
A Logic Your Typechecker Can Count On:

Unordered Tree Types in Practice

J. Nathan Foster Benjamin C. Pierce

University of Pennsylvania

{jnfoster,bcpierce}@cis.upenn.edu

Alan Schmitt

INRIA Rhône-Alpes

Alan.Schmitt@inrialpes.fr

Abstract

Type systems featuring counting constraints are often stud-
ied, but seldom implemented. We describe an efficient im-
plementation of a type system for unordered, edge-labeled
trees based on Presburger arithmetic constraints. We begin
with a type system for unordered trees and give a compi-
lation into counting automata. We then describe an opti-
mized implementation that provides the fundamental oper-
ations of membership and emptiness testing. Although each
operation has worst-case exponential complexity, we show
how to achieve reasonable performance in practice using a
combination of techniques, including syntactic translations,
lazy automata unfolding, hash-consing, memoization, and
incremental tree processing implemented using partial eval-
uation. These techniques avoid constructing and examining
large structures in many cases and amortize the costs of
expensive operations across many computations. To demon-
strate the effectiveness of these optimizations, we present
experimental data from executions on realistically sized ex-
amples drawn from the Harmony data synchronizer.

Categories and Subject Descriptors F.4.3 [Mathe-
matical Logic and Formal Languages]: Formal Languages—
Classes defined by grammars or automata; I.1.3 [Languages
and Systems]: Evaluation strategies; E.1 [Data Structures]:
Trees

General Terms Languages, Algorithms, Performance

Keywords Tree Automata, Presburger Arithmetic

1. Introduction

Type systems with semantics based on arithmetic con-
straints permit natural descriptions of unordered trees,
which arise in diverse areas of computing—memory manage-
ment, mobile processes, computational linguistics, constraint-
based logic programming, and processors for record- and
semi-structured data, to name but a few. Such type systems
have been studied extensively, but there are few serious
implementations—most research has focused on issues of

Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Language Technologies for XML (PLAN-X 2007).
January 20, 2007, Nice, France.

expressiveness and decidability. This work describes imple-
mentation techniques aimed at achieving good performance
in practice.

Over many structures—including trees—type systems
and automata have the same expressive power. Despite
this connection, there are differences between the two no-
tions that are important in practice. In particular, type
systems typically have a rich, declarative syntax, while au-
tomata provide direct algorithms for deciding membership
and emptiness. For these reasons, types usually appear at
the front-ends of implementations, while automata provide
the machinery to realize the fundamental operations at the
back-end.

Classical tree automata are not well-suited to processing
unordered trees, because their internal transitions are spec-
ified using the positions of children in the tree: to decide
if an ordered tree is accepted, a tree automaton traverses
the tree—either bottom-up or top-down—and tests, at each
node, if every child is accepted by the corresponding succes-
sor state. By contrast, in a tree automaton with arithmetic
constraints [22, 8, 2], instead of matching children and states
by position, the automaton counts the number of children
accepted by each successor state and tests if the resulting
tallies satisfy a given arithmetic constraints. These count-
ing automata form a natural basis for implementations of
type systems over unordered trees (they are also useful over
ordered trees where they express order-agnostic properties,
also known as “numeric document queries” [22]). We will
focus on the efficient implementation of counting automata
where arithmetic constraints are expressed as formulas in
Presburger arithmetic, also known as sheaves automata [8].

It is reasonably straightforward to build a naive imple-
mentation of counting automata. One only needs to know
how to count the number of children accepted by each suc-
cessor state and how to test if a set of tallies satisfies an
arithmetic constraint. However, such an implementation will
be unusable on any but the tiniest of inputs, for several rea-
sons. First, testing the satisfiability of arithmetic constraints
is expensive; when the constraints are stated as formulas in
Presburger arithmetic, it requires double-exponential time.
One might hope to keep the formulas small, but, in the
obvious translation from types to automata, their length
grows quadratically. Moreover, even if deciding arithmetic
constraints could somehow be made fast, another source of
exponential cost would remain: in the worst case, count-
ing the number of children accepted by each successor state
requires a recursive membership test on every immediate
subtree and successor state.

To avoid these pitfalls, our implementation employs a
combination of techniques, which can be divided into three
broad categories; the structure of the paper follows this di-
vision. After a brief review of tree types, Presburger arith-
metic, and sheaves automata (Section 2), we present in de-
tail the naive algorithm sketched above (Section 3), then
consider each of the three categories of optimizations.

The first set of optimizations, described in Section 4, con-
sists of simple syntactic transformations on formulas and
automata to reduce their sizes. As an example, when com-
piling a type to a sheaves automaton, we often need to merge
the transition relations for the automata compiled from the
type’s sub-expressions. This can be done using an all-pairs
intersection of the elements of the transition relation, but
leads to a quadratic blowup. However, elements in the in-
tersection that are empty need not be included in the re-
sult; the blowup can be avoided in most cases. Similarly, the
construction on Presburger formulas that lifts the addition
operator from terms to formulas introduces an existential
quantifier for every free variable that the two formulas have
in common. Since addition is used frequently in the compila-
tion of types to automata, this construction introduces many
quantifiers, leading to very complicated formulas and slow-
ing down constraint solvers significantly. If, however, it can
be determined statically that the constraint expressed by a
formula forces a given free variable to be zero, then no quan-
tifier needs to be introduced for that variable. These simple
optimizations do not address the exponential costs inherent
in the operation of a counting automaton, but merely try to
reduce the size of the inputs. Even so, because they apply
so often and so dramatically, their impact is significant.

The second prong of our implementation strategy, de-
scribed in Section 5, is an incremental algorithm for decid-
ing membership. The naive algorithm first obtains an exact
count of the number of tree slices belonging to each state,
before testing whether the formula is satisfiable. In the worst
case, this strategy can require testing every subtree and suc-
cessor state. Our incremental algorithm is based on the ob-
servation that it is often possible to determine that a tree
is not accepted by the automaton after collecting only par-
tial counts. For example, if the formula specifies that a free
variable must be zero but the tree has a child accepted by
the corresponding state, then the counts of any other states
are irrelevant. More specifically, when given a tree and an
automaton state, we use partial evaluation to construct a
specialized member function for those inputs that, at ev-
ery step, takes as input a single tree and determines which
state that child belongs to. We then translate the additional
information gained at that step into further constraints on
the formula and test its satisfiability. If the new formula is
not satisfiable, then the tree is not accepted by the automa-
ton and the algorithm returns false immediately. Although
the fast paths in the incremental algorithm are followed only
when a tree is not accepted by a state, the incremental algo-
rithm also accelerates accepting runs because these typically
involve many recursive calls that ultimately return false.

The third area of optimization, described in Section 6,
uses hash-consing and memoization to share common struc-
tures and reuse the results of expensive computations. These
optimizations turn out to be critical, for many reasons. As
an example, consider the problem of representing and de-
ciding the satisfiability of Presburger formulas. Rather than
implementing a decision procedure directly, we use the ex-
cellent MONA tool [18] via the GENEPI interface [1]. We
developed a simple interface to the C library, which trans-

lates the structures representing formulas into C structures
that can be manipulated by MONA. However, this means
that every formula has two representations; if our system
produced too many formulas, the costs of allocating and
maintaining both representations would become significant.
Fortunately, the number of distinct formulas used in most
programs is small—on the order of ten thousand. Thus, for-
mulas are a good candidate for hash-consing. Additionally,
our implementation caches the results returned by MONA’s
satisfiability procedure, ensuring that the emptiness of each
formula is computed at most once. It also hash-conses trees
and automata states and memoizes the results of the in-
cremental member algorithm at several levels with similar
benefits.

