
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

From C to Interaction Trees
Specifying, Verifying, and Testing a Networked Server

Nicolas Koh
†

Yao Li
†

Yishuai Li
†

Li-yao Xia
†

Lennart Beringer
§

Wolf Honore
*

William Mansky
¶

Benjamin C. Pierce
†

Steve Zdancewic
†

University of Pennsylvania
†

Princeton University
§

Yale University
*

University of Illinois at Chicago
¶

Abstract
We present the first formal verification of a networked server

implemented in C. Interaction trees, a general structure for
representing reactive computations, are used to tie together

disparate verification and testing tools (Coq, VST, and Quick-

Chick) and to axiomatize the behavior of the operating sys-

tem on which the server runs (CertiKOS). The main theorem

connects a specification of acceptable server behaviors, writ-

ten in a straightforward “one client at a time” style, with

the CompCert semantics of the C program. The variability

introduced by low-level buffering of messages and interleav-

ing of multiple TCP connections is captured using network
refinement, a variant of observational refinement.

Keywords formal verification, testing, TCP, interaction trees,

network refinement, VST, QuickChick

1 Introduction
The Science of Deep Specification [Appel et al. 2017] is an

ambitious experiment in specification, rigorous testing, and

formal verification of real-world systems such as web servers

“from internet RFCs all the way to transistors.” The principal

challenges lie in integrating disparate specification styles,

legacy specifications, and testing and verification tools to

build and reason about complex, multi-layered systems.

We report here on a first step toward realizing this vision:

an in-depth case study demonstrating how to specify, test,

and verify a simple networked server with the same fun-

damental interaction model as more sophisticated ones—it

communicates with multiple clients via ordered, reliable TCP

connections. Our server is implemented in C and verified,

using the Verified Software Toolchain [Appel 2014], against a

formal “implementation model” written in Coq [2018]; this is

further verified (in Coq) against a linear “one client at a time”

specification of allowed behaviors. The main property we

prove is that any trace that can be observed by a collection

of concurrent clients interacting with the server over the

network can be rearranged into a trace that is allowed by the

linear specification. We also show how property-based ran-

dom testing using Coq’s QuickChick plug-in [Lampropoulos

and Pierce 2018] can be deployed in this setting. We compile

the server code with the CompCert verified compiler [Leroy

CPP, January 2019, Lisbon, Portugal
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

2009] and run it on CertiKOS [Gu et al. 2016], a verified

operating system with support for TCP socket operations.

Our verified server provides a simple “swap” interface

that allows clients to send a new bytestring to the server and

receive the currently stored one in exchange. It is simpler in

many respects than a full-blown web server; in particular,

it follows a much simpler protocol (no authentication, en-

cryption, header parsing, etc.), which means that it can be

implemented with much less code.

Moreover, the degree of vertical integration falls short

of our ultimate ambitions for the DeepSpec project, since

we stop at the CertiKOS interface (which we axiomatize)

instead of going all the way down to transistors. On the

other hand, the C implementation of our server is realistic

enough that it offers a challenging test of how to integrate

disparate Coq-based methodologies and tools for verifying

and testing systems software. In particular, it uses a single-

process, event-driven architecture [Pai et al. 1999], hides

latency by buffering interleaved TCP communications from

multiple clients, and is built on the POSIX socket API.

Contributions We describe our experiences integrating

Coq, CompCert, VST, CertiKOS, and QuickChick to build a

verified swap server. This is the first VST verification of a

program that interacts with the external environment. It is

also, to the best of our knowledge, the first verification of

functional correctness of a networked server implemented

in C. Our technical contributions are as follows:

First, we identify interaction trees (ITrees)—a Coq adapta-

tion of structures known variously as “freer” [Kiselyov and

Ishii 2015], “general” [McBride 2015], or “program” [Letan

et al. 2018] monads—as a suitable unifying structure for ex-

pressing and relating specifications at different levels of ab-

straction (Section 3).

Second, we adapt standard notions of linearizability and

observational refinement from the literature on concurrent

data structures to give a simple specificationmethodology for

networked servers that is suitable both for rigorous property-

based testing and for formal verification. We call this variant

network refinement (Section 4).

Third, we demonstrate practical techniques for both veri-
fying (Section 5) and testing (Section 6) network refinement

between a low-level implementation model and a simple

linear specification. We also demonstrate testing against the

compiled C implementation across a network interface.

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Linear
specification

Implementation
model

VST-level TCP
specification

CertiKOS-level
TCP specification

Swap server implementation TCP

CertiKOS

network-refines (pure Coq)

refines (VST)

validates
(pure Coq)

n
e
tw

o
rk

-re
fi
n
e
s
 (Q

u
ic

k
C

h
ic

k
) implements

(manual inspection)

Figure 1. Overview. The blue parts of the figure represent
components written in C, the red parts specifications in Coq.

The swap server implementation runs on top of CertiKOS; it

is proved to refine the implementation model with respect to

a VST axiomatization of the TCP system calls; this, in turn,

is validated by a lower-level axiomatization in the style of

CertiKOS, which is manually compared to the (unverified)

TCP implementation. The implementation model, in turn,

“network refines” the linear specification. The fact that the C

implementation network refines the linear specification is

independently validated by property-based random testing.

In all the Coq models and specifications, interaction trees

model the observable behaviors of computations. The dotted

parts of the figure are either informal or incomplete.

Lastly, the ITrees embedded into both VST’s separation

logic and CertiKOS’s socket model allow us to make progress

on connecting the two developments. Though completing

the formal proofs remains for future work, we identify the

challenges and describe preliminary results in Section 7.

Section 2 summarizes the whole development. Sections 8

and 9 discuss related and future work. A tarball containing

all our Coq and C code has been provided to the PC chairs.

2 Overview
Figure 1 shows the high-level architecture of the entire case

study. This section surveys the major components, starting

with the high-level, user-facing specification (the linear spec-

ification shown at the top of the figure) and working down

to OS-level details.

Specifying the Swap Server Informally, the intended be-

havior of the swap server is straightforward. Any number of

clients can connect and send “swap requests,” each contain-

ing a fixed-size message. The server acts as a one-element

concurrent buffer: it retains the most recent message that it

has received and, upon getting a swap request, updates its

state with the new message and replies to the sender with

Server Client 1 Client 2

connect

connect

‘abc’

‘000’

‘def’

‘abc’

Server Client 1 Client 2

connect

connect

‘ab’

‘d’‘c’

‘00’

‘0’

‘ef’

‘abc’

Figure 2. Swap server examples. On the left is a simple

run that directly illustrates the linear specification. Each

client in turn establishes a connection, sends a three-byte

message, and receives the message currently stored on the

server as a response. (‘000’ is the server’s initial state.) On

the right is another run illustrating internal buffering by the

swap server and reordering by the network. Messages may

be sent in multiple chunks, messages from different clients

may be received out of order, and messages may be delayed

indefinitely (dotted arrow). The “explanation” of the two

runs in terms of the linear specification is the same.

CoFixpoint linear_spec ' (conns : list connection_id)

(last_msg : bytes) : itree specE unit :=

or ((* Accept a new connection. *)

c ← obs_connect ;;

linear_spec ' (c :: conns) last_msg)

((* Exchange a pair of messages on a connection. *)

c ← choose conns;;

msg ← obs_msg_to_server c;;

obs_msg_from_server c last_msg ;;

linear_spec ' conns msg).

Definition linear_spec := linear_spec ' [] zeros.

Figure 3. Linear specification of the swap server. In the

linear_spec' loop, the parameter conns maintains the list

of open connections, while last_msg holds the message re-

ceived from the last client (which will be sent back to the

next client). The linear specification is initialized with an

empty set of connections and a message filled with zeros.

the old one. The left-hand side of Figure 2 shows a simple

example of correct behavior of a swap server.

Figure 3 shows the linear specification of the server’s

behavior. It says that the server can either accept a con-

nection with a new client (obs_connect) or else receive a

message from a client over some established connection

(obs_msg_to_server c), send back the current stored message

(obs_msg_from_server c last_msg), and then start over with

the last-received message as the current state. The set of

possible behaviors is represented as an interaction tree (of

type itree specE unit).

Our main correctness theorem should relate the actual be-

havior of our server (the CompCert semantics of the C code)

to this linear description of its desired behavior. Informally:

Theorem1. Any sequence of interactions with the swap server
that can be observed by clients over the network could have
been produced by the linear specification.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

From C to Interaction Trees CPP, January 2019, Lisbon, Portugal

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Theorem swap_server_correct :

∃ impl_model , ext_behavior C_prog impl_model ∧

network_refines linear_spec impl_model.

