
The Science of

Deep Specification
Benjamin C. Pierce

University of Pennsylvania

SPLASH
November, 2016

The Science of

Deep Specification
Benjamin C. Pierce

University of Pennsylvania

SPLASH
November, 2016

“We can’t build
software that works!”

Or can we??

How did that happen?

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Stable platforms and frameworks

• Better use of specifications

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Stable platforms and frameworks

• Better use of specifications

I.e., descriptions of what
software does (as

opposed to how to do it)

What are
“deep” specifications?

Formal

Deep specifications are…

Rich

Live

mathematically precise

Two-sided

automatically checked against
actual code (not just a model)

exercised by both implementations
and clients

precisely expressing intended
behavior of complex software (a spectrum!)

(+ two-sided)

A Short Story
about a tiny compiler

and its specification(s)…

Inductive instr : Type :=
| PUSH : nat -> instr
| PLUS : instr
| MINUS : instr
| MULT : instr.

Definition my_favorite_instructions
: list instr :=

[PUSH 10; PUSH 4; MULT; PUSH 2; PLUS].

A datatype of stack machine instructions

An example instruction sequence

(All examples in Gallina, the functional language of the Coq proof assistant)

Fixpoint execute (s : list nat) (p : list instr) : list nat :=
match (s, p) with
| (_, nil) => s
| (_, (PUSH n) ::p') => execute (n ::s) p'
| (m::n::s', PLUS ::p') => execute ((m+n)::s') p'
| (m::n::s', MINUS ::p') => execute ((m-n)::s') p'
| (m::n::s‘, MULT ::p') => execute ((m*n)::s') p'
| (_, _ ::p') => execute s p'
end.

Operational semantics of the stack machine

Starting stack
Program

Final stack

Default: Skip this instruction

Inductive exp : Type :=
| Num : nat -> exp
| Plus : exp -> exp -> exp
| Minus : exp -> exp -> exp
| Mult : exp -> exp -> exp.

Definition my_favorite_number : exp :=
Plus (Mult (Num 10) (Num 4)) (Num 2).

A datatype of arithmetic expressions

An example value belonging to the type exp

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

A compiler from arithmetic expressions to stack instructions

Specifying our compiler…

An Informal Specification

Compiling an arithmetic expression should yield
stack-machine instructions that compute the
corresponding numeric result:

• (Plus e1 e2) means add the results of e1 and e2

• (Minus e1 e2) means subtract the results of e1 and e2

• (Mult e1 e2) means multiply the results of e1 and e2

Formal ✘

Live ✘

Rich ✔

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Formal ✔

Live ✔

Rich ✘

A (Very) Simple Formal Specification
Types!

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e1 : assert (eq (compile (Num 42))
[PUSH 42]).

Example e2 : assert (eq (compile (Plus (Num 2) (Num 2)))
[PUSH 2; PUSH 2; PLUS]).

Formal ✔

Live ✔

Rich ✔/✘

Another Simple Formal Specification

Unit tests

Can we do better?

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e1 : assert (eq (compile (Num 42))
[PUSH 42]).

Example e2 : assert (eq (compile (Plus (Num 2) (Num 2)))
[PUSH 2; PUSH 2; PLUS]).

We don’t really care
what instructions we

generate: we just want
executing them to give

the right answer!

For Coq savants:
Definition assert b := (b = true).

Fixpoint eval (e : exp) : nat :=
match e with
| Num n => n
| Plus e1 e2 => (eval e1) + (eval e2)
| Minus e1 e2 => (eval e1) - (eval e2)
| Mult e1 e2 => (eval e1) * (eval e2)
end.

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).

Operational semantics of the source language

yields a stack containing the result of evaluating the
original expression.”

“Executing the compiled code in an empty stack…

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).

Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).

Example e5 :
assert (eq (execute [] (compile (Mult (Num 0) (Num 3))))

[eval (Mult (Num 0) (Num 3))]).

Example e6 :
assert (eq (execute [] (compile (Mult (Num 2) (Num 2))))

[eval (Mult (Num 2) (Num 2))]).

Example e7 :
assert (eq (execute [] (compile (Mult (Num 3) (Num 1))))

[eval (Mult (Num 3) (Num 1))]).

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e1 ++ [MULT]
end.