The discussion up to this point has focused on the mem-
bership testing algorithm. Section 7 briefly describes two
more fundamental operations—emptiness testing, which,
given a state S determines if there is some tree accepted
by S, and domain membership testing, which, given a set of
names d and a state S determines if d is the domain of some
tree accepted by S—and sketches one final optimization
that greatly improves their performance.

Of course, the history of engineering is full of examples of
seemingly promising optimizations that fail to make much
difference in practice. We are using our implementation in
two components of a larger project called Harmony [13]:
a type checker for a bi-directional tree transformation lan-
guage [11], and a type-aware generic data synchronizer [10].
Section 8 presents experimental results for some real-world
examples with various optimizations turned on and off.

Sections 9 and 10 discuss related and future work. Several
appendices present optional material that may be of interest
to expert readers.

2. Preliminaries

This section defines notation for trees, types, and automata
and reviews the translation from types to automata. The
notions of tree types and counting automata, as well as
the translations between them, are closely based on ones
invented by Dal Zilio, Lugiez, and Meyssonnier [7]. For com-
pleteness we give a brief, self-contained review here and high-
light the differences in our formulation; a more leisurely in-
troduction to unordered tree types and counting automata
can be found in their original article. The structures in our
data model, however, are slightly different than the “infor-
mation trees” used in previous studies: we work with un-
ordered trees where every tree node has at most one child
with a given label; information tree nodes may have multiple
children with the same label. We chose the simpler notion of
trees because it is the one used in our main application—the
Harmony data synchronizer. In that setting, certain tasks,
such as identifying and aligning data from each replica, be-
come somewhat simpler when the trees do not have repeated
children. However, as each of our trees is also an information
tree, we believe that each of our results carry over with only
minor modifications.

Data Model Let N denote a set of labels. We work
with the set T of deterministic trees over N : unranked,
unordered, edge-labeled trees with labels drawn from N ,
where a given tree node has at most one child with a given
label. We write trees sideways. The empty tree is written
{||}; in non-empty trees each pair of curly braces denotes a
node and every “n 7→ tn” denotes a child labeled n leading
to a subtree tn. Every deterministic tree can be represented

as a partial function from names to trees; we write dom(t)
for the domain of t—i.e. the set of names of its children,
and t(n) for the immediate subtree of t labeled with n.
The concatenation operator · is commutative and defined
only for pairs of trees with disjoint domains; t · t′ denotes
the tree mapping n to t(n) for n ∈ dom(t) and to t′(n) for
n ∈ dom(t′). Meta-variables n and m range over labels and
t ranges over trees.

Deterministic Tree Types The syntax of deterministic
tree types (DTTs) is as follows:

T ::= {} | r[T] | r[T]* |T+T |T|T | ~T |X

Meta-variables r range over regular expressions over labels—
i.e., labels closed under union, concatenation, and Kleene-
star. To distinguish regular expressions from DTTs, we
enclose them in angled brackets unless the regular expression
is a single character—e.g., —〈a|b〉 denotes the set {a, b}. We
also use the negation operator—e.g., 〈~{}〉 denotes the set of
all labels. A label matches a regular expression if it belongs
to the set it denotes.

The type {} denotes the singleton set containing just the
empty tree (note that {} is not the empty type); a type
atom r[T] denotes the set of trees with a single child whose
label matches r and subtree belongs to the set denoted by
T ; repeated atoms r[T]* represent the Kleene-closure of
the same set; types T1+T2 and T1|T2 denote concatenation
and union lifted element-wise to sets of trees respectively;
~T denotes the relative complement of the set denoted by
T in T ; and a recursion variable X denotes the same set
as the denotation of the type it is bound to in the static,
global type environment ∆ = {X1 = T1, .., Xk = Tk}. Type
definitions in ∆ may be mutually-recursive, but must obey a
strong contractiveness constraint discussed below: recursion
variables may only appear below atoms and repeated atoms.
Note that although deterministic trees do not have repeated
children, the type r[T]* can still be useful since r denotes
a set of names, and that types such as a[T1]+a[T2], where
a is a single name, are allowed but are semantically empty.

DTT terms resemble Tree Logic formulas, as described
by Dal Zilio et al. [7], but there are some key differences.
First, in Tree Logic, the labels appearing in type atoms are
specified using finite or cofinite sets, whereas in DTTs they
are specified using regular expressions. This small, some-
what obvious change nevertheless enhances the expressive-
ness of the logic in a useful way—e.g., compare the sizes
of the descriptions of the set of date strings of the form
“yyyy-mm-dd” as an explicit finite set and as a regular
expression. Second, we give a full treatment of (vertical)
recursion; in Tree Logic the extension to recursive formu-
las is only sketched informally. In particular, reasoning that
the compilation from types to automata terminates requires
choosing the restrictions on contractiveness of type defini-
tions and identifying the state space of the automaton with
care. Third, in Tree Logic formulas, the Kleene-star oper-
ator can be applied to arbitrary types, whereas DTTs can
only express the Kleene-closure of atoms. This represents a
real restriction—there are sets definable by Tree Logic for-
mulas that cannot be described using DTTs; e.g., the set of
trees with an even number of children. We chose to make the
restriction because many types expressed using Kleene-star
collapse to simpler types when interpreted over determinis-
tic trees. For example, the type (a[⊤]+b[⊤])* (where ⊤ de-
notes the set of all trees and can be defined as ⊤ = r⊤[⊤]*

and the regular expression r⊤ is 〈~{}〉) is semantically equiv-
alent to {}|(a[⊤]+b[⊤]), because the root of every tree has

at most one child labeled a and one labeled b. We also made
this decision because the compilation of the full Kleene-star
operator requires an expensive computation on Presburger
formulas. However, as our automata implementation han-
dles arbitrary Presburger formulas—including formulas rep-
resenting the Kleene-closure of DTTs—adding support for
Kleene-star would only involve changes to the front-end.

Presburger Arithmetic To describe counting automata
in detail, we must first fix a formalism for writing down
arithmetic constraints. Presburger arithmetic is the decid-
able first-order theory of the naturals with addition but
without multiplication. Expressions in Presburger arith-
metic include constants, variables, and sums, and formulas
include equalities between expressions, boolean combina-
tions of formulas, and quantified formulas:

e ::= i |xj | e+e
φ ::= e=e |φ ∨ φ |φ ∧ φ | ¬φ | ∃. φ

We use a de Bruijn representation—a variable xj within the
scope of k quantifiers represents the (j − k)th free variable
if j ≥ k, and otherwise is bound by the jth enclosing
quantifier, counting from the inside-out. This representation
of variables is slightly more complicated on paper, but
simplifies the presentation of sheaves automata.

Some of the connectives are semantically redundant;
we choose a larger set because the translation of formu-
las to a minimal set increases their size. However, because
the GENEPI interface to MONA can only represent lin-
ear equalities, we are forced to treat inequalities as syn-
tactic sugar—e.g., (e1 ≤ e2) becomes (∃. e1 = e2 + x0).
We write fv(φ) for the set of free variables of φ; when
fv(φ) = {x0, .., xk}, we write φ[e1, .., ei] for the instantia-
tion of the first j = min(i, k) free variables of φ with the
corresponding expressions.