Figure 4. End-to-end swap server correctness theorem.

This theorem constrains the server to act as a swap server:

it prevents the server from sending a message before it re-

ceives one, or while it has only received a partial message;

it prevents it from sending an arbitrary value in response

to a request, or replying multiple times with the same value

that has only been received once; it prevents it from sending

a response to a client from which it has not received a re-

quest. However, the “over the network” clause is a significant

caveat: the server communicates with clients via TCP, and

even a correct implementation might thus exhibit a number

of undesirable behaviors from the clients’ point of view. The

network might drop all packets after a certain point, causing

the server to appear to have stopped running, so the theorem

allows the server to stop running at any point. Similarly, the

network might delay messages and might reorder messages

on different connections, so the theorem allows the server

to respond to an earlier request after responding to a later

request. The right-hand side of Figure 2 shows another run

of the system illustrating these possibilities; it should also

be accepted by the top-level theorem.

Figure 4 shows the formal specification linking the lin-
ear specification (linear_spec), which describes interactions

with one client at a time, to the C program (C_prog). It is split

in two parts articulated around an implementation model
(impl_model). It is another interaction tree that describes the

network-level behavior of the C program more closely than

the linear specification. Like the C program, the implemen-

tation model interleaves requests from multiple clients and

accounts for the effects of the network. A refinement between
the C program and the implementation model is formalized

by the VST property ext_behavior. Then the implementa-

tion model is connected to the specification by a different

network refinement layer (network_refines).

Network refinement The linear specification is short and

easy to understand, but an implementation that strictly fol-

lowed it would be obliged to serve clients sequentially, which
is not what real servers (including ours) want to do. More-

over, as shown on the right-hand side of Figure 2, the network

may delay and reorder messages, so that, for example, the

first two bytes of a message from client 1 might be received

after the first byte of a message from client 2. The server

should be able to account for this by buffering messages until

they are complete. The second part of our server specifica-

tion loosens the linear specification to account for the effects

of communicating over a network; this also permits realistic

implementations that serve multiple clients concurrently.

Network refinement states that every possible behavior of

the implementation model is allowed by the linear specifica-

tion, while accounting for message reordering and buffering

that might be introduced by the network and/or server. Sec-

tion 4 explains this process in more detail.

C Implementation Our C implementation is a simple but

reasonably performant server in a classical single-process,

event-driven style [Pai et al. 1999]. The implementationmain-

tains a list of connection structures, each representing a

state machine for one connection. Specifically, a connec-

tion structure contains (1) a state, which may be RECVING,
SENDING, or DELETED; (2) a buffer for storing bytes that have
been received on the connection; and (3) a buffer for storing

bytes to send on the connection.

Themain body of the server is a non-terminating loop (Fig-

ure 5); in each iteration, it uses the select system call to

check for pending connections to accept and for existing

connections ready for receiving/sending bytes from/to, and

processes them. A new connection is handled by initializing

a new connection structure and adding it into the list, and an

existing connection is processed by updating the read/write

buffers and advancing the connection’s state appropriately.

This buffering strategy lets the server interleave processing

of multiple connections without having to wait for one client

to send or receive a complete message.

Verifying the C code To prove that the C implementa-

tion refines the implementation model (that is, that every

possible network behavior of the C program is allowed by

the implementation model), we use VST, a tool for prov-

ing correctness of C programs using separation logic. The

VST predicate ext_behavior C_prog impl_model in Figure 4

relates the operational semantics of the C program C_prog

to the interaction tree description given by impl_model. Sec-

tion 3 describes the implementation model in more detail.

VST’s model of program execution includes both con-

ventional program state (memory, local variables, etc.) and
external state, an abstract representation of the state of the

environment in which the program is running. We connect

the C program semantics to the implementation model by

adding a predicate ITree(t) to VST’s separation logic, assert-

ing that the environment expects the C program’s network

behavior to match the interaction tree t . Section 5 describes

this process.

Assumptions and modeling gaps We have a complete

proof (using VST) that the C implementation compiled with

CompCert network-refines the linear specification—that is,

a complete proof of the claim in Figure 4. This proof is

grounded in axiomatic specifications of the OS-level system

calls, and some library functions. We rely on the soundness

of the Coq proof assistant, plus the standard axioms of func-

tional and propositional extensionality and proof irrelevance.

For this case study, our verification bottoms out at the in-

terface between the application program and the operating

system; we rely on the correctness of the OS’s socket li-

brary and of the OS itself. Since we are running on CertiKOS,

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

while (1 == 1) {

...

int num_ready =

select(maxsock + 1, &rs, &ws, &es, &timeout);

if (num_ready <= 0) { continue; }

int socket_ready = fd_isset_macro(server_socket , &rs);

if (socket_ready) {

/* Accept a new connection on the socket , create a

connection structure for it, and link it into the

head of the linked list of connections. */

accept_connection(server_socket , &head);

}

/* For each connection in the list pointed to by head ,

read from or write to its buffer of data. */

process_connections(head , &rs, &ws, last_msg_store);

}

Figure 5.Main loop of swap server (in C)

the OS has actually been proved correct, but its correctness

proofs and ours are not formally connected. That is, our

specification of its socket API is axiomatized, but the axioms

are partially validated by connection to the corresponding

CertiKOS specifications (specifically, a VST specification of

recv has been partly connected to the CertiKOS-level one;

the other socket primitives remain to be connected). There

are several remaining challenges with connecting VST to

CertiKOS, ranging from the semantic—one critical technical-

ity is connecting VST’s step-indexed view of memory with

the flat memory model used by CertiKOS—to the technical—

they use different versions of Coq. See Section 7 for a fuller

description of what we have done to bridge these two formal-

izations. Also, because CertiKOS currently does not provide

a verified TCP implementation, the best it can do is mediate

between the VST axioms and some, possibly lower-level, ax-

iomatization of the untrusted TCP stack. Filling these gaps

is left to future work.

Testing network refinement For our long-term goal of

building verified systems software like web servers, rigorous

testing will be crucial, for two reasons. First, even small web

servers are fairly complex programs, and they take signifi-

cant effort to verify; streamlining this effort by catching as

many bugs as possible before spending much time on veri-

fication makes good economic sense, especially if the code

can be automatically tested against the very same specifica-

tion that will later be used in the verification effort. Second,

programs like web servers must often fit into an existing

ecosystem—a verified web server that interpreted the HTTP

RFCs (e.g., Belshe et al. [2015]) differently from Apache and

Nginx would not be used. Testing can be used to validate the

formal specification against existing implementations.

For the present case study, we use QuickChick [Lam-

propoulos and Pierce 2018], a Coq plug-in for property-based

testing based on the popular QuickCheck tool [Claessen and

Hughes 2000]. We test both the compiled C code (by sending

it messages over a network interface) and the implementa-

tion model (by exploring its behaviors within Coq) against

the linear specification.

CoInductive itree (E : Type → Type) (R : Type) :=

| Ret (r : R)

| Vis {X : Type} (e : E X) (k : X → itree E R)

| Tau (t : itree E R).

Inductive event (E : Type → Type) : Type :=

| Event : ∀ X, E X → X → event E.

Definition trace E := list (event E)

Inductive is_trace E R

: itree E R → trace E → option R → Prop := ...

(* straightforward definition omitted *)

Figure 6. Interaction trees and their traces of events.

Supporting property-based testing requires executable spec-
ifications of the properties involved. Happily, interaction

trees, which play a crucial role throughout our development,

also work well with Coq-style program extraction, and hence

with testing. Testing must also be performed “modulo net-

work refinement” in the same way as verification. Section 6

describes this in more detail.

3 Interaction Trees
Components that interact with their environment appear

at many levels in our development (see Figure 1). We use

interaction trees (ITrees) as a general-purpose structure for
specifying such components. ITrees are a Coq adaptation

of similar concepts known variously as “freer,” “general,” or

“program” monads [Kiselyov and Ishii 2015; Letan et al. 2018;

McBride 2015]. We defer a deeper comparison until Section 8.

Constructing ITrees Figure 6 defines the type itree E R.

The definition is coinductive, so that it can represent poten-

tially infinite sequences of interactions, as well as divergent

behaviors. The parameter E is a type of external interactions—
it defines the interface by which a computation interacts

with its context. R is the result of the computation: if the

computation halts, it returns a value of type R.

