choose to expose operations that encoligthkevel application semantics. The synchronizer will
then manipulate operations that are close to the actualoypsgations. This can preserve a primitive type of atomic-
ity: treating user-level operations as primitives makenadre likely from the perspective of the user that, even under
conflict, the system will be in a “reasonable” state.

The distinction between state-based and operation-bgseth®nizers is not black and white: various hybrids
are possible. For example, we can build a state-based sygthnan operation-based core by comparing previous
and current states to obtain a hypothetical (typically,imai) sequence of operations. But this involves complex
heuristics, which can conflict with our goal of presentingdictable behavior to the user. Similarly, some loosely-
coupled systems can build an operation-based system wittteatsansfer core by using an operation log in order to
determine what part of the state to transfer.

One seemingly novel feature of Harmony is that tnansformour data structures several times in the course of
reconciliation. However, a form of tranformation also occin some operation-based reconcilers. Operation-based
reconcilers attempt to merge their log of operations in sueay that, after quiescence, if each replica applies its
merged log to the last synchronized state, then all repbase a uniform state. There are, broadly speaking, three
alternatives to merging logs: (1) reorder operations onegllicas to achieve an identical schedule (c.f. Bayou [10])
(2) partially reorder operations, exploiting semantic \iezlge to leave equivalent sequences unordered (c.f. Ice-
Cube [18]), or (3) perform no reordering, but transform tipemtions themselves, so that the different schedules
on each different replica all have a uniform result (c.f.])25The best schedule is one in which conflicts between
operations are minimized.

The third approach mentioned above, caltgmbrational transformationperforms transformations as does Har-
mony. However, the nature of the transformations are sobatly different: Systems that use operational transfor-
mation (e.g. [7, 28, 38, 24, 17, 25]) transform operationarribny transforms local data structures. operational
transformation systems transform concurrent operatiorrgdch convergence, Harmony transforms heterogeneous
concrete formats to align them. We will return to the relasioip between operational transformation and Harmony
when we discuss convergence.

Reconciliation Systems

Many other systems support optimistic replicas. Few suppeterogeneous replicas, or do much schema-based
pre-alignment, but many have other similarities to our wokkarmony is a generic state-based reconciler that is
parameterized by the lenses that transform each concigtesentation to a shared abstract view (and back again).
IceCube [31, 18] is a generic operation-based reconchet, is parameterized by expressing syntactic/static and
semantic/dynamic ordering constraints between opemtigiolli et al [24, 17, 25], have also implemented a generic
operation-based reconciler, using operational transditiom. It is parameterized by writing transformation fuans

for all operations, satisfying a set of formal conditionskd_Harmony they formally specify the behavior of their
system.

Bengal [11] is operation-based only in the sense that istesgrh operation and records it in a log, but in fact it
uses the operation log strictly as an optimization to ave&hgsing the entire replica during update detection. Like
Harmony, Bengal is a loosely-coupled synchronizer. It eitplexported OLE/COM hooks, and can extend any
commercial database system that uses OLE/COM hooks to gugonistic replication. However, it is not generic
because it only supports databases, it is not heterogebecasse reconciliation can only occur between replicas of
the same database, and it requires users to woitdict resolversf they want to avoid manually resolving conflicts.

FCDP [19] is intended to be a generic state-based recomatameterized by ad-hoc translations from heteroge-
neous concrete representations to XML and back again. Theceformal specification and reconciliation takes place
at “synchronization servers” that are assumed to be moregolimachines permanently connected to the network.
Broadly speaking, FCDP can be considered an instance ofdhmdhy architecture—but without the formal under-
pinnings. FCDP is less generic (our lens language makesiiretm extend Harmony to new applications), but it is
better able to deal with certain edits to documents than ldaymHowever, FCDP is more rigid than Harmony in its
treatment of ordered lists. FCDP fixes a specific semantiasrétered lists—particularly suited for document editing.
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This interpretation may sometimes be problematic, as wers&ection 7.
File system synchronizers (such as [37, 27, 15, 35, 3, 33])RDA synchronizers (such as Palm HotSync), are
not generic, but they do generally share Harmony'’s stasedapproach.