The semantics of a Presburger formula is the set of
vectors of naturals that satisfy it. We write vector variables
in a bold-face type and individual vectors with angled
brackets: v = 〈n0, .., nk〉. Projection is defined in the usual
way: 〈n0, .., ni, .., nk〉(i) , ni. We write v |= φ if v satisfies
φ, and |= φ if v |= φ for some v. Appendix A gives the
standard definition of the satisfaction relation.

Sheaves Automata A sheaves automaton comprises a
finite set of states, and a mapping Γ from states to sheaves
formulas. The transition behavior from a state is given by
the sheaves formula associated to it in Γ. Each sheaves
formula has two components—a Presburger formula φ and a
list of elements, each of the form ri[Si], where ri is a regular
expression called the tag of the element, and Si is a state.
The operation of a sheaves automaton is like a bottom-
up regular tree automaton. Let t be a tree and S be an
automaton state with Γ(S) = (φ, [r0[S0] , .., rk[Sk]])]). For
each i in the range 0 to k, let ci be the number of children
n ∈ dom(t) for which n ∈ ri and t(n) is accepted by Si.
Then t is accepted by S iff 〈c0, .., ck〉 |= φ.

Note that the integers that represent variables in de
Bruijn notation give the correspondence between free vari-
ables in φ and elements—the constraint on xi controls the
number of children whose name matches ri with subtrees
accepted by Si.

Sheaves automata and sheaves formula are subject to cer-
tain well-formedness conditions. A sheaves formula (φ,E)
with |E| = k is well-formed iff the free variables of φ are
{x0, .., xk−1}; the elements are pairwise disjoint—i.e., if the
list includes ri[Si] and rj [Sj] and there exists a tree accepted

by both Si and Sj , then the regular languages denoted by
ri and rj are disjoint; and the elements are generating—
i.e., for every tree t and label n there is an element ri[Si]
such that n ∈ ri and t is accepted by S. A list of elements
obeying these conditions is called a basis. A sheaves automa-
ton is well-formed iff every sheaves formula in the range of
Γ is well-formed. (Although bases are characterized seman-
tically, it is simple to check syntactically that the sheaves
formulas compiled from DTTs are well-formed.) These well-
formedness conditions guarantee two properties. First, be-
cause the elements are non-overlapping, every tree has a
unique decomposition over the basis, which means that the
semantics of a sheaves automata is well-defined. Second, be-
cause the elements generate the set of all tree slices, certain
constructions are simple. For example, (φ,E) and (¬φ,E)
accept complementary sets of trees.

As an example, the type ({}|(a[⊤]+b[⊤])) is equivalent
to the sheaves automaton state S where Γ(S) is

„
[(x0 =0 ∧ x1=0) ∨ (x0 =1 ∧ x1=1)] ∧ (x2 =0),
[a[⊤] , b[⊤] , 〈~{a, b}〉[⊤]]

«

and ⊤ is a state that accepts all of T . To see that the two are
equivalent, observe that the constraints on x0 and x1 force
the number of children described the elements a[⊤] and b[⊤]
to both be 0 or 1, and that the constraint on x2 forces the
number of children belonging to the final element to be 0.

Compilation Next we describe a translation from DTTs
into sheaves automata.

The type {} can be compiled into an equivalent sheaves
automaton directly: (x0=0, [〈~{}〉[⊤]]). The single element
in the basis, 〈~{}〉[⊤], describes every tree slice, and the
Presburger formula forces the number of children to be 0.

For type atoms, if T compiles to a state ST then r[T]
compiles to a state S with Γ(S) as follows:

„
x0=1∧x1 =0∧x2 =0,
[r[ST] , r[¬ST] , 〈~r〉[⊤]]

«

It is easy to verify that the elements form a basis. Note
that, in writing ¬ST , we assume that it is possible to negate
states; the details of this operation are discussed below. The
compilation of repeated atoms r[T]* is similar, except that
the constraint x0 =1 is replaced with x0≥0.

To compile a concatenation T1+T2, we first recursively
compile T1 and T2 to states characterized by sheaves formu-
las (φ1,E1) and (φ2,E2). We then use a refinement operator
to compute from E1 and E2 a common basis E and substi-
tutions on variables σ1 and σ2, such that (σ1(φ1),E) and
(φ1,E1) are equivalent, and likewise for φ2. The basis calcu-
lated by the refinement operation is obtained by intersecting
every pair of elements in the input bases; σ1 maps each xi

to the sum of variables corresponding to elements in E ob-
tained by intersecting the E1(i) with an element of E2, and
similarly for σ2:

|E1| = k |E2| = l

∀i ∈ 0..(k × l − 1). E′(i) = E1(i÷ l) ∧ E2(i mod l)

∀i ∈ 0..(k − 1). σ1(xi) =
Pl−1

j=0 xi×l+j

∀i ∈ 0..(l − 1). σ2(xi) =
Pk−1

j=0 xi+j×l

refine((φ1,E1) , (φ2,E2)) = σ1, σ2,E
′

Element intersection is calculated component-wise: r[S] ∧
r′[S′] = 〈r∧ r′〉[S ∩ S′] (intersections of states are discussed
below). To finish the compilation of the original concatena-
tion, we use an addition operator on Presburger formulas

with the property that v |= φ+ ψ iff there exist vectors v1

and v2 such that v = v1 + v2, with v1 |= φ1 and v2 |= φ2.
The sum formula φ + ψ can be calculated by existentially
quantifying the values of the vectors satisfying φ and ψ, and
then adding the constraint that each free variable is the sum
of the corresponding quantified variables:

φ+ ψ = ∃., .., ∃.
| {z }

2n

0

@

^

i∈0..n−1

(x2n+i =xi+xn+i)

∧φ∧ψ[xn, .., x2n−1]

1

A

The final sheaves formula for the concatenation is the
sum of the rewritten formulas over the common basis:
(σ1(φ1) + σ2(φ2),E

′). Unions are compiled similarly, except
that we use the union operator on the Presburger formu-
las instead of addition. To compile a negated type ~T , we
first compile T to a sheaves automata, and then negate its
Presburger formula.

The compilation of recursion variables depends on a syn-
tactic restriction—each recursion variable must appear be-
low a type atom or repeated atom.1 This restriction ensures
that when we encounter a recursion variable X during com-
pilation, we can simply use the state already compiled for
X. There exist more elaborate compilation strategies where
recursion variables may appear in non-contractive positions,
as long as they do not appear below negations or intersec-
tions (which are equivalent to negations of unions of nega-
tions). However, the system with unrestricted recursion has
an undecidable emptiness problem (the reduction with de-
terministic trees is similar to the proof given by Boneva and
Talbot for information trees [3]). As we noted in the discus-
sion surrounding Kleene-star, since our automata implemen-
tation handles arbitrary sheaves formulas, adding support
for decidable fragments of DTTs with more general forms of
recursion would only involve changing the syntax and com-
pilation.

Compound States In describing the compilation from
DTTs to sheaves automata, we have assumed that the space
of automata states is closed under negation (in the atom
cases) and intersection (in the refinement operator). We now
show how to identify a set of automata states that is closed
under these operations.

During compilation, an automaton state is introduced for
each top-level type definition in ∆, and for each syntax node
in a type. Because ∆ is finite, the set of such simple states
is finite. It follows that the set of boolean combinations of
simple states is also finite. Therefore, we can take the set
of automata states to be arbitrary boolean combinations of
simple states.