There are three ways to construct an ITree. The Ret r

constructor corresponds to the trivial computation that halts

and yields the value r. The Tau t constructor corresponds to

a silent step of computation, which does something internal

that does not produce any visible effect and then continues

as t. Representing silent steps explicitly with Tau allows us,

for example, to represent diverging computation without

violating Coq’s guardedness condition:

CoFixpoint spin {E R} : itree E R := Tau spin.

The final, and most interesting, way to construct an ITree

is with the Vis X e k constructor. Here, e : E X is a “visi-

ble” external effect (including any outputs provided by the

computation to its context) and X is the type of data that the

context provides in response to the event. The constructor

also specifies a continuation, k, which produces the rest of

the computation given the response from the context. Vis

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

From C to Interaction Trees CPP, January 2019, Lisbon, Portugal

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

introduces branches into the interaction tree, because k can

behave differently for distinct values of type X.

Here is a small example that defines a type IO of out-

put or input interactions, each of which works with natural

numbers. It is then straightforward to define an ITree com-

putation that loops forever, echoing each input received to

the output:

Variant IO : Type → Type :=

| Input : IO nat

| Output : nat → IO ().

CoInductive echo : itree IO () :=

Vis Input (fun x⇒ Vis (Output x) (fun _⇒ echo)).

Working with ITrees Several properties of ITrees make

them appealing as a structure for representing interactive

computations. First, they are generic in the sense that, by

varying the E parameter, they can be instantiated to work

with different external interfaces. Moreover, such interfaces

can be built compositionally: for example, we can combine

a computation with external effects in E1 with a different

computation with effects in E2, yielding a computation with

effects in E1 + E2, the disjoint union of E1 and E2; there is a

natural inclusion of ITrees with interface E1 into ITrees with

interface E1 + E2. This approach is reminiscent of algebraic
effects [Plotkin and Power 2003]. Our development exploits

this flexibility to easily combine generic functionality, such

as a nondeterministic choice effect (which provides the or

operator used by the linear specification of Figure 3) with

domain-specific interactions such as the network send and

receive events. As with algebraic effects, we can write a han-
dler or interpreter for some or all of the external interactions

in an interface, for example to narrow the effects E1 + E2

down to just those in E1. Typically, such a handler will pro-

cess the events of E2 and “internalize” them by replacing

them with Tau steps.

Second, the type itree E is a monad [Wadler 1992], which

makes it convenient to structure effectful computations using

the conventions and notations of functional programming.

We package up the Ret constructor as a ret (return) operation

and use the sequencing notation x ← e ;; k for the monad’s

bind. With a bit of wrapping and a loop combinator forever,

we can rewrite the echo example with less syntactic clutter:

Definition echo : itree IO () :=

forever (x ← input ;; output x)

Third, the ITree definition works well with Coq’s extrac-

tion mechanism, allowing us to represent computations as

ITrees and run them for testing purposes. Here again, the

ability to provide a separate interpretation of events is useful,

since its meaning can be defined outside of Coq. In the echo

example, Output events could be linked to a console output

or to an OS’s network-send system call. ITrees thus provide

executable specifications.

r ← or e1 e2 ;; k ⊑ r ← ei ;; k i ∈ {1, 2}
r ← choose l ;; k ⊑ k x x ∈ l

r ← ret e ;; k ≡ k e

Tau k ≡ k

b ← (a ← e ;; f a);; g b ≡ a ← e ;; b ← f a ;; g b

Figure 7. Trace refinement and equivalence for ITrees.

Equivalence and Refinement Intuitively, ITrees that en-

code the same computation should be considered equivalent.

In particular, we want to equate ITrees that agree on their

terminal behavior (they return the same value) and on Vis

events; they may differ by inserting or removing any finite

number of Tau constructors. This “equivalence up to Tau” is a

form of weak bisimulation. We write t ≡ u when t and u are

equivalent up to Tau. The monad laws for ITrees also hold

modulo this notion of equivalence. (Some of the laws used

in our development are shown in Figure 7.)

ITrees that contain nondeterministic effects or that re-

ceive inputs from the environment denote a set of possible

traces—(finite prefixes of) execution sequences that record

each visible event together with the environment’s response.

The definitions of trace and the predicate is_trace, which

asserts that a trace belongs to an ITree, are shown in Fig-

ure 6. Subset inclusion of behaviors gives rise to a natural

notion of ITree refinement, written t ⊑ u, which says that

the traces of t are a subset of those allowed by u. We use this

refinement relation to allow an implementation to exhibit

fewer behaviors than those permitted by its specification.

Note that t ≡ u implies t ⊑ u.

ITrees as specifications: the linear specification Inter-

action trees provide a convenient yet rigorous way of for-

malizing specifications. We have already seen them in the

linear specification of the swap server in Figure 3. The itree

specE type there is an instance of itree whose visible events

include nondeterministic choice as well as observations of

swap request and response messages, which are events that

include message content and connection ID information. The

specification itself looks like a standard functional program

that uses an effects monad to capture network interactions.

ITrees as specifications: the implementationmodel We

use the same itree datatype, this time instantiated with a

socket API interface included in implE, to define the im-

plementation model, which is a lower-level (but still purely

functional) specification of the swap server that more closely

resembles the C code. Figure 8 shows the body of the main

loop from the implementation model.

In contrast to the linear specification, the implementation

model maintains a list of connection structures instead of

bare connection identifiers. Each structure records the state

for some connection. The state indicates whether the server

should be SENDING or RECVING on the connection (or whether

the connection is closed). The state also records the contents

of receive and send buffers. In each iteration of the loop,

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Definition select_loop_body

(server_addr : endpoint_id)

(buffer_size : Z)

(server_st : list connection * string)

: itree implE (bool * (list connection * string)) :=

let '(conns , last_full_msg) := server_st in
or

(r ← accept_connection server_addr ;;

match r with
| Some c⇒ ret (true , (c::conns , last_full_msg))

| None ⇒ ret (true , (conns , last_full_msg)) end)
(let waiting_to_recv :=

filter (has_conn_state RECVING) conns in
let waiting_to_send :=

filter (has_conn_state SENDING) conns in
c ← choose (waiting_to_recv ++ waiting_to_send);;

new_st ← process_conn buffer_size c last_full_msg ;;

let '(c', last_full_msg ') := new_st in
let conns ' :=

replace_when

(fun x⇒ if (has_conn_state RECVING x

|| has_conn_state SENDING x)%bool

then (conn_id x = conn_id c' ?)

else false) c' conns in
ret (true , (conns ', last_full_msg '))).

Figure 8. Loop body of the implementation model

the server either accepts a new connection or services a

connection that is in the SENDING or RECVING state. Servicing

a connection in the SENDING state means sending some prefix

of the bytes in the send buffer; servicing a connection in the

RECVING state means receiving some bytes on the connection.

Note that the control flow of this model differs from both

the linear specification and the C implementation. The lin-

ear specification bundles together request–response pairs

and totally abstracts away from the details of buffering and

interleaving communications among multiple clients. The re-

lationship between the implementation model and the linear

specification is given by network refinement, as we explain in

the next section. For the C implementation, a single iteration

of the main server loop in Figure 5 corresponds to multiple

iterations of the select loop body of the model. Neverthe-

less, we can prove that the C behavior is a refinement of the

implementation model, as we describe in Section 5.

4 Network Refinement
We show a “network refinement” relation between the im-

plementation model and the linear specification. At a high

level, this property is a form of observational refinement [He
et al. 1986]: the behaviors of the implementation that can be

observed from across the network are included in those of

the specification. Intuitively, this property is also an analog,

in the network setting, of linearizability for concurrent data

structures; we compare them in detail in Section 8.

The network We model a simple subset of the TCP socket

interface, where connections carry bytestreams (the bytes

sent on an individual connection are ordered); they are bidi-

rectional (both ends can send bytes) and reliable (what is

received is a prefix of what was sent). This network model

Inductive network_event : Type :=

| NewConnection (c : connection_id)

| ToServer (c : connection_id) (b : byte)

| FromServer (c : connection_id) (b : byte).

Definition network_trace : Type := list network_event.

Figure 9. Types for events and traces observed over the

network. network_event maps to event values to form traces

for both the specification and the implementation model.

Definition server_transition (ev : network_event)

(ns ns ' : network_state) : Prop :=

match ev with
| FromServer c b⇒ let cs := Map.lookup ns c in

match connection_status cs with
| ACCEPTED ⇒ let cs' := update_out

(connection_outbytes cs ++ [b]) cs

in ns ' = Map.update c cs ' ns

| PENDING | CLOSED⇒ False end.
| ... (* Other two cases *) end.