Convergence and Partial Convergence

Harmony, unlike many reconcilers, does not guarantee cgamee in the case of conflicts. A successful run of a
reconciler aims to converge; that is, all of the replicashia system should eventually reach a uniform state. In the
case of conflicts, reconcilers can choose one of three btoatégies.

e They can resolve conflicts. This is impossible to do in theegalcase without discarding updates.

e They can converge without resolving the conflict. In otherdgp they can keep enough information to record
bothconflicting updates, and converge to a single state in whith keplicas include the union of the conflicting
updates.

e They can choose to diverge. They can maintain the conflictpaates locally, only, and not converge until the
conflicts are (manually) resolved.

The first option is clearly undesirable, and most modernmeibers will not simply discard updates (they follow
a “no lost updates” policy). We note that Harmony, unlike mather reconcilers, chooses the third option (diver-
gence) over the second option (unconditional convergerggdtems such as Ficus [34], Rumor [15], Clique [35],
Bengal [11], and TAL/S5 [24, 17, 25] converge by making addil copies of primitive objects that conflict and
renaming one of the copies. CVS embeds markers in the boffidssowvhere conflicts occurred. In contrast, systems
such as Harmony and Ice-cube [18] will not reconcile objedtscted by conflicting updates. Systems that allow
reconciliation to end with divergent replicas have a furttieoice. They must choose whether to leave the replicas
completely untouched by reconciliation, or to try to ackipartial convergenceHarmony aims for partial conver-
gence. In Section 4 we show that Harmony ismaximal synchronizerpropagating as many changes as possible
without losing any updates.

In practice, the difference between systems that allowrdasmce and systems that guarantee convergence does
not seem fundamental. However, we find advantages to Harmohgice of persistence over convergence from an
engineering point of view.

First, by maintaining divergent replicas, it is easier tokmansupervised reconciliations safer. (Unsupervised
reconciliations seem extremely desirable from the pointiefv of system administration. Automation by running
nightly reconciliation scripts as well as triggering reciiation on dis/connection from/to networks seems reeglir
in order to make administration manageable.) Divergertesys are more likely to allow users to proceed with their
work (the set of replicas may be globally inconsistent, bus imore likely that each replica is locally consistent).
Convergent systems are more likely to force a user to resobanflict after aemoteuser initiated a synchronization
attempt. For example, consider conflicting updates to a fith sirict syntax requirements (e.g. LaTeX or C). The
convergent system’s attempt to record both updates mait nesufile that causes subsequent processing to fail.

Second, divergent systems are less likely to hide confliecttohg periods of time. Divergent systems will continue
to remind the users of the conflict at every synchronizatttenapt until the conflict is resolved. (Partial convergence
will ensure that the set of such synchronization failureassmall as possible.) Convergent systems will reconcile
without problem after a single completed synchronizatiterapt, even if conflicts persist, because the replicassill
identical. Further, convergent systems must take caralbatonflicting updates are marked by out-of-band markers
that truly cannot appear in the normal course of system tiparand that cannot disappear without the underlying
conflict simultaneously being resolved.

Finally, a primary goal of Harmony is a clear specificationetibformal and intuitive—of its behavior. If we claim
that Harmonyalwaysconverges then we must prove that it converges even if a sgnigation attempt is aborted or
preempted before completion. This seems difficult to guaegrand harder to prove. If we claim that it converges in
only somecases, but not in others, then we must carefully identifycges in which it converges and which it does
not. Such a complex specification seems likely to be bothrgmane and non-intuitive.

23



Like Harmony, the synchronizer of Molli et al [24, 17, 25] sfermal specifications to ensure safety, but unlike
Harmony it chooses convergence over persistence of usageba The advantage of persistence over convergence
is more compelling for Harmony than for Molli’s system, besa of our interest in unsupervised runs. As such, it
is important to specify to users precisely when Harmony déltect conflicts. Molli's synchronizer is satisfied with
recording multiple conflicting versions in the reconcileglicas, and restricts its specification to the correctoés
transformation functions.

At first glance, this may seem preferable to our approachéflmelieves that conflicts are far rarer in operational
transformation systems than in Harmony. However, unignambiguous operational transforms may not always ex-
ist, increasing the likelihood of conflicts. Operationalrtsforms resolve conflicting schedules by transforminglloc
operations to undo the local operation, then perform theoteraperation, and finally redo the local operation. Un-
derstanding the correct behavior of “undo” in a collabe@gnvironment is a prerequisite to the correct behavior of
operational transformation. Munson and Dewan [26] notedhaup “undo” may remove the need for a merge capa-
bility in optimistic replication. Prakash and Knister [3®ovide formal properties that individual primitive optoas
in a system must satisfy in order to be “undo”able in a groupveetting. Abowd and Dix [2] formally describe
the desiredbehavior of undo (and hence of conflict resolution) in “graape”, and identify cases in which undo is
fundamentally ambiguous. In such ambiguous cases—eviea frimitive operations are defined to have unique undo
functions—the user’s intention cannot be preserved argdptéferable to report conflict than to lose a user's modifi-
cation. Lechtenborger [20] shows that update operatiansagioable by other update operations precisely in the case
that constant complement translators exist.