Example e7 :
assert (eq (execute [] (compile (Mult (Num 3) (Num 1))))

[eval (Mult (Num 3) (Num 1))]).

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

design

Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. …

informal specification

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).
Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).
...

unit tests

code
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

design

code

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).
Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).
...

unit tests

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

code

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).
Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).
...

unit tests

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

wtf?

Definition compiles_correctly (e : exp) :=
eq (execute [] (compile e)) [eval e].

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).

Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).

Example e5 :
assert (eq (execute [] (compile (Mult (Num 0) (Num 3))))

[eval (Mult (Num 0) (Num 3))]).

Example e6 :
assert (eq (execute [] (compile (Mult (Num 2) (Num 2))))

[eval (Mult (Num 2) (Num 2))]).

Definition compiles_correctly (e : exp) :=
eq (execute [] (compile e)) [eval e].

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).

Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).

Example e5 :
assert (eq (execute [] (compile (Mult (Num 0) (Num 3))))

[eval (Mult (Num 0) (Num 3))]).

Example e6 :
assert (eq (execute [] (compile (Mult (Num 2) (Num 2))))

[eval (Mult (Num 2) (Num 2))]).

Definition compiles_correctly (e : exp) :=
eq (execute [] (compile e)) [eval e].

Example e3 :
assert (eq (execute [] (compile (Plus (Num 2) (Num 2))))

[eval (Plus (Num 2) (Num 2))]).

Example e4 :
assert (eq (execute [] (compile (Plus (Num 5) (Num 3))))

[eval (Plus (Num 5) (Num 3))]).

Example e5 :
assert (eq (execute [] (compile (Mult (Num 0) (Num 3))))

[eval (Mult (Num 0) (Num 3))]).

Example e6 :
assert (eq (execute [] (compile (Mult (Num 2) (Num 2))))

[eval (Mult (Num 2) (Num 2))]).

Definition compiles_correctly (e : exp) :=
eq (execute [] (compile e)) [eval e].

Example e3 :
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 :
assert (compiles_correctly (Plus (Num 5) (Num 3))).

Example e5 :
assert (compiles_correctly (Mult (Num 0) (Num 3))).

Example e6 :
assert (compiles_correctly (Mult (Num 2) (Num 2))).

Specification-Based Testing

Random Concolic

Enumerative

etc.etc.

Specification-Based Random Testing

Idea:

• Generate lots of random values of type
exp

• See if compiles_correctly returns
true for each of them

Haskell
QuickCheck
[Claessen&Hughes]

QuickChick compiles_correctly.

Counterexample found after 4 tests:

Plus (Plus (Minus (Num (3)) (Num (0))
) (Plus (Num (3)) (Num (2)))) (Plus
(Minus (Num (0)) (Num (0))) (Mult (
Num (0)) (Num (3))))!

QuickChick compiles_correctly.

Counterexample found after 4 tests:

Plus (Plus (Minus (Num (3)) (Num (0))
) (Plus (Num (3)) (Num (2)))) (Plus
(Minus (Num (0)) (Num (0))) (Mult (
Num (0)) (Num (3))))

Idea:

• Generate lots of random values of type
exp

• For each, see if compiles_correctly
returns true

• If a failing example is found, perform a
greedy search for a minimal failing
example (“shrinking”)

QuickChick compiles_correctly.

Counterexample found after 4 tests and 8
shrinks:

Minus (Num 3) (Num 0)

with shrinking on…

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

QuickChick compiles_correctly.

Counterexample found after 4 tests and 8
shrinks:

Minus (Num 3) (Num 0)

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

Fixpoint execute (s : list nat) (p : list instr) : list nat :=
match (s, p) with
| (_, nil) => s
| (_, (PUSH n) ::p') => execute (n ::s) p'
| (m::n::s', PLUS ::p') => execute ((m+n)::s') p'
| (m::n::s', MINUS ::p') => execute ((m-n)::s') p'
| (m::n::s‘, MULT ::p') => execute ((m*n)::s') p'
| (_, _ ::p') => execute s p'
end.

compile leaves the arguments of Minus
in the wrong order on the stack!

Beyond Testing…

What else can we do with a specification?

• Synthesize programs that satisfy it

• Build run-time monitors that check for violations

• Prove that an implementation satisfies it

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.

Lemma execute_eval_comm : forall e stack,
execute stack (compile e) = eval e :: stack.