Definition client_transition : network_event →

network_state → network_state → Prop := ...

Figure 10. Network transitions labeled by network_event,

showing only the case where the server sends a byte.

is represented by a nondeterministic state machine where

each connection carries a pair of buffers of “in flight” bytes,

with labeled transitions for a client to open a connection,

a server to accept it, and either party to send and receive

bytes (Figures 9 and 10). For example, there is a transition

from network state ns to state ns', labeled FromServer c b,

if the connection cwas previously accepted by the server (its

status in ns is ACCEPTED) and the state ns' is obtained from

ns by adding byte b to the outgoing bytes on connection c.

We define a relation network_reordered_ ns ts tc : Prop

between server- and client-side traces of network events ts

and tc, which holds if they can be produced by an execution

of the network starting from state ns. For the initial state

with all connections closed, we define network_reordered ts

tc = network_reordered_ initial_ns ts tc. The trace tc is

a “disordering” of ts—i.e., tc is one possible trace a client

may observe if the server generated the trace ts. Conversely,

ts is a “reordering” of tc.

Network behavior of ITrees As mentioned in Section 3,

ITrees such as the implementation model (of type itree

implE) and the linear specification (itree specE) define sets

of event traces. From across the network, those events can

appear disordered to the client, so the network behavior of
an ITree is the set of possible disorderings of its traces (de-

fined using network_reorder). Finally, the ITree impl_model

network refines the linear_spec when the former’s network

behavior is included in the latter’s; see Figure 11.

Proving network refinement In order to prove that our

implementation model network refines the linear specifica-

tion, we establish logical proof rules for a generalization of

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

From C to Interaction Trees CPP, January 2019, Lisbon, Portugal

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Definition impl_behavior (impl : itree implE unit) :

network_trace → Prop :=

fun tr⇒ ∃ tr_impl , is_impl_trace impl tr_impl ∧

network_reordered tr_impl tr.

Definition spec_behavior (spec : itree specE unit) :

network_trace → Prop :=

fun tr⇒ ∃ tr_spec , is_spec_trace spec tr_spec ∧

network_reordered tr_spec tr.

Definition network_refines impl spec : Prop :=

∀ tr, impl_behavior impl tr → spec_behavior spec tr.

Figure 11. Definition of network refinement in Coq. The

functions is_impl_trace and is_spec_trace are thin wrap-

pers around is_trace that convert between traces of different

(but isomorphic) event types.

Record state := { get_ns : network_state;

get_spec : itree specE unit; ... }.

Definition nrefines_ (z : nat) (s : state)

(impl : itree implE unit) : Prop :=

∀ tr, is_impl_trace_ z s impl tr →

∃ dstr : network_trace ,

network_reordered_ (get_ns s) dstr tr ∧

is_spec_trace (get_spec s) dstr.

Figure 12. Refinement relation generalized for reasoning

network_refines, named nrefines_ (Figure 12). The nrefines_

relation is step-indexed (z : nat) to handle the server’s

nonterminating loop; it relates a subtree of the implemen-

tation model impl to a record s of the current state of the

network (get_ns s : network_state) and a subtree of the

specification ITree (get_spec s : itree specE unit).

Two example proof rules are shown in Figure 13. When

the server performs a network operation, for example when

it receives a byte on a connection c, we use a lemma such

as nrefines_recv_byte_: we must prove that the connection

c is open, and we then prove the nrefines_ relation on the

continuation k b, with an updated network state in s'.

At any point in the proof, we can also generate part of the

reordered trace from the linear specification ITree get_spec

s, using the lemma nrefines_network_transition_. We actu-

ally use this rule at exactly two “linearization points” in the

implementation model: right after the server accepts a new

connection, and after it receives a complete message from a

client and swaps it with the last stored message.

Using these rules, we prove the proposition ∀ z, nrefines_

z s0 impl_model, where s0 is defined so that get_spec s0

= linear_spec and get_ns s0 is the initial network state,

where all connections are closed; we can show this implies

the second clause of the correctness theorem (Figure 4).

5 Verification
Embedding ITrees in VST VST is a framework for prov-

ing separation logic specifications of C programs, based on

the C semantics of the CompCert compiler. Its separation

logic comes with a proof automation system, Floyd, that

Lemma nrefines_recv_byte_ z s

(c : connection_id) (k : byte → itree implE unit)

: In (get_status s c) [PENDING; ACCEPTED] →

(∀ b s', s' = append_inbytes c [b] s →

nrefines_ z s' (k b)) →

nrefines_ z s (b ← recv_byte c;; k b).

Lemma nrefines_network_transition_ z s obs ' ns ' t

(dtr : network_trace)

: (∀ dtr ', is_spec_trace obs ' dtr ' →

is_spec_trace (get_observer s)

(dtr ++ dtr ')) →

server_transitions dtr (get_ns s) ns' →

nrefines_ z (set_ns ns ' (set_observer obs ' s)) t →

nrefines_ z s t.

Figure 13. Example proof rules for nrefines_

supplies tactics for symbolically executing a program while

maintaining its pre- and postcondition [Cao et al. 2018]. To

support reasoning about external behavior in general—and

the swap server’s invocations of OS/network primitives in

particular—we extend VST’s logic with two abstract predi-
cates [Penninckx et al. 2015]; these are separation logic pred-

icates that behave like resources but do not have a footprint

in concrete memory. Instead they connect to VST’s model

of external state, which in this case represents the allowed

network behavior of the program. To make this possible, we

made a small modification to the internals of VST to enable

it to refer to the external state in assertions.

The first abstract predicate, ITree(t), injects an interac-

tion tree t into a VST assertion (an mpred):

Definition ITree {R} (t : itree implE R) : mpred :=

EX t' : itree implE R, !!(t ⊑ t') && has_ext t'.

ITree t asserts that the observation traces of t (i.e., the traces
that may be produced by a program satisfying the assertion

ITree t) are included in the traces that are permitted by the

external environment (here, the OS). The has_ext predicate

asserts that the external state (here representing the network

behavior the OS expects from the program) is exactly t ′. The
notation !!p lifts an ordinary Coq predicate p to a VST sepa-

ration logic predicate, and && and EX are logical conjunction

and existential quantification at the level of separation logic

assertions.

While a detailed description of VST’s support for external

state is beyond the scope of the present paper, we give some

key properties of this embedding. Internal code execution

does not depend on or alter external state, so every program

step that is not a call to the socket API leaves the ITree

predicate unchanged. The monad and equivalence laws

from the abstract theory of interaction trees are reflected as

(provable) entailments between ITree predicates (recall the

refinement relation of Figure 7):

t ⊑ u
ITree u ⊢ ITree t

This rule is contravariant because we can conform to the

ITree u by producing some subset of its allowed behavior.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

{ SOCKAPI st * ITree t *

data_at_ alloc_len buf_ptr *

!! ((r ← recv client_conn (Z.to_nat alloc_len) ;; k r)

⊑ t) *

!! (consistent_world st ∧ lookup_socket st fd =

ConnectedSocket client_conn) *

!! (0 ≤ alloc_len ≤ SIZE_MAX) }

ret = recv(int fd, void* buf_ptr , unsigned int
alloc_len , int flags)

{ ∃ (result : unit + option string) st ' ret contents ,

!! (0 ≤ ret ≤ alloc_len ∨ ret = - 1) *

!! (ret > 0 → (∃ msg , result = inr (Some msg) ∧ ...) ∧

st ' = st) *

!! (ret = 0 → result = inr None ∧ ...) *

!! (ret < 0 → result = inl tt ∧ ...) *

!! (Zlength contents = alloc_len) *

!! (consistent_world st ') *

SOCKAPI st ' *

ITree (match result with
| inl tt⇒ t

| inr msg⇒ k msg end) *

data_at alloc_len contents buf_ptr}

Figure 14. VST axiom for the recv system call.

External calls to network and OS functions are equipped

with specifications that reflect the evolution of interaction

trees, in resource-consuming fashion: actions are “peeled off”

from the ITree as execution proceeds, so that the interaction

tree in the postcondition of an external function specification

is a subtree of the tree in the precondition. The ITree found

in the outermost precondition of a program is thus a sound

approximation of all the program’s external interactions.

Hoare-logic specifications of system calls This use of

the ITree predicate can be seen in the VST axiom for the

recv system call in Figure 14. The precondition of this rule

requires that the ITree (r ← recv client_conn (...);; k

r), which starts with a recv event, be among the allowed

behaviors of t, so a legal implementation of this specification

is allowed to perform a recv call next. The postcondition

either leaves the interaction tree t untouched, in the case

that the call to recv failed, or says that the implementation

may continue as k msg, in the case that the call to recv
successfully returned a message msg.