Heterogeneous Replicas

Unsurprisingly, given our goal of reconciling heterogemedata sources, we find strong connections with the area of
data integration.

Answering queries from heterogeneous data sources is studiled area in the context of data integration [12, 1,
16, 39]. If we consider the (non-trivial) problem of augmriegta data integration system with view update (another
well-studied area—see [14] for a survey), then the resulttEused to implement an optimistic replication system
that can reconcile conflicts between heterogeneous dataeshuHowever, to the best of our knowledge, no generic
synchronizer other than Harmony supports reconciliatiogr aruly heterogeneous replicas. FCDP [19] is designed
to be generic, but the genericity is limited to using XML as thternal representation, and currently only reconciles
documents. Some file synchronizers do support diversitynallsvays. For example, file synchronizers often grapple
with different representations of file names and propewtiesn reconciling between two different system types. Some
map between length-limited and/or case insensitive namesheeir less restrictive counterparts (c.f. [3, 35]). @the
map complex file attributes (e.g. the Macintosh resourde fato directories, rather than files, on the remote reglica

Harmony’s emphasis on schema-based pre-alignment is iafukby examples we have found in the context of
data integration where heterogeneity is a primary concé&dignment, in the form of schema-mapping, has been
frequently used to good effect (c.f. [32, 23, 5, 9, 22]). Thaalgof alignment, there, is to construct views over
heterogeneous data, much as we transform concrete viemeitract views with a shared schema to make alignment
trivial for the reconciler.

Some synchronizers differ mainly in their treatment of miigent strategy. For example, in terms of features, the
main difference between Unison [3, 29] (which has almosidtialignment) and CVS, is the comparative alignment
strategy (based on the standard Unix tdolf f 3) used by CVS. At this stage, Harmony’s core synchronization
algorithm is deliberately simplistic, particularly witkspect to ordered data. As we develop an understanding of how
to integrate more sophisticated alignment algorithms iargegic and principled way, we hope to incorporate them into
Harmony. Of particular interest are diff3 and its XML base$cendants, such as Lindholm’s 3DM [21], the work of
Chawathe et al [6], and FCDP [19].

3The inverse does not follow. Harmony cannot be used to bdtke she general view update problem and support generalintgration.
Harmony addresses only a subset of the view-update probletmve found necessary to support reconciliation. Sinyjlércan integrate concrete
views only when the common abstract schema and the lengdsatiisform views from concrete to abstract, and back agaey closure properties
dictated by our synchronization algorithm.
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9 Future Work

The Harmony prototype currently supports several syndhesimstances. One of these is in daily use within our group
for synchronizing small (hundreds of records) calendas fitevarious formats. Several others are under development.
We are also working hard on user interface issues.

In the longer term, a number of directions warrant furthgestigation.

First, the two-replica-plus-archive algorithm and speaifion that we have given here should be extended to
handle multiple replicas. This extension raises someeastarg puzzles concerning the handling of the case where the
replicas are different from the archive but equal to eaclerotiVe have a preliminary design for this extension that
seems promising.

Second, we would like to combine the core features of Harnwvaitty a more sophisticated treatment of ordered
structures, as found, for example, in Lindholm’s 3DM [2hk work of Chawathe et al [6], and FCDP [19]. Similarly,
although the Harmony framework has been designed with @meddree synchronization in mind, it may be general-
izable to richer structures such as DAGs. We also wondertvehett least parts of the framework could be adapted to
a relational setting.

Finally, we have observed that the create/create and atgroanflicts discussed in Section 3 can both be viewed
as specific instances of a more general notiosabfemaor typg conflicts In the final example in that section, for
instance, the atomicity edge encodes the constraint ttdgsepresenting “values” should be single-valued, in the
sense that the result of synchronizing two values will alsvlag two values (i.e., either two copies of the same value,
or a conflict). If we could make the synchronizer aware of ttteesna of the abstract structures, then we would have a
more direct, and more powerful, way of avoiding these sitmstand many others.
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