In order to define algorithms that operate on states, it
is helpful to have some canonical syntax for writing them
down. We borrow a notational device from XDuce [16], and
describe states as compound states. A compound state is
a finite union of complex states, which represent sets of
intersections and differences of simple states. Formally, if
the Xis and Yjs are all simple states, then complex states
are given by C and compound states by S:

C ::= ({X1, .., Xk} \ {Y1, .., Yl}) S ::= {C1, .., Ck}

1 In our implementation, the restriction is implemented as a
slightly more liberal check on recursive definitions: after the types
in a single recursion group have been compiled, its variables may
be used in non-contractive positions in subsequent groups. This
facilitates compact descriptions of DTTs using type definitions.

The semantics of a complex state is the set of trees accepted
by every Xi and no Yj ; the semantics of a compound state
is the union of the sets denoted by the Cis.

With this notation fixed, it is simple to write down
algorithms that symbolically compute boolean operations
on states. For example, the negation of a compound state
is the intersection of the negation of each complex state:
¬{C1, .., Ck} , ¬C1∩..∩¬Ck. The other boolean operations
on complex and compound states are straightforward; their
definitions are given in Appendix B.

While the number of compound states is exponentially
larger than the number of simple states, most compound
states are never encountered during an execution run. In
our implementation we exploit this fact and lazily expand
the sheaves formulas for compound states as needed by
membership and emptiness tests.

3. Basic Algorithm

The rest of the paper is devoted to developing and evaluat-
ing an efficient membership implementation for sheaves au-
tomata. As a starting point, we describe a baseline algorithm
that correctly realizes the semantics of sheaves automata.
Rather than implementing the bottom-up strategy directly,
which would entail computing the set of accepting states
for every node in the tree, it uses a top-down traversal that
non-deterministically explores paths in the transition graph
of the automaton until it finds the unique element accepting
each internal node:

mem(
˘̨
˛n0 7→ t0, .., nk 7→ tk

˛
˛
¯
, S) =

let (φ, [r0[S0] , .., rl[Sl]])) = Γ(S)
let a = new int[l + 1]
for i=0 to l do a[i] := 0 done;
for i=0 to k do

for j=0 to l do
if ni ∈ rj and mem(ti, Sj) then

(a[j] := a[j] + 1; break)
done;

done;

〈a[0], .., a[l]〉
?
|= φ

The algorithm uses two nested loops to traverse the immedi-
ate children of the tree and the elements, and to increment
the count of the element that accepts each child and its sub-
tree. It breaks out of the inner loop as soon as it identifies
an accepting element—as the elements form a basis, there
exists exactly one such element. The final result is com-
puted by testing if the counts represent a vector satisfying
the Presburger formula.

4. Syntactic Optimizations

The basic algorithm suffers from exponential costs stem-
ming from two sources: the non-deterministic traversal of the
automaton’s state space, and satisfiability testing for Pres-
burger formulas. In this section, we describe some simple
syntactic optimizations that reduce the number of automata
states and the sizes of formulas. Although these optimiza-
tions do not address the sources of exponential behavior,
they have significant practical impact because they apply
often and reduce the size of the state space and length of
formulas dramatically. Studying these simple optimizations
first also warms us up for the more complicated ones de-
scribed in later sections.

Compact Bases The first optimization reduces the size
of sheaves formulas by compacting useless elements pro-
duced by the refinement operator. As observed by Dal
Zilio et al, the simple all-pairs refinement operator pro-
duces bases that have many empty elements. Consider
refining the following bases: [a[S] , a[¬S] , 〈~{a}〉[⊤]] and
[b[S] , b[¬S] , 〈~{b}〉[⊤]]. The all-pairs intersection yields a
basis with nine elements

2

6
4

〈a∧b〉[S∧S] , 〈a∧b〉[S∧¬S] , 〈a∧~{b}〉[S∧⊤] ,
〈a∧b〉[¬S∧S] , 〈a∧b〉[¬S∧¬S] , 〈a∧~{b}〉[¬S∧⊤] ,
〈~{a}∧b〉[⊤∧S] , 〈~{a}∧b〉[⊤∧¬S] ,
〈~{a}∧~{b}〉[⊤∧⊤]

3

7
5

but only five of the nine are non-empty:
»
〈{}〉[S] , 〈{}〉[⊥] , a[S] , 〈{}〉[⊥] , 〈{}〉[¬S] ,
a[¬S] , b[S] , b[¬S] , 〈~{a, b}〉[⊤]

–

It is simple to eliminate many empty elements by identifying
empty regular expressions and obviously empty states—e.g.,
the intersection of a state with its negation—as refinements
are calculated. Indeed, with this optimization enabled, our
implementation produces the basis with five elements on
the above input. Eliminating useless elements has a direct
effect on the running-time of the member algorithm by
reducing the number of iterations of the inner loop over the
elements and, more critically, the number of free variables
of Presburger formulas expressed over the basis.

Extended Syntax In many applications the same type
is used to describe the structure below several labels. For ex-
ample, the type of individual entries in a tree type represent-
ing address books might have atoms tel-cell, tel-home,
and tel-work, all pointing to the same type one level down:

tel-cell[X]+tel-home[X]+tel-work[X]

There is a sheaves formula over a three-element basis:
0

B
B
@

(x0=3 ∧ x1 =x2=0),
2

4

〈tel-cell, tel-home, tel-work〉[X] ,
〈tel-cell, tel-home, tel-work〉[¬X] ,
〈~tel-cell, tel-home, tel-work〉[⊤]

3

5

1

C
C
A

but the compilation function described in Section 2 produces
one with a seven-element basis:

0

B
B
B
@

(x0=1 ∧ x2 =1 ∧ x4=1 ∧ x1 =x3=x5=x6=0),
2

6
4

tel-cell[X] , tel-cell[¬X] ,
tel-home[X] , tel-home[¬X] ,
tel-work[X] , tel-work[¬X] ,
〈~tel-cell, tel-home, tel-work〉[⊤]

3

7
5

1

C
C
C
A

To make it simple to compile to the compact formula, we
extend DTTs with two new forms:

{r1, .., rk}[T] and {r1, .., rk}[T]?

The first describes the set of trees with k children, one
belonging to each of r1, .., rk, and with subtrees all belonging
to T ; the second type describes trees with at most k children
subject to the same constraints. These types are compiled
like atoms, except that the constraint x0 = 1 is replaced by
x0 = k and x0 ≤ k respectively. If we rewrite the example
from the address book as

{tel-cell, tel-home, tel-work}[X]

then the compiler produces the first, compact sheaves for-
mula.

Compact Sums The next optimization streamlines the
Presburger formulas produced by the addition operator.

Recall that for formulas φ and ψ with n free variables,
the construction of φ+ ψ adds 2n existential quantifiers. If,
however, we detect that a variable xj in φ is explicitly equal
to zero, then the constraints on the jth component of every
vector satisfying φ+ψ are just those expressed by ψ. Instead
of existentially quantifying the values used to instantiate
the jth variable of each formula and setting xj to the sum
of these quantified variables, we can simply instantiate the
jth variable of φ with zero, and the jth variable of ψ with
xj (shifted up by the number of quantifiers used in the final
construction). Because of the way that types are compiled—
e.g., the compilation of an atom produces a formula in which
exactly one variable is not zero—this optimization can often
be applied in practice. Moreover, as it reduces both the
size and complexity of Presburger formulas, it simplifies the
satisfiability problems passed off to the external solver.