Most of the remaining constraints relate the program vari-

ables and the variables in the interaction tree to the cor-

responding state in memory. For example, the predicate

data_at_ alloc_len buf_ptr says that buf_ptr points to a

buffer of length alloc_len. The constraint lookup_socket

st fd = ConnectedSocket client_conn says that the socket

with identifier fd is in the connected state according to

the API and is associated with the connection identifier

client_conn appearing in the interaction tree.

This socket information is tracked by a second abstract

predicate, SOCKAPI(st), which asserts that the external socket

API memory can be abstracted as st, mapping file descrip-

tors to socket states closed, opened, bound, listening, or

connected. Bound and listening states are associated with

an endpoint identifier in the network model, and connected

states are associated with a connection identifier in the net-

work model. The reason for modularly separating socket

states from interaction trees is that the latter describe truly

external behavior while the former concern the (private) con-

tract between the server program and the OS. Specifically,

the functions for creating sockets, binding them to addresses,

and closing sockets are not visible at the other end of the net-

work and are hence specified to only operate over SOCKAPI

abstract predicates. In general, system calls like recv that

affect the network state carry specifications of the form

{ SOCKAPI(st) * ITree (x ← op(a1, . . .); k x) * . . . }

op(a1, ...)

{ EX st' t'. SOCKAPI(st ') * ITree(t') * . . . ∧

(ϕ(r) → t' = k r) ∧ (¬ϕ(r) → t' = t)}

whereϕ is a boolean predicate distinguishing ITree-advancing

(successful) invocations from failed invocations (which leave

the ITree unmodified), by inspection of the implicitly quan-

tified return value r.

Verifying the C implementation Having defined the ab-

stract predicates we need to describe the network behavior

of the server, we can now prove that the C implementa-

tion refines the implementation model using VST’s sepa-

ration logic. The goal is to prove that the implementation

model impl_model is an envelope around the possible network
behaviors of the C program, i.e., every execution of the C

program performs only the socket operations described in

impl_model; this is expressed by the predicate ext_behavior

C_prog impl_model. This proof then composes with the net-

work refinement proof between impl_model and the linear

specification to give us the main theorem in Figure 4.

We prove ext_behavior C_prog impl_model by specifying

and proving a Hoare triple for each function in the C imple-

mentation. We begin with axiomatized Hoare triples for the

library functions, in particular those from the POSIX socket

API; these triples modify the SOCKAPI state and possibly con-

sume operations from the ITree, as described above.

We then specify Hoare triples for functions in the program,

including embedded interaction trees where appropriate.

Verification proceeds as in standard Hoare logic, including

formulating an appropriate invariant for each loop. The most

interesting invariant is for the main loop, shown in Figure 5;

among other things, the invariant states that head points

to a linked list l of connection structures, last_msg_store
points to a buffer storing a messageM , and the interaction

tree under ITree is an infinite loop of select_loop_body (Fig-

ure 8)) started on (l ,m); the server address and buffer size

are constants.

Note that it is not immediate that the C loop body refines

select_loop_body. The former iterates over all ready con-

nections in process_connections, while the latter works
on only one connection per iteration. However, each it-

eration in process_connections is itself an iteration of

select_loop_body, so the inner invariant carries the same

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

From C to Interaction Trees CPP, January 2019, Lisbon, Portugal

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

interaction tree. Conceptually, one iteration of the main loop

in C corresponds to multiple iterations of the model.

6 Testing
Our overall approach to verifying software includes testing

for errors in code and specifications before we invest too

much effort in verification. For the swap server, we used

QuickChick [Lampropoulos and Pierce 2018], a property-

based testing tool in Coq, to test both whether the C imple-

mentation satisfies the linear specification, and whether the

implementation model refines the linear specification. These

tests help establish confidence in all three artifacts.

Test setup Our testbed consists of a simple hand-written

client, the server to be tested, and the linear specification

that the server should satisfy. The client opens multiple TCP

connections to simulatemultiple clients communicatingwith

the server over the network.

The testing process is straightforward: First, the client

generates a random sequence of messages along randomly

chosen TCP connections. The client then collects a trace of

its interactions with the server—the messages that it sent and

the responses that it received in return on each connection.

Finally, the checker attempts to “explain” this trace by enu-

merating all of the possible reorderings of the real trace and

checking whether any of them is, in fact, a trace of the linear

specification. If such a trace is found, this test case passes,

and another trace is generated. If none of the reorderings

satisfies the specification, the tester reports that it has found

a counterexample. Before actually displaying the counterex-

ample, the tester attempts to shrink it using a greedy search

process modeled on the one used in Haskell’s QuickCheck

tool, successively throwing away bits of the counterexample

and rechecking to see whether the remainder still fails.

We can also test that the implementation model refines

the linear specification. The setup here is similar to the one

for the C program, but simpler because we can execute both

the client and server within a single Coq program rather

than extracting a client from Coq and running it with the

server and a network.

Testing the tester The proofs connecting our C implemen-

tation, implementation model, and linear specification were

well along before we completed the testing framework; this

meant that these artifacts were already thoroughly debugged,

and testing was not able to find any additional bugs.

To assess how effective testing might have been if it had

been deployed earlier in the process, we used QuickChick’s

mutation testing mode [DeMillo et al. 1978] to inject 12 dif-

ferent “plausible bugs” (of the sort commonly found in C:

pointer errors, bad initialization, off-by-one errors, etc.) into
the code and check that each could be detected during testing.

The bugs are added to the C program as comments marking

a section of “good code” and a “mutant” that can be substi-

tuted for it. QuickChick performs this substitution for each

of the mutants in turn, generates random tests as usual, and

reports how many tests it took to find a counterexample for

each of the mutants.

We analyzed the running time and number of tests needed

to capture the bugs, by repeating QuickChick for 29 times on

each mutant. For five of the 12 mutants (changing the initial

message buffer, sending extra bytes from the response buffer,

responding with wrong message, computing wrong connec-

tion state, and skipping the completeness check), the wrong

behavior was caught by the very first test in each run. Six

of the mutants passed the first test in some runs, but always

failed by the second test (sending wrong number of bytes,

storing to wrong message buffer, handling partial messages

incorrectly, dropping one byte of message, copying response

from wrong buffer, and skip populating response). The most

interesting mutant was changing the return value of the

recv call. 3/4 of the runs caught the bug within four rounds,

but others took up to nine rounds. This mutant sometimes

causes the server not to respond, which is trivially correct

because our specification does not deal with liveness. As a

result, the tester discarded up to three thousand test cases

where the server did not respond, and ran for up to five min-

utes before failing. The other mutants could fail within 0.4

second with 95% confidence.

It is hard to draw definite conclusions about the effective-

ness of testing from a case study of this size, but the fact

that we are able to detect a dozen different bugs, most quite

quickly, is an encouraging sign that this approach to testing

will provide significant value as the codebase and its speci-

fication become more complex. Reports in the literature of

property-based random testing of similar kinds of systems

(e.g., Dropbox [Hughes et al. 2016]) are also encouraging.

7 Connecting to CertiKOS
A key pillar of the proof of correctness of the C implemen-

tation is the specification of the socket operations such as

send and recv. We took these specifications as axioms when

proving the implementation model, but because we are run-

ning the server on top of CertiKOS, which has its own formal

specification, we should be able to go one step better: we

would like to prove that the socket operations as specified

by CertiKOS satisfy the axioms used in the VST proof. This

part of the case study is still in progress; we report here on

what we’ve achieved so far and identify the challenges that

remain.

The Socket API in CertiKOS CertiKOS provides its own

axiomatized specifications for the POSIX socket API. Unlike

VST specifications, which are expressed as Hoare triples,

CertiKOS specifications are written as state transition func-

tions on the OS abstract state. This state is a record with a

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Definition recv_spec (fd maxlen : Z) (d : OSData)

: option (OSData * Z) :=

let pid := d.(curid) in
(* Check that the ITree allows this behavior *)

match ZMap.get pid d.(itrees) with
| Vis (recv fd ' maxlen ') k⇒

if (fd = fd ' && maxlen = maxlen ') then
(* Query the oracle for the next network message *)

match net_oracle (ZMap.get pid d.(net)) with
| RECV msg⇒

(* Take up to maxlen bytes *)

let msg ' := prefix maxlen msg in
let len := length msg '⇒

(* Update the ITree based on len *)

let res := if (len > 0) then inr (Some msg ')

else if (len = 0) then inr None

else inl tt in
let itree ' := match res with

| inl tt⇒ ZMap.get pid d.(itrees)

| inr msg⇒ k msg end in
(* Update the OS state and return len *)

Some (d {itrees: ZMap.set pid itree ' d.(itrees)}

{rbuf: ZMap.set pid msg ' d.(rbuf)}

{net: RECV msg :: d.(net)}, len)

| _⇒ None end
else None

| _⇒ None end.