Theorem compile_correct : forall e,
assert (compiles_correctly e).

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.

- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1.
reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.

- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1.
reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.

- reflexivity.
- destruct a; simpl; intros;
destruct stack as [|x [|y stack']];
try rewrite IHp1; reflexivity.

Qed. Simple automation

No automation

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.

- reflexivity.
- destruct a.
+ intros. simpl. rewrite IHp1.
reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

+ intros. simpl.
destruct stack as [|x [|y stack']].
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.
* rewrite IHp1. reflexivity.

Qed.

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1.

- reflexivity.
- destruct a; simpl; intros;
destruct stack as [|x [|y stack']];
try rewrite IHp1; reflexivity.

Qed. Simple automation

No automation

Lemma execute_app : forall p1 p2 stack,
execute stack (p1 ++ p2)

= execute (execute stack p1) p2.
Proof.
induction p1;

try (destruct a);
try (destruct stack

as [|x [|y stack']]);
crush.

Qed. Chlipala automation

design

code

Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. …

informal specification

Example e3 :
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 :
assert (compiles_correctly (Plus (Num 5) (Num 3))).

...

unit tests

Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

executable specification
Definition compiles_correctly (e : exp) :=

eq (execute [] (compile e)) [eval e].

logical specification
∀(e : exp),

eq (execute [] (compile e)) [eval e].

thinking

Formal ✔

Live ✔

Rich ✔/✘

Formal ✔

Live ✔

Rich ✔

Formal ✔

Live ✔

Rich ✔

Formal ✘

Live ✘

Rich ✔

What about “two-sided”?

eval

execute

compile

eval

optimize

Theorem optimize_correct :
forall e,

eval (optimize e)
= eval e.

nice story

does it scale??

Some recent
“deep specifications”

Formal ✔

Live ✔

Rich ✔

rigorously tested specifications
of existing real-world artifacts

formally verified specifications
of new artifacts

“live” = “exhaustively tested”…

• Full-scale formal specifications
of a range of critical interfaces
• X86 instruction set

• TCP protocol suite

• Posix file system interface

• Weak memory consistency
models for x86, ARM, PowerPC

• ISO C / C++ concurrency

• Elf loader format

• C language (Cerberus – also see
Krebbers, K semantics, …)

“Rigorous
Engineering of
Mainstream
Systems”

• Engineers at Quviq built an executable specification
based on the 3000-page AutoSAR standard for
automotive software components

• QuickCheck-based testing found >200 faults in
AutoSAR Basic Software, including >100
inconsistencies in the standard

“live” = “verified”…

• Accepts most of ISO C 99

• Produces machine code for PowerPC, ARM, and
IA32 (x86 32-bit) architectures

• 90% of the performance of GCC (v4, opt. level 1)

• Fully verified (at the source-code level)

deep specifications!

• 50,000 lines of Coq

• 8k code (~= 40k of C or Java)

• 42k specification and proof

Verification really works!
Regehr’s Csmith project used random testing to assess all popular C
compilers, and reported:

``The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early
2011, the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find wrong-code
errors. This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler optimizations
within a proof framework, where safety checks are explicit and machine-
checked, has tangible benefits for compiler users.”

59

John Regehr
Univ. of Utah

• Verified compiler from a substantial subset of Standard ML to x86-
64 machine code (ARM, MIPS, and RISC-V are anticipated)

• Bootstrapped!
• The compiler itself is implemented in CakeML, so its executable is

guaranteed to implement the compilation algorithm described by its source
code

• Correctness proofs use validated ISA models for machine code

• Goal is to implement a proof assistant in CakeML and use it to
verify CakeML’s own correctness proof
• TinyTCB!!

• Real-world operating-system kernel with an
end-to-end proof of implementation
correctness and security enforcement

• Verified down to machine code

• Ironclad Apps: verifying the security of a
complete software stack

• IronFleet: verifying safety and liveness of
distributed systems

User can securely transmit her data to a remote machine with
the guarantee that every instruction executed on that machine
adheres to a formal abstract specification of the app’s behavior.

• Ongoing project aiming to build and deploy a verified HTTPS
stack

• drop-in replacement for the HTTPS library in mainstream web
browsers, servers, etc.

• Coq framework for implementing, specifying, verifying,
and compiling Bluespec-style hardware components.