State Constants There are a handful of types that are
encountered many times in applications. For example, in
our examples, the types representing the universal type ⊤
and the singleton type containing only the empty tree {}

represent a significant percentage of the total member tests.
Although these types can be compiled to sheaves formulas,

⊤ ≡ (x0≥0, [〈~{}〉[⊤]])
{} ≡ (x0 =0, [〈~{}〉[⊤]])

because of their ubiquity, it makes sense to introduce con-
stant states for them, so that membership can be calculated
immediately, without examining bases or Presburger formu-
las. For example, by making ⊤ a constant, the membership
function returns true immediately, but with the sheaves for-
mula, we would have to traverse the whole tree, testing that
the number of children satisfying the trivial formula x0 ≥ 0
at each node.

5. Incremental Algorithm

In many situations, it is possible to determine whether a
tree is accepted by a state after examining only part of the
tree. The basic algorithm always determines a complete de-
composition of the tree over the elements before it calculates
a result; along the way, it calculates the solutions to many
irrelevant membership problems. In this section, we present
an algorithm that avoids these irrelevant problems by pro-
cessing trees incrementally.

The pathological behavior of the basic algorithm can be
demonstrated by considering its behavior on list structures.
Suppose that lists [t1, .., tk] are represented in trees as cons
cells:

˘̨
˛hd 7→ t1, tl 7→

˘̨
˛.. 7→

˘̨
˛hd 7→ tk, tl 7→ {||}

˛
˛
¯
..

˛
˛
¯˛

˛
¯
. The

type of lists of T is X = ({}|hd[T]+tl[X]). If T compiles
to a state ST , then X compiles to SX where Γ(SX) is

0

@

2

4

(x1=x3=x4=0) ∧
(x0=x2=0) ∨
(x0=x2=1)

3

5 ,

2

4

hd[ST] , hd[¬ST] ,
tl[SX] , tl[¬SX] ,
〈~{hd, tl}〉[⊤]

3

5

1

A .

Now consider a run of the basic algorithm on a tree [t1, .., tk]
where none of the tis belong to T . Assuming that the algo-
rithm examines the children in alphabetical order, it will
first determine that t1, the subtree under hd, is accepted
by ¬ST . At this point, it already has enough information
to see that l does not belong to T , since x1 is constrained
to be zero in the Presburger formula. The algorithm, how-
ever, does not stop; it proceeds to the other child, tl, and
churns away, evaluating many recursive calls, until it finally
determines that [t2, .., tk] belongs to tl[¬SX] and that the

corresponding vector 〈0, 1, 1, 0, 0〉 does not satisfy the Pres-
burger formula.

Incremental Algorithm The incremental algorithm
turns the membership test on its head: rather than col-
lecting all of the counts needed to decide whether a tree is
accepted by a state, it collects information piecemeal and
tries, at each step, to refute the assertion that the tree is
accepted by the state. For example, when presented with
the list above, it determines that the result is false after
examining just the child labeled hd. (This might appear to
help only in cases where the whole tree is not accepted at
a state; actually, because it also helps quickly determine
when subtrees do not belong to particular elements, it also
improves performance in cases where the tree is accepted.)

The algorithm is divided into two phases. In the first
phase, given a tree t and a state S, it constructs a Presburger
formula φ′ such that if φ′ is unsatisfiable, then no tree
with domain dom(t) is accepted by S. The second phase
loops over the children. On the ith iteration, having already
examined the children n0 through ni−1, it constructs a
Presburger formula φ′ such that if φ′ is unsatisfiable then no
tree with the same domain dom(t) and the subtrees below
n0 through ni is accepted by S. Formally, the algorithm is
defined as follows (

P
denotes the addition operator lifted

to Presburger formulas):

mem ′(
˘̨
˛n0 7→ t0, .., nk 7→ tk

˛
˛
¯
, S) =

/* Phase I: */
let (φ, [r0[S0] , .., rl[Sl]])) = Γ(S)
allocate fresh vars y(i,j) for each i, j such that ni ∈ rj

let φ′ = φ ∧
V

i
(
P

j
y(i,j) = 1)

∧
V

j
(xj =

P

i
y(i,j)))

∧
V

{(xj = 0) | ¬∃ni ∈ dom(t). ni ∈ rj}
if 6|= φ′ then return false

/* Phase II: */
for i=0 to k do

for each j such that ni ∈ rj do
if mem ′(ti, Sj) then (φ′ := φ′ ∧ (y(i,j) = 1); break)

done
if 6|= φ′ then return false

done
return true

Intuitively, each fresh variable y(i,j) represents the possibil-
ity that the subtree ti is accepted by Sj . In the first phase,
the constraints added to φ expresses the conditions that ev-
ery subtree belongs to exactly one element—i.e., that for
every i there is exactly one j such that y(i,j) = 1, that the
fresh variables allocated for each element sum to the value
of the corresponding free variable—i.e., that for every j we
have xj =

P

i
y(i,j), and that free variables for elements

that do not match any child are equal to zero. If this for-
mula is not satisfiable, then no tree with the same domain
is accepted.

In the second phase, the algorithm checks the member-
ship of subtrees. It examines each subtree ti, and finds the
unique element rj [Sj] such that ni matches ri and Si ac-
cepts ti. It then incorporates this information into a refined
formula, by adding the constraint (y(i,j) = 1). If this for-
mula is not satisfiable, then no tree with the same domain
and children n0 through ni leading to subtrees t0 through
ti is accepted.

Partial Evaluation Our implementation of the incre-
mental algorithm uses partial evaluation. Most of the tricky

calculations—on indices of free variables and on elements—
are performed in the first phase, and these calculations only
depend on the set of immediate children of t and the sheaves
formula itself. Thus, given a tree domain d and a state S, we
can construct a specialized membership function for S that
is correct for all trees with domain d. We first create the
formula φ′ as above and test |= φ′. If 6|= φ′, then we return a
constant member function that always returns false (since no
tree with domain d is accepted by S). Otherwise, we return
a specialized function that implements the second phase—it
expects the subtree ti and performs the corresponding step
of the second phase. This function in turn either returns
false, if it disproves that t is accepted by S, true, if every
subtree has been processed, or else another function that ex-
pects a different subtree and performs the next step of the
second phase.

For a single input, explicitly separating the first and sec-
ond phases in this way does not improve performance. How-
ever, since we cache the specialized function (see Section 6),
subsequent membership tests for trees with domain d can
skip the first phase entirely and jump straight to the special-
ized membership function without examining the elements,
manipulating free variables, or testing if labels match regu-
lar expressions.

Further Optimizations Finally, using a few more sim-
ple syntactic optimizations, we can reduce the number of
fresh variables as well as the number of satisfiability tests we
have to perform in the incremental algorithm. As we have
already seen, Presburger formulas compiled from DTTs of-
ten force many of their free variables to be equal to zero,
and these constraints can often be discovered using simple
syntactic analyses. In cases where a variable xj is explicitly
zero, we can avoid allocating a fresh variable y(i,j) for each
label ni that matches the tag of rj [Sj], because for any tree
t accepted by S, the constraint on xj forces the subtree ti
to belong to a different element.

Additionally, if a given label ni only matches the tag of
a single element rj [Sj], then the constraints added to the
Presburger formula in the first phase are y(i,j) = xj and
y(i,j) = 1. These constraints are equivalent to the single
constraint xj = 1, which uses one less variable. Moreover,
when the child ni is processed during the second phase, since
there is only a single element that could match and we have
already tested that it can take the value one, there is no
need to test the Presburger formula again; we can just test
that ti is accepted by Sj .