Figure 15. CertiKOS specification of recv

field for each piece of real or ghost state that the OS main-

tains. This includes, for example, buffers for received network

messages, or socket statuses. To provide a common language

with VST for expressing allowable network communications,

we have modified CertiKOS’ state to also include an ITree

for each user process.

A function like recv presents a challenge in that it de-

pends on nondeterministic behavior by the network, but the

specification must be a deterministic function. The standard

solution used in CertiKOS is to parametrize the specification

by an “environment context” [Gu et al. 2018], which acts as

a deterministic oracle that takes a log of events and returns

the next step taken by the environment. Because the only

restriction on the environment context is that it is “valid”

(e.g., for networks this could mean that receive events always

have a corresponding earlier send event), properties proved

about the specifications hold regardless of the particular

choice of oracle. Equipped with such a network oracle, the

specification of recv is fairly straightforward (Figure 15).

Bridging VST and CertiKOS memories The other major

gap between VST and CertiKOS is their treatment of mem-

ory. Both VST and CertiKOS build on CompCert’s memory

model to describe the state of memory, but the changes they

make to it are unrelated and incompatible. VST builds a step-

indexed model on top of CompCert memories [Appel 2014],

to allow for “predicates in the heap”-based features, includ-

ing recursive predicates and lock invariants. Hoare triples

are interpreted as assertions on these step-indexed memo-

ries. On the other hand, the CompCert model corresponds to

virtual memory, and treats independent memory allocations

as belonging to separate, nonoverlapping “blocks”, while

CertiKOS uses a “flat” memory model in which there is only

one block to more accurately represent the kernel’s view of

physical memory. To bridge this gap, we need to translate

VST pre- and postconditions into assertions on ordinary,

step-index-free CompCert memories (and vice versa), and

transform predicates on multiple-block CompCert memories

into predicates on CertiKOS’s flat memories (and vice versa).

Performing this translation in general is an interesting re-

search problem, but for this application, the specifications to

be connected have a very particular form. The pre- and post-

conditions send and recv functions are each divided into

two parts: a memory assertion on a single buffer, an array

of bytes meant to hold the message, and an ITree assertion

describing the external network behavior. This simplifies the

task of connecting the VST and CertiKOS specs: we just need

to relate the interaction tree to some component of the OS

state, and translate an assertion on a single piece of memory

into the flat memory model and back. (The other socket op-

erations do not involve any changes to user memory, though

they do modify kernel memory, which is abstracted to the C

program via the SOCKAPI predicate.)

We have explored this approach by sketching the corre-

spondence between the VST specification of recv and its

CertiKOS specification. We translated the VST pre- and post-

condition for recv into step-index-free predicates on Comp-

Cert memories and interaction trees by hand, and proved

the correctness of the translation using the underlying logic

of VST. We then wrote functions that transfer a single block

of memory between the CompCert model and the flat model,

and adapted the CertiKOS OS component representing the

network state to use interaction trees, so that the two systems

have a common language to describe network operations.

The network component of the CertiKOS OS state is now

a map that, for each user process, holds an interaction tree

describing the network communication that that process is

allowed to perform. Finally, we are in the process of prov-

ing that the CertiKOS specification for recv satisfies the

step-index-free, flattened versions of the VST pre- and post-

condition. This gives us a path to validating the axiomatized

specifications of the socket API that we rely on for the cor-

rectness of the C implementation: they can be substantiated

by connection to the (axiomatized) behavior of the socket

operations in the underlying operating system.

8 Related Work
Interaction trees As mentioned in Section 3, our “inter-

action trees” are a Coq-compatible variation of ideas found

elsewhere. Kiselyov and Ishii [2015] present a similar con-

cept under the name “freer monad”. It is proposed as an

improvement over a “free monad” type, which one might

hope to define in Coq as follows:

Inductive free (E : Type → Type) (R : Type) :=

| Ret : R → free E R

| Vis : E (free E R) → free E R. (* NOT PERMITTED!! *)

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

From C to Interaction Trees CPP, January 2019, Lisbon, Portugal

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Unfortunately, the recursive occurrence of free in the Vis

constructor is not strictly positive, so this definition will

be rejected by Coq. Thus in a total language, the choice

for the Vis constructor to separate the effect E X from the

continuation X → itree E R is largely driven by necessity,

whereas the work on freer monads proposes it as a matter

of convenience and performance.

The McBride [2015] variant, which builds on earlier work

by Hancock [2000], is called the “general monad.” It is defined

inductively, and its effects interface replaces our single E

: Type → Type parameter with S : Type and a type family

S → Type to calculate the result type. It was introduced as

a way to implement general recursive programs in a total

language (Agda), by representing recursive calls as effects

(i.e., Vis nodes). Our coinductively defined interaction trees

also support a general (monadic) fixpoint combinator.

Letan et al. [2018] present the “program monad” to model

components of complex computing systems. Like the general

monad, it is defined inductively. Whereas our interpretation

of ITrees is based on traces, they use a coinductively defined

notion of “operational semantics” to provide the context in

which to interpret programs, describing the state transitions

and results associated with method calls/effects.

Our choice to use coinduction and the Tau constructor

gives us a way to account for “silent” (internal) computa-

tion steps, and hence allows us to semantically distinguish

terminating from silently-diverging computations (which

is not easy with trace-based semantics, at least not with-

out adding a “diverges” terminal component to some of the

traces). Although liveness is explicitly not part of our cor-

rectness specification in this project (the spec is conditioned

on there being visible output), it is conceivable to strengthen

the specifications and account for Tau transitions as part of

the C semantics, which might allow one to prove liveness

properties (although VST does not currently support that).

However, there are also costs to working with coinduction:

our top-level programs are defined by CoFixpoint, and coin-

duction is generally not as easy to use in Coq as it could

be [Hur et al. 2013].

Verifying effectful systems A common approach to rea-

soning about effectful programs is to provide a model of

the state of the outside world, with access mediated strictly

through external functions. These functions may be given

(possibly non-deterministic) semantics directly [Chlipala

2015], or indirectly through an oracle [Férée et al. 2018;

Gu et al. 2016]. For example, in Férée et al. [2018], exter-

nal functions are called through a Foreign Function Interface

(FFI), and specification/verification is done with respect to

an instantiated FFI oracle that records external calls and

defines the state of the environment and the semantics of

external functions. In their work, a TextIO library was veri-

fied with respect to a model of the file system. Similarly, our

specifications in terms of Hoare triples assume a model of

external socket API memory, i.e., the state under the SOCKAPI
predicate, and describe how this state is transformed.

Stronger specifications of effectful programs can involve

dynamics (“what has happened”) rather than statics (“what is
the final state”). In such cases, a model of the external state is

commonly extended with (or taken to be) a trace or history of

past events, and specifications involve these traces. Chajed

et al. [2018]; Hawblitzel et al. [2015]; Leroy [2009]; Malecha

et al. [2011], etc. use this approach.
Our specifications are based on interaction trees (which

can be construed as sets of traces), with one major difference:

interaction trees specify “what is allowed to happen”. Rather
than reasoning about lists of events that have occurred in the

past, our reasoning is based on the trees of events that are
allowed to be produced in the future. One main advantage

of using interaction trees is that it gives us a unifying struc-

ture for specification, testing, and verification, as detailed in

Section 3. A similar underlying structure to interaction trees

is used as specifications of distributed systems in an early

version of F* [Swamy et al. 2011], but they did not show how

to use them for testing or how to do refinement.

Linearizability Network refinement is closely related to

linearizability [Herlihy and Wing 1990], a correctness crite-

rion for concurrent data structures. A data structure imple-

mentation is linearizable if, for every possible collection of

client threads, the behavior of the data structure is indistin-

guishable from the behavior of a sequential implementation

of the structure. Filipovic et al. [2009] related linearizability

to contextual refinement. Network refinement is essentially

this same idea of contextual refinement, but with network

effects playing the role of relaxed memory. Our network

model closely resembles TSO, and network refinement is

similar to TSO-linearizability [Burckhardt et al. 2012].