• E.g., a RISC-V implementation (w 4-stage pipeline), fully
verified down to RTL

Verdi

• Framework for implementing and
formally verifying distributed systems
• E.g. verified implementation of the Raft

distributed consensus protocol

• Verified system transformers encapsulate
common fault tolerance techniques
• Developers verify an application in an

idealized fault model, then apply a VST to
obtain an application with analogous
properties in a more adversarial environment

• The Vellvm project has built a formal
specification of the intermediate representation
used by the popular LLVM compiler.

• This spec has been used to build verified compiler
transformations that can be plugged into LLVM.
Their performance is competitive with unverified
transformations.

• The specification has been validated against the
LLVM test suite.

• Certified compiler from Coq to C

• and then, via CompCert, to assembly

• (in progress)

Haskell CoreSpec is an ongoing effort to formally
specify the core intermediate language of the
GHC compiler and verify key compiler passes

• C verification framework based on
higher-order separation logic in Coq

• Verified implementations of OpenSSL-
HMAC and SHA-256

• working on additional cryto primitives
(HMAC-based Deterministic Random
Byte Generation, AES), parts of
TweetNaCL

Verified Textbooks!

And more!

• Bedrock system

• Ur/Web compiler

• CompCert TSO compiler

• CompCert static analysis tools

• Jitk and Data6 verified filesystems

• Verified Fscq from MIT

• …

Why now?

Urgent need for increased confidence
+

Diminishing value of “paper proofs”
+

Progress on enabling technologies

Enabling Technologies

Better theory
• Operational semantics, etc.

• Domain-specific logics
• E.g. Separation logic

Enabling Technologies

Better tools
• Proof assistants

• Coq, Isabelle, ACL2, Twelf, HOL-light, …

• Testing tools and methodologies
• QuickCheck, QuickChick, …

• DSLs for writing specifications
• OTT, Lem, Redex, …

• Languages with integrated specifications
• Dafny, Boogie, JML, F*, Liquid Types, Verilog PSL,

Dependent Haskell, ...

QuickCheck

Enabling Technologies

Faster hardware
also helps!

What next?

The Science
of Deep Specification

Stephanie Weirich
University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

Andrew Appel
Princeton

Zhong Shao
Yale

Adam Chlipala
MIT

Yours truly
University of Pennsylvania

Move from

one-off success stories
to

sustainable engineering practice
at industrially relevant scale

Goal:

Lessons from CompCert

C language

CompCert
Compiler

PowerPC ISA

Program Logic

Verifiable C
System

C language

IBM’s CPU

Transistors

PowerPC ISA

OS client interface

CertiKOS
hypervisor kernel

C language

81

CompCert
Compiler

PowerPC ISA

C language

IBM’s CPU

Transistors

PowerPC ISA

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language

82

CompCert
Compiler

IBM’s CPU

Transistors

Program Logic

Verifiable C
System

C language

OS client interface

CertiKOS
hypervisor kernel

C language

C language

PowerPC ISA

PowerPC ISA

Research threads

Fiat/Kami RISC-V implementation, verified down to RTL
CertiCoq Verified Gallina-to-CompCert-C compiler
CertiKOS Verified OS / hypervisor
VST Verified Software Toolchain for C
Vellvm Verified LLVM
Core Haskell Formal model of GHC core
QuickChick Specification-based random testing in Coq

Course design

• Undergrad
• Drop-in replacements for standard compiler and OS courses

• Built around pedagogical versions of Vellvm and CertiKOS

• Students will learn to read and interact with specifications (but not proofs)

• Code connected to specifications via random testing

• Grad
• New course on formally specifying and verifying systems software and

hardware

Verified
Functional
Algorithms

Andrew Appel

Programming
Language
Foundations

Pierce et al.

Logical
Foundations

Pierce et al.

Late 2016 Early 2017

Verified
Functional
Algorithms

Andrew Appel

Programming
Language
Foundations

Pierce et al.

Logical
Foundations

Pierce et al.

… and further volumes to come!

? ?

Join us!
Summer schools

(July 13-28, 2017,
in Philadelphia)

Technical workshops
(one last spring; several more to follow)

Visit deepspec.org to see what’s happening
and join our mailing list

visitors program
PhD and postdoc positions

Thank you!
(any (more) questions?)