6. Hash-Consing and Memoization

The final collection of optimizations focuses on strategies
for sharing common structures and caching the results of
expensive computations for later reuse. We make extensive
use of hash-consing and memoization throughout our sys-
tem. Hash-consed structures have the property that only one
copy of a given structure is ever live in the system. Memo-
ized functions look up their arguments in a table of already-
computed results and only perform their actual computation
when the lookup misses.

Hash-consing and memoization work well together. In
particular, looking up hash-consed structures in a memo ta-
ble can be fast, even if they are large, because structural
equality and pointer equality coincide. These benefits, how-
ever, do not come for free. Hash-consing adds overhead to ev-
ery allocation. Memoized functions require additional mem-
ory to store the memo tables. And every call to a memoized

function requires computing a hash code plus a table lookup,
which might be more costly than recomputing the function.

In our implementation, we hash-cons Presburger formu-
las, automata states, and trees, and we memoize the com-
pilation of Presburger formulas to MONA structures, the
satisfiability test, and both phases of the member function.
In this section, we suggest why these choices are sensible;
experimental results supporting these claims are given in
Section 8.

Presburger Formulas Presburger formulas are an obvi-
ous candidate for hash-consing. Even for fairly large types,
the number of distinct formulas produced in the compila-
tion to sheaves automata is small in comparison, because the
same formulas appear many times. For example, the formu-
las (x0 = 1), (x0 = 1 ∧ x1 = 0 ∧ x2 = 0), etc., are produced
in the compilation of every type atom. Moreover, because
we use an external solver to decide the satisfiability of for-
mulas, the concrete representation of each formula contains
both a value representing its syntax and a reference to a C-
structure allocated by the MONA back-end. These MONA
representations can be quite large—formulas are themselves
encoded as tree automata—so there are significant benefits
to be gained by sharing representations among copies of the
same formula. (Actually, the story is slightly more compli-
cated: the automata realizing a specific Presburger formula
have a notion of “width” that corresponds to the set of free
variables in the formula—the automaton realizing the for-
mula (x0 = 1) with a single free variable is different than
the one with two free variables. The function that takes a
width and a formula and compiles the MONA representation
at that width uses a memo table where already-constructed
representations are indexed by width. When possible it uses
projection and inverse projection operations to narrow and
widen an existing automaton to a new width if possible;
only the very first automaton representing a formula is con-
structed from scratch.) The satisfiability function is also
memoized so that the satisfiability of each formula is tested
at most once.

Automata States The translation from DTTs to sheaves
automata described in Section 2 introduces a fresh state for
every syntax node appearing in the type. However, if the
same type has already been compiled, then we can reuse
its state in the automaton. To realize this optimization,
we hash-cons the allocation of fresh simple states and only
generate new states when a given pair of Presburger formula
and basis have not yet been bound to a state. Because
Presburger formulas are themselves hash-consed, checking
the structural—i.e., syntactic—equality of two formulas is
simple; checking the equality of the lists of elements requires
comparing the lists using a dictionary ordering on their
elements.

Merging identical states is an effective optimization for
several reasons. First, since the size of the set of automata
states is exponential in the number of simple states, reducing
the number of simple states dramatically decreases the size
of the automaton. Second, optimizations that identify states
syntactically—such as the syntactic optimization that elim-
inates empty states during refinement—are enabled more
often when there are fewer redundant states.

Trees We also hash-cons the structures representing trees.
In this case, the memory saved by sharing common structure
is less critical—unlike Presburger formulas, the representa-
tion of trees is relatively compact, and, unlike states, none
of our algorithms perform worse when there are more rep-

resentations of trees live in the system. Instead, the benefits
of hash-consing trees become apparent when we memoize
functions that take trees as arguments, such as the member
function. Because of their size, it would be impractical to
use structural equality on trees for every lookup in a memo
table—the system would spend all its time comparing trees!

Member Functions Each state maintains a pointer to
its own member function, and each function is memoized
at two levels. The outer memo tables associates trees to
the boolean results of the membership function for that
state. If a lookup in this table hits, then the answer is
returned immediately. Misses are passed off to the inner
memo table, which associates tree domains to partially-
evaluated membership functions. A hit in this table returns
a function, which can then be used to run the incremental
algorithm on the children of the tree. A miss causes the
system to construct (and remember) a specialized member
function from the domain of the tree and the state.

7. Additional Operations

Until now, our discussion has focused on deciding member-
ship efficiently. In this section we briefly describe our imple-
mentations of two additional operations: emptiness testing,
which, given a state S determines if there is some tree ac-
cepted by S; and an operation called domain membership,
which, given a set of names d and a state S determines if d
is the domain of some tree accepted by S. To save space, we
defer the formal definitions to Appendix C.

Emptiness Our algorithm for deciding emptiness follows
the co-inductive approach used in XDuce [17]. Given a state
S we assume that it is empty and then check that G(S) is
empty under that assumption. To avoid computing the same
emptiness tests many times, we maintain a cache of empty
and non-empty types; these caches provide the initial values
of the assumptions mts and nmts that are threaded through
the co-inductive calculation.

Because we work with deterministic trees, checking that
a sheaves formula is empty requires a little more work than
for information trees. For information trees, to check that
(φ,E) is empty, we would determine the states in E that
are empty and then test that φ is not satisfiable when those
elements are constrained to be zero. For deterministic trees,
we need to ensure that each label is used at most once.
To do this, we assume that the sheaves formulas have been
preprocessed, using the refinement operator with a dummy
basis, so that each of the tags in E denotes either a singleton
or an infinite set. We then add to φ the constraint that the
sum of elements with identical singleton tags is at most one.

Domain Membership Harmony’s synchronization algo-
rithm requires a somewhat unusual operation on types: test-
ing whether a set of names is exactly the domain of some tree
belonging to the type. Since there are no subtrees to deal
with, it might seem that domain membership is simpler than
full membership testing. Conversely, since there no subtrees
available, it might seem that domain membership is a more
difficult problem—we need to determine whether there are
any subtrees that could be combined with the tree domain
to form a tree accepted by the automaton. In fact, by com-
bining the emptiness and membership algorithms, we obtain
an algorithm for deciding domain membership.

Emptiness Counterexamples This last algorithm re-
quires one final optimization. It is among the simplest in

our implementation, but it has a big impact on the perfor-
mance of our synchronization algorithm (described in detail
in [10]). The inputs to the synchronizer are three trees—
two current replicas and a common ancestor—plus a type.
The algorithm first checks that both replicas belong to the
type, and then walks down all three input trees recursively,
identifying the changes in each replica with respect to the
ancestor and assembling those changes into updated repli-
cas as long as it is possible to do so without breaking the
invariants expressed by the type. The key property of the
algorithm is that, for types that express only “local” prop-
erties of trees, it only needs to test that the domains of the
assembled result belong to the set of domains of trees in the
type to guarantee that the whole result will belong to the
type. Thus, the key operations on types are membership and
domain membership; the emptiness test is invoked indirectly
by the domain membership algorithm.

The optimization that makes synchronization perform
well is dead simple: whenever we determine that a tree
or a domain is accepted by a state, we have also found a
counterexample demonstrating that the state is not empty.
We can safely add it to the non-empty cache of types. In
the synchronization algorithm, this small optimization is a
huge win because most of the emptiness queries generated
by the domain membership algorithm are for states that we
will have already seen when we tested the membership of
the replicas in the top-level schema.