Verifyingnetworked servers In one early attempt at server

verification, Black [1998] verified security properties of the

thttpd web server, based on axiomatized C semantics. That

work did not establish the functional correctness of the web

server, the axiomatic semantics was not testable, and it did

not consider the effects of network reordering.

IronFleet [Hawblitzel et al. 2015] is a methodology for ver-

ifying distributed system implementations and it is similar

to our approach in several ways: both verify the functional

correctness of a networked system; both use a “one client at

a time” style specification at the top-level; and both verify

the correctness of a system implementation which inter-

leaves its operations via linearizability. However, there are

several major differences between IronFleet and our work:

(1) We are concerned with testing, as it allows us to find

implementation bugs early, and it also allows us to use the

same specification for blackbox-testing of existing imple-

mentations. For these reasons, we choose the executable

interaction trees to represent the specification. IronFleet fo-

cuses instead on reducing the burden of verification. It uses

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

non-executable state machines, and it relies on tools such as

IDEs to support rapid verification. (2) Our work verifies C

implementations. VST and CompCert ensure that the prop-

erties we have proved at the source-code level are preserved

after the program has been compiled to assembly code. Iron-

Fleet verifies programs written in Dafny [Leino 2010], and

extracts them to C#. This means that both the extraction

engine and the .NET compiler must be trusted. The authors

of IronFleet also suggest an alternative strategy to reduce

the trusted computing base, by first translating the programs

to assembly code, and verifying the assembly code using

an automatically translated specification [Hawblitzel et al.

2014]. However, that still requires the specification translator

to be trusted. (3) IronFleet is based on UDP, while our works

is based on TCP. Nevertheless, we both need to consider

packet reordering. The difference is that messages will not

be reordered on each individual connection. (4) IronFleet

uses TLA+ [Lamport 2002] to prove liveness properties. The

partial-correctness approach of separation logic makes it

more difficult to reason about liveness.

CSPEC [Chajed et al. 2018] is a framework for verifying

concurrent software. CSPEC focuses on reducing the num-

ber of interleavings a verifier must consider. To do that, it

provides a general verification framework built on mover
types [Lipton 1975]. We may be able to use mover types to

simplify the process of proving network refinement.

Verdi [Wilcox et al. 2015] is a framework for verified dis-

tributed systems that work under different fault and net-

work models. Verified System Transformers transform a dis-

tributed system verified under one model to one that works

in another. In particular, the Raft system transformer [Woos

et al. 2016] transforms a given state machine (server) into a

distributed system of servers that synchronize state using

Raft messages, over a network that may drop, reorder, or

duplicate messages. Any trace of Raft I/O messages produced

by the distributed system can then be linearized to an I/O

trace of the input state machine. Distributed systems and

transformers are written in Coq and extracted to OCaml.

Ridge [2009] verified the functional correctness and lin-

earizability of a networked, persistentmessage queuewritten

in OCaml using the HOL4 theorem prover. In contrast to

Verdi and Ridge’s work, our methodology focuses on test-

ing and verifying C implementations, dealing with the full

complexity of low-level programming including memory

allocation and pointer aliasing.

For simplicity, our work builds on a small subset of axiom-

atized TCP specifications. A rigorous and experimentally-

validated specification of TCP can be found in Bishop et al.

[2005a,b]; Ridge et al. [2009].

Testing There is more research on testing linearizability

of concurrent or distributed systems than we can summarize

here, including Burckhardt et al. [2010]; Scott et al. [2016];

Shacham et al. [2011]; Vechev et al. [2009]. Our work is dis-

tinguished by the focus on uniting testing and verification

in the same framework. The QuickChick property-based

testing methodology has been shown to be useful in formal

verification [Lampropoulos and Pierce 2018]. There are also

many accounts of successfully applying property-based ran-

dom testing to real-world systems. For example, Hughes and

Bolinder [2011] used QuickCheck to test for race conditions

in dets, a vital component of the Mnesia distributed data-

base system; Arts et al. [2015] have applied the methodology

to test the AUTOSAR Basic Software for Volvo Cars; and

Hughes et al. [2016] tested the linearizability of Dropbox,

the distributed synchronization service.

9 Conclusions and Future Work
Starting from a C implementation and a “one client at a

time” specification of swap server behavior, we have proved

that every execution of the implementation correctly follows

the specification. The proof breaks down into layers of re-

finements: from the C program to an implementation-level

interaction tree, and from there, via network refinement to
the linear interaction tree. We use VST to verify the C code,

pure Coq to relate the trees, QuickChick to test our specifi-

cations and implementations, and CertiKOS to validate our

specifications of network communication. The result is a

proof of the correctness of the swap server from the linear

specification down to the interface between the C program

and the operating system.

Although this work represents significant progress to-

wards theDeep Specification project’s goal of formally-verified

systems software, much remains to be done. The verification

of the swap server has tested the limits of VST, in terms of

both scale and style of specifications. Previous VST verifi-

cations were self-contained libraries, but this swap server

interacts with the OS through the socket API, requiring us

to develop new features (the external assertions) that should

be useful for verifying a variety of more realistic programs.

A clear next step is to fully verify the socket API used by

the server, by completing the proof that each VST socket

axiom follows from the specification of the corresponding

operation in CertiKOS. Doing so will require several more

proofs along the lines of our verification of recv, bridging
the gap between VST’s step-indexedmemory and CertiKOS’s

flat memory, as well as defining a suitable C-level abstraction

of the kernel memory related to the socket operations. This

will further extend the reach of our result, so that we rely

only on the correctness of the operating system’s model of

the socket API.

References
AndrewW. Appel. 2014. Program Logics - for Certified Compilers. Cambridge

University Press. http://www.cambridge.org/de/academic/subjects/
computer-science/programming-languages-and-applied-logic/
program-logics-certified-compilers?format=HB

12

http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

From C to Interaction Trees CPP, January 2019, Lisbon, Portugal

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce,

Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017. Position

paper: the science of deep specification. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 375, 2104 (2017). https://doi.org/10.1098/rsta.2016.0331

Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Test-

ing AUTOSAR software with QuickCheck. In Eighth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2015
Workshops, Graz, Austria, April 13-17, 2015. 1–4. https://doi.org/10.1109/
ICSTW.2015.7107466

M. Belshe, R. peon, and M. Thomson. 2015. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. RFC Editor. http://www.rfc-editor.org/
rfc/rfc7540.txt

Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael

Smith, and KeithWansbrough. 2005a. TCP, UDP, and Sockets: rigorous and
experimentally-validated behavioural specification. Volume 1: Overview.
Technical Report UCAM-CL-TR-624. Computer Laboratory, University of

Cambridge. http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-624.
html 88pp.

Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael

Smith, and Keith Wansbrough. 2005b. TCP, UDP, and Sockets: rigorous
and experimentally-validated behavioural specification. Volume 2: The
Specification. Technical Report UCAM-CL-TR-625. Computer Labora-

tory, University of Cambridge. http://www.cl.cam.ac.uk/TechReports/
UCAM-CL-TR-625.html 386pp.

Paul E. Black. 1998. Axiomatic Semantics Verification of a Secure Web Server.
Ph.D. Dissertation. Provo, UT, USA. AAI9820483.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010.

Line-up: a complete and automatic linearizability checker. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010.
330–340. https://doi.org/10.1145/1806596.1806634

Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok

Yang. 2012. Concurrent Library Correctness on the TSO Memory Model.

In Programming Languages and Systems - 21st European Symposium on
Programming, ESOP 2012, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings. 87–107. https://doi.org/10.1007/
978-3-642-28869-2_5

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and An-

drew W. Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify

Correctness of C Programs. J. Autom. Reasoning 61, 1-4 (2018), 367–422.

https://doi.org/10.1007/s10817-018-9457-5
Tej Chajed, Frans Kaashoek, Butler Lampson, and Nickolai Zeldovich. 2018.

Verifying a concurrent mail server with CSPEC. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA. https://www.usenix.org/conference/osdi18/
presentation/chajed

Adam Chlipala. 2015. From Network Interface to Multithreaded Web Appli-

cations: A Case Study in Modular Program Verification. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
609–622. https://doi.org/10.1145/2676726.2677003

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for

random testing of Haskell programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00),
Montreal, Canada, September 18-21, 2000. 268–279. https://doi.org/10.
1145/351240.351266

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data

Selection: Help for the Practicing Programmer. Computer 11, 4 (April
1978), 34–41. https://doi.org/10.1109/C-M.1978.218136

Hugo Férée, Johannes Åman Pohjola, Ramana Kumar, Scott Owens, Mag-

nus O Myreen, and Son Ho. 2018. Program Verification in the Presence

of I/O: Semantics, verified library routines, and verified applications.