8. Experimental Results

In this section we present timing data and statistics from
several experiments run using our system. The first exper-
iment takes trees representing address book data and vali-
dates them against a tree schema loosely based on the vCard
standard [9]. The second is a parser that takes ASCII text
where some lines are decorated as headings and subheadings
and transforms it into a tree structure where the nested
structure described by the headings is made explicit. The
third is a bi-directional lens program that maps between
calendar data represented as iCalendar files and a simplified
tree form suitable for synchronization. In each program, per-
formance depends critically on the behavior of the member
algorithm. For the validator, this is obvious—it is a mem-
bership tester. The text parser and iCalendar lens are both
implemented in a tree transformation language [12] where
conditionals and assertions are evaluated by testing mem-
bership of a tree in a type. Several aspects of these exper-
iments are artificial, but they emphasize the effect of type
operations on performance: the structured text parser op-
erates by exploding the each line into a list of characters
rather than processing entire lines; we ran the iCalendar ex-
ample with run-time assertions enabled at the entry and exit
points of each function.

We ran the experiments on a 1.4GHz Intel Pentium III
machine equipped with 2GB of memory and running the
SuSE operating system with Linux kernel version 2.6.16.
System and user running times were collected using the
standard POSIX timing functions; statistics about the num-
ber of calls to various functions and the hit rates of caches
were collected by instrumented versions of the functions.
We halted any experiment whose running time was more
than four minutes; several experiments exceeded the mem-
ory limits imposed by the operating system and were also
terminated. Each experiment was run on a range of inputs,
varying in size from a single address book or calendar entry
or line of text up to several thousand entries or lines, and

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
on

ds
)

Input size (# entries)

Address Book Validator

incremental-memoized
incremental-notrees

incremenetal-nopresburger
incremental-nomember

incremental
baseline-memoized

baseline

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
on

ds
)

Input size (# lines)

Structured Text Parser

incremental-memoized
incremental-notrees

incremenetal-nopresburger
incremental-nomember

incremental
baseline-memoized

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Input size (# entries)

iCalendar Lens

incremental-memoized
incremental-notrees

incremenetal-nopresburger
incremental-nomember

incremental
baseline-memoized

Figure 1. Experimental Results

in a variety of configurations, including the basic algorithm
with and without memoization, and the incremental algo-
rithm with full, selective, and no memoization. The types
used to validate address book entries, parse text, and trans-
form calendars compiled to sheaves automata with 312, 105
361 states respectively. The inputs to each program were
generated by interleaving snippets of Joyce’s Ulysses into
the appropriate format—e.g., we created address book and
iCalendar entries by randomly selecting the fields present in
each entry and populating each field with text drawn from
the text; for the text parser, we chose lines of text at random
to be headings or subheadings.

Graphs of the timing results of the experiments in each
configuration are shown in Figure 1. The lines labeled “base-
line” refer to the basic algorithm and similarly for “incre-
mental.” Labels containing “notrees,” “nopresburger,” and
“nomember” refer to experiments where the hash-consing
and memoization optimizations for those structures were
disabled. We did not perform tests on configurations with
the simple syntactic algorithms turned off—the bases and

formulas grow so quickly that the implementation is unus-
able on non-trivial inputs.

As the graphs show, neither the incremental algorithm
alone nor memoization alone do as well as all of the opti-
mizations do together. The performance of the basic algo-
rithm alone is predictably bad—on address book and iCal-
endar entries its plot is nearly vertical; for the text parser,
memory usage for the smallest input exceeded operating sys-
tem limits. The basic algorithm performs much better in
both examples when hash-consing and memoization are en-
abled, but the incremental algorithm outperforms it when
the same optimizations are available. Interestingly, the in-
cremental algorithm depends critically on memoization and
hash-consing. Intuitively this makes sense—e.g., we would
expect the memoization of Presburger results to be critical
since it performs a less aggressive traversal of the tree and
automaton but solves many more formulas at each node.

The following table gives some simple statistics collected
from the experiments. In order, the columns are as follows:
the total number of Presburger formulas allocated in the
system and the hit rate in the hash-cons table; the total
number of satisfiability queries and the hit rate in the memo
table; and the total number of trees allocated and the hit
rate in the hash table.

Formulas Sat Trees
Addr 107711 99.8% 25744 99.9% 107711 42.1%
Txt 12580 99.1% 222 92.8% 3507706 81.4%
Cal 116939 97.4% 17600 87.8% 407652 76.5%

The high hit rates validate the hash-consing and memoiza-
tion strategies we chose in Section 6.

9. Related Work

Automata with counting have been proposed numerous
times. Courcelle [6] noticed that the discriminating power
of monadic second-order logic is weak on unordered trees
and proposed adding counting constraints. Later, Dal Zilio,
Lugiez, and Meyssonnier [8] and Seidl, Schwentick, Muscholl,
and Habermehl [22] independently proposed equipping au-
tomata with Presburger constraints; Dal Zilio et al.’s start-
ing point was a static (i.e., non modal) fragment of ambi-
ent logic [5], while Seidl et al. were interested in numeric
document queries—order-agnostic queries over ordered tree
structures. Boneva and Talbot survey the expressive power
of all three systems [2] and (with Tison) show that full hor-
izontal recursion makes satisfiability undecidable [3]. They
describe several decidable fragments.

Other formalisms for unordered trees include Ohsaki’s
study of AC-closure of regular tree languages [20] and a
number of papers on feature logics and automata from the
Oz group (for example, [19]). Rounds [21] surveys a range
of work on feature logics.

Recent work by Buneman, Cong, Fan, and Kementsiet-
sidis [4] applies partial evaluation to XML query processing
in a distributed setting.

Hosoya and Murata [15] describe an implementation of a
type system for attribute-element constraints that handles
ordered and unordered structures. Their implementation
operates directly on the syntax of types.

Hague [14] describes an implementation of a membership
checker along lines broadly similar to ours. His checker
handles information trees, as opposed to deterministic trees,
and uses OMEGA as its external solver. Lacking some of
our optimizations, and largely due to the limitations of the

OMEGA tool, his implementation is more limited in the size
of examples it can handle.

10. Future Work

There are many possible directions for future study follow-
ing from this work. One obvious direction is to implement
our own solver for Presburger arithmetic. This direct ap-
proach would alleviate some of the overhead of maintain-
ing shadow MONA structures for every formula and could
potentially admit more compact automata representations
and optimized operations, such as refinement of formulas
with new constraints. Another area we have not yet ex-
plored is determinization of automata. The incremental al-
gorithm determinizes certain transitions, when it can deter-
mine that a single element matches a given child, but a more
global analysis of automata would certainly do better. Fi-
nally, we would like to investigate extending our implemen-
tation techniques—in particular the incremental algorithm
and partial evaluation—to other settings including tree au-
tomata operating on ordered trees.

Acknowledgments

We would like to thank Haruo Hosoya, Christian Kirkegaard,
Stéphane Lescuyer, and the members of the Penn PL Club
for helpful discussions, as well as the anonymous referees
for many helpful suggestions. Harmony is supported by
the National Science Foundation under grants ITR-0113226,
Principles and Practice of Synchronization and IIS-0534592
Linguistic Foundations for XML View Update. This work
was begun while Nathan Foster was visiting INRIA Rhône-
Alpes; he wishes to thank the members of Projet Sardes for
their generous hospitality during his stay, and the additional
support of an NSF GRF.

References

[1] S. Bardin, J. Leroux, and G. Point. FAST Extended
Release. In International Conference on Computer Aided
Verification (CAV), Seattle, WA, volume 4144 of Lecture
Notes in Computer Science, pages 63–66. Springer-Verlag,
Aug. 2006.

[2] I. Boneva and J.-M. Talbot. Automata and logics for
unranked and unordered trees. In J. Giesl, editor, RTA,
volume 3467 of Lecture Notes in Computer Science, pages
500–515. Springer, 2005.

[3] I. Boneva, J.-M. Talbot, and S. Tison. Expressiveness of
a spatial logic for trees. In LICS, pages 280–289. IEEE
Computer Society, 2005.

[4] P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis.
Using partial evaluation in distributed query evaluation. In
U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M.
Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim, editors,
VLDB, pages 211–222. ACM, 2006.

[5] L. Cardelli and G. Ghelli. Tql: a query language for
semistructured data based on the ambient logic. Math-
ematical Structures in Computer Science, 14(3):285–327,
2004.

[6] B. Courcelle. The monadic second-order logic of graphs.
i. recognizable sets of finite graphs. Information and
Computation, 85(1):12–75, 1990.

[7] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A Logic You
Can Count On. In ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL), Venice,
Italy, pages 135–146. ACM Press, Jan. 2004.

[8] S. Dal-Zilio, D. Lugiez, and C. Meyssonnier. A logic you
can count on. In N. D. Jones and X. Leroy, editors, POPL,
pages 135–146. ACM, 2004.

[9] F. Dawson and T. Howes. RFC 2426: vCard MIME directory
profile, Sept. 1998.

[10] J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce,
and A. Schmitt. Exploiting schemas in data synchronization.
Journal of Computer and System Sciences, 2006. To appear.
Extended abstract in Database Programming Languages
(DBPL) 2005.

[11] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: A linguistic approach to the view
update problem. In ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL), Long
Beach, California, pages 233–246, 2005.

[12] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt. Combinators for bi-directional tree
transformations: A linguistic approach to the view update
problem. ACM Transactions on Programming Languages
and Systems, 2006. To appear. Extended version available
as University of Pennsylvania technical report MS-CIS-
03-08. Preliminary version presented at the Workshop on
Programming Language Technologies for XML (PLAN-
X), 2004; extended abstract presented at Principles of
Programming Languages (POPL), 2005.

[13] J. N. Foster, B. C. Pierce, and A. Schmitt. Harmony
Programmer’s Manual, 2006. Available from http://
www.seas.upenn.edu/~harmony/.

[14] M. Hague. Static checkers for tree structures and heaps,
2004. Final year project report, Imperial College.

[15] H. Hosoya and M. Murata. Boolean operations and inclusion
test for attribute-element constraints. In International Con-
ference on Implementation and Application of Automata,
Santa Barbara, CA, volume 2759 of Lecture Notes in Com-
puter Science, pages 201–212. Springer-Verlag, 2003.

[16] H. Hosoya and B. C. Pierce. Regular expression pattern
matching. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), London,
England, 2001. Full version in Journal of Functional
Programming, 13(6), Nov. 2003, pp. 961–1004.

[17] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for XML. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(1):46–90, Jan. 2005.
Preliminary version in ICFP 2000.

[18] N. Klarlund and A. Møller. The MONA project, 2001.

[19] J. Niehren and A. Podelski. Feature automata and
recognizable sets of feature trees. In M.-C. Gaudel and
J.-P. Jouannaud, editors, TAPSOFT, volume 668 of Lecture
Notes in Computer Science, pages 356–375. Springer, 1993.

[20] H. Ohsaki. Beyond regularity: Equational tree automata
for associative and commutative theories. In L. Fribourg,
editor, CSL, volume 2142 of Lecture Notes in Computer
Science, pages 539–553. Springer, 2001.

[21] W. C. Rounds. Feature logics. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language, pages
475–533. Elsevier, Amsterdam, 1996.

[22] H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl.
Counting in trees for free. In International Colloquium on
Automata, Languages and Programming (ICALP), Turku,
Finland, volume 3142 of Lecture Notes in Computer Science,
pages 1136–1149. Springer-Verlag, July 2004.

A. Presburger Semantics

The value of an expression in a vector is:

val(v, i) , i

val(v, xj) , v(j)
val(v, e1+e2) , val(v, e1) + val(v, e2)

The satisfaction relation is:

v |= e1 =e2 iff val(v, e1) = val(v, e2)
v |= φ1∨φ2 iff v |= φ1 or v |= φ2

v |= φ1∧φ2 iff v |= φ1 and v |= φ2

v |= ¬φ1 iff v 6|= φ1

v |= ∃. φ1 iff ∃n. 〈n,v(0), ..,v(k − 1)〉 |= φ where k = |v|

B. State Operations

This appendix gives the definitions of boolean operators on
compound and complex states. Negating a complex state
yields a compound state:

¬ ({X1, .., Xk} \ {Y1, .., Yl}) , {Y1, .., Yl,¬X1, ..,¬Xk}

We write ¬Xi as an abbreviation for ({⊤} \ {Xi}). Inter-
secting a complex state by another complex state compound
state simply combines their intersections and differences:

({V1, .., Vk} \ {W1, ..,Wl}) ∩ ({X1, .., Xm} \ {Y1, .., Yn})
, ({V1, .., Vk,X1, .., Xm} \ {W1, ..,Wl, Y1, .., Yn})

Negating a compound state intersects the negations of each
component complex state:

¬{C1, .., Ck} , ¬C1 ∩ .. ∩ ¬Ck

Intersecting two compound states intersects each complex
state from the first with every complex state from the
second.

{C1, .., Ck} ∩ {D1, .., Dl} ,

8

<

:

(C1 ∩D1), .., (C1 ∩Dl),
..

(Ck ∩D1), .., (Ck ∩Dl)

9

=

;

C. Additional Operations

The mutually-recursive functions empty and check are de-
fined as follows (the parameters mts and nmts represent as-
sumptions about empty and non-empty sets of types respec-
tively):

empty(S,mts ,nmts) =
if S ∈ mts then true
else if S ∈ nmts then false
else

let mts ′ = (mts ∪ S) in
let (is mt ,mts ′′,nmts ′′) = check(Γ(S),mts ′,nmts ′) in
if is mt then (true,mts”,nmts”) else (false,mts,nmts)

check((φ, [r0[S0] , .., rk[Sk]]) ,mts,nmts) =

let φ′ = φ
^

i∈0..k

X

{xj | singleton(rj) ∧ rj = ri} ≤ 1

let (mts ′,nmts ′) = (mts ,nmts) in
for i=0 to k do

let (is empty ,mts ′′,nmts ′′) = empty(Si,mts ′,nmts ′) in
mts ′ := mts ′′;
nmts ′ := nmts ′′;
if is mt then φ′ := φ′ ∧ (xj = 0);

done

if
?
|= φ then (false, mts, nmts) else (true ,mts ′,nmts ′)

The domain membership algorithm is obtained by replac-
ing the inner loop of the incremental algorithm, which de-
termines the element that the given subtree belongs to and
then adds the constraint that the corresponding fresh vari-
able is one:

for each j such that ni ∈ rj do
if mem ′(ti,Xj) then (φ′ := φ′ ∧ (y(i,j) = 1); break)

done
if 6|= φ′ then return false

done

with a loop that determines all of the non-empty elements
(with tags matching the given label), and then adds the
constraint that the sum of fresh variables corresponding to
those elements is one:

let si = 0 in
for each j such that ni ∈ rj do
if not empty(Xj ,mts ,nmts) then si := si + y(i,j);

done
φ′ := φ′ ∧ si = 1;
if 6|= φ′∧ then return false

(For the sake of readability, we elide the statements that
update the global empty / non-empty caches with the sets
returned by empty.)