In 10th Working Conference on Verified Software: Theories, Tools, and
Experiments.

Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang.

2009. Abstraction for Concurrent Objects. In Programming Languages
and Systems, 18th European Symposium on Programming, ESOP 2009,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. 252–266.
https://doi.org/10.1007/978-3-642-00590-9_19

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,

Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible Ar-

chitecture for Building Certified Concurrent OS Kernels. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016. 653–669. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/gu

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie

Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ra-

mananandro. 2018. Certified concurrent abstraction layers. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.
646–661. https://doi.org/10.1145/3192366.3192381

Peter Hancock. 2000. Ordinals and interactive programs. Ph.D. Dissertation.
University of Edinburgh, UK. http://hdl.handle.net/1842/376

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2015. IronFleet:

proving practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015. 1–17. https://doi.org/10.1145/2815400.2815428

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,

Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-End Security

via Automated Full-System Verification. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014. 165–181. https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/hawblitzel

Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. 1986. Data Refinement

Refined. In ESOP 86, European Symposium on Programming, Saarbrücken,
Federal Republic of Germany, March 17-19, 1986, Proceedings. 187–196.
https://doi.org/10.1007/3-540-16442-1_14

MauriceHerlihy and JeannetteM.Wing. 1990. Linearizability: ACorrectness

Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12,
3 (1990), 463–492. https://doi.org/10.1145/78969.78972

JohnHughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. 2016. Myster-

ies of DropBox: Property-Based Testing of a Distributed Synchronization

Service. In 2016 IEEE International Conference on Software Testing, Ver-
ification and Validation, ICST 2016, Chicago, IL, USA, April 11-15, 2016.
135–145. https://doi.org/10.1109/ICST.2016.37

John M. Hughes and Hans Bolinder. 2011. Testing a database for race

conditions with QuickCheck. In Proceedings of the 10th ACM SIGPLAN
workshop on Erlang, Tokyo, Japan, September 23, 2011. 72–77. https:
//doi.org/10.1145/2034654.2034667

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The

Power of Parameterization in Coinductive Proof. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’13). ACM, New York, NY, USA, 193–206.

https://doi.org/10.1145/2429069.2429093
Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects.

In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell
2015, Vancouver, BC, Canada, September 3-4, 2015. 94–105. https://doi.
org/10.1145/2804302.2804319

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley.

Leonidas Lampropoulos and Benjamin C. Pierce. 2018. QuickChick: Property-
Based Testing in Coq. Electronic textbook. https://softwarefoundations.
cis.upenn.edu/qc-current/index.html

13

https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1109/ICSTW.2015.7107466
https://doi.org/10.1109/ICSTW.2015.7107466
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-624.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-624.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-625.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-625.html
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/s10817-018-9457-5
https://www.usenix.org/conference/osdi18/presentation/chajed
https://www.usenix.org/conference/osdi18/presentation/chajed
https://doi.org/10.1145/2676726.2677003
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/978-3-642-00590-9_19
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3192366.3192381
http://hdl.handle.net/1842/376
https://doi.org/10.1145/2815400.2815428
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1007/3-540-16442-1_14
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/ICST.2016.37
https://doi.org/10.1145/2034654.2034667
https://doi.org/10.1145/2034654.2034667
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://softwarefoundations.cis.upenn.edu/qc-current/index.html

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

CPP, January 2019, Lisbon, Portugal Koh, Li, Li, Xia, Beringer, Honore, Mansky, Pierce, and Zdancewic

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for

Functional Correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-
gal, April 25-May 1, 2010, Revised Selected Papers. 348–370. https:
//doi.org/10.1007/978-3-642-17511-4_20

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. 2018.

Modular Verification of Programswith Effects and Effect Handlers in Coq.

In Formal Methods - 22nd International Symposium, FM 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018,
Proceedings. 338–354. https://doi.org/10.1007/978-3-319-95582-7_20

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of

Parallel Programs. Commun. ACM 18, 12 (1975), 717–721. https://doi.
org/10.1145/361227.361234

Gregory Malecha, Greg Morrisett, and Ryan Wisnesky. 2011. Trace-based

Verification of Imperative Programs with I/O. J. Symb. Comput. 46, 2
(Feb. 2011), 95–118. https://doi.org/10.1016/j.jsc.2010.08.004

Coq development team. 2018. The Coq proof assistant reference manual.
LogiCal Project. http://coq.inria.fr Version 8.8.1.

Conor McBride. 2015. Turing-Completeness Totally Free. In Mathemat-
ics of Program Construction - 12th International Conference, MPC 2015,
Königswinter, Germany, June 29 - July 1, 2015. Proceedings. 257–275.
https://doi.org/10.1007/978-3-319-19797-5_13

Vivek S. Pai, Peter Druschel, andWilly Zwaenepoel. 1999. Flash: An efficient

and portable Web server. In Proceedings of the 1999 USENIX Annual
Technical Conference, June 6-11, 1999, Monterey, California, USA. 199–212.
http://www.usenix.org/events/usenix99/full_papers/pai/pai.pdf

Willem Penninckx, Bart Jacobs, and Frank Piessens. 2015. Sound, Mod-

ular and Compositional Verification of the Input/Output Behavior of

Programs. In Programming Languages and Systems - 24th European Sym-
posium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings. 158–182. https://doi.org/10.1007/
978-3-662-46669-8_7

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic

Effects. Applied Categorical Structures 11, 1 (2003), 69–94. https://doi.
org/10.1023/A:1023064908962

Thomas Ridge. 2009. Verifying distributed systems: the operational ap-

proach. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009. 429–440. https://doi.org/10.1145/1480881.1480934

Thomas Ridge, Michael Norrish, and Peter Sewell. 2009. TCP, UDP, and
Sockets: Volume 3: The Service-level Specification. Technical Report UCAM-

CL-TR-742. University of Cambridge, Computer Laboratory. 305pp.

Colin Scott, Aurojit Panda, Vjekoslav Brajkovic, George C. Necula, Arvind

Krishnamurthy, and Scott Shenker. 2016. Minimizing Faulty Execu-

tions of Distributed Systems. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016. 291–309. https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/scott

Ohad Shacham, Nathan Grasso Bronson, Alex Aiken, Mooly Sagiv, Martin T.

Vechev, and Eran Yahav. 2011. Testing atomicity of composed concurrent

operations. In Proceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27,
2011. 51–64. https://doi.org/10.1145/2048066.2048073

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan

Bhargavan, and Jean Yang. 2011. Secure distributed programming with

value-dependent types. In Proceeding of the 16th ACM SIGPLAN interna-
tional conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011. 266–278. https://doi.org/10.1145/2034773.2034811

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with Model

Checking Linearizability. In Model Checking Software, 16th International

SPIN Workshop, Grenoble, France, June 26-28, 2009. Proceedings. 261–278.
https://doi.org/10.1007/978-3-642-02652-2_21

PhilipWadler. 1992. Monads for functional programming. In Program Design
Calculi, Proceedings of the NATO Advanced Study Institute on Program
Design Calculi, Marktoberdorf, Germany, July 28 - August 9, 1992. 233–264.
https://doi.org/10.1007/978-3-662-02880-3_8

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,

Michael D. Ernst, and Thomas E. Anderson. 2015. Verdi: a framework for

implementing and formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015. 357–368. https:
//doi.org/10.1145/2737924.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D.

Ernst, and Thomas E. Anderson. 2016. Planning for change in a formal

verification of the raft consensus protocol. In Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs, Saint Petersburg,
FL, USA, January 20-22, 2016. 154–165. https://doi.org/10.1145/2854065.
2854081

14

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-319-95582-7_20
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/361227.361234
https://doi.org/10.1016/j.jsc.2010.08.004
http://coq.inria.fr
https://doi.org/10.1007/978-3-319-19797-5_13
http://www.usenix.org/events/usenix99/full_papers/pai/pai.pdf
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1145/1480881.1480934
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/scott
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/scott
https://doi.org/10.1145/2048066.2048073
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	2 Overview
	3 Interaction Trees
	4 Network Refinement
	5 Verification
	6 Testing
	7 Connecting to CertiKOS
	8 Related Work
	9 Conclusions and Future Work
	References

