
A Theory of Information-Flow Labels

Benoı̂t Montagu
University of Pennsylvania

Philadelphia, USA

Benjamin C. Pierce
University of Pennsylvania

Philadelphia, USA

Randy Pollack
Harvard University
Cambridge, USA

Abstract—The security literature offers a multitude of cal-
culi, languages, and systems for information-flow control, each
with some set of labels encoding security policies that can
be attached to data and computations. The exact form of
these labels varies widely, with different systems offering many
different combinations of features addressing issues such as
confidentiality, integrity, and policy ownership. This variation
makes it difficult to compare the expressive power of different
information-flow frameworks.

To enable such comparisons, we introduce label algebras,
an abstract interface for information-flow labels equipped
with a notion of authority, and study several notions of
embedding between them. The simplest is a straightforward
notion of injection between label algebras, but this lacks a
clear computational motivation and rejects some reasonable
encodings between label models. We obtain a more refined
account by defining a space of encodings parameterized by an
interpretation of labels and authorities, thus giving a semantic
flavor to the definition of encoding. We study the theory of
semantic encodings and consider two specific instances, one
based on the possible observations of boolean values and one
based on the behavior of programs in a small lambda-calculus
parameterized over an arbitrary label algebra.

We use this framework to define and compare a number of
concrete label algebras, including realizations of the familiar
taint, endorsement, readers, and distrust models, as well as label
algebras based on several existing programming languages and
operating systems.

Keywords-Security; Languages; Design; Theory; Information
flow control (IFC); DIFC; label models; decentralized label
model (DLM); JIF; LIO; disjunction category model; Flume;
HiStar; Asbestos.

I. INTRODUCTION

Information-flow control (IFC) systems [1] run the gamut
from static type systems to run-time monitors and from core
calculi to full-blown languages and operating systems. A
critical component of each one is a label model—a notation
for writing down information-flow labels together with rules
for when one label flows to another, in the sense that data
labeled with the first is allowed to flow to contexts labeled
with the second. These labels can be thought of as low-level
“micro-policies” for information flow. They do not directly
describe the end-to-end security policies that the system’s
users might care about (“my banking information will never
be sent to evil.com”); rather, they capture information-
flow invariants on specific sensitive values (“this integer and
values derived from it should only be visible to the Bank

principal”), which can be used by programmers to enforce
and reason about higher-level security properties.

Label models come in a bewildering variety of shapes and
forms. A theoretical discussion of IFC might typically use
a very simple model with just two or three labels (⊥ v>
or public vsecret v topsecret), or else assume an arbitrary
lattice of labels. Or a label could be defined to be a set of
principals, interpreted either as the set of entities that are
allowed to read a given value or as the set of entities that trust
or endorse it, or perhaps as the set of entities that may have
tainted it. More complex systems use sets of sets, logical
formulae, or other structures as labels. Some systems—e.g.,
those based on the Decentralized Label Model (DLM) [2]—
include a notion of policy owners, distinct from readers,
tainters, or endorsers, enabling programmers to control not
only who can use labeled values but also who can change their
labels by declassification. Some systems focus on protecting
secrecy, others integrity, and still others incorporate both.
The list of possible variations seems endless.

Many questions now arise. Which label models are best for
which purposes? What common structure might we expect
every label model to have, beyond a simple flows-to ordering?
Can all the label models used in real systems be viewed
as instances of this common structure, or are there deep
differences between them? What generic operations can be
performed on arbitrary label models? Can the common dictum
that “integrity is formally dual to secrecy” be given a rigorous
explanation? Is some label modelM1 “more expressive” than
a model M2, in the sense that, given a program written in
terms of M1, we can obtain a program over M2 (with the
same behavior!) by rewriting labels in some systematic way?
Such questions are rarely discussed, but they seem essential
to a thorough understanding of IFC.

Our goal in this paper is to initiate the comparative
study of label models by providing a concrete mathematical
framework and investigating how it applies to label models
found in the wild. We define label algebras, an abstract
presentation of the mechanisms of information flow and
authority common to many label models. On top of this,
we define a simple programming language—an untyped
lambda-calculus with dynamic information-flow tracking and
declassification—parameterized by an arbitrary label algebra
(§III). We give a generic proof of (an authority-enriched
generalization of) a standard non-interference property.

From the definition of label algebras, we directly obtain an
algebraic notion of injections—maps that preserve and reflect
the structure of label algebras—as a natural, algebraically
justified way of formalizing claims of the form “label algebra
M1 can be faithfully encoded in M2.” However, this notion
of encoding is quite strong—so strong that some intuitively
reasonable embeddings fail to be injections. (For example, the
label algebra of conjunctions of literals cannot be injected
into the label algebra of conjunctions of disjunctions of
literals, although the latter seems intuitively “more expressive”
than the former.) Moreover, we would like our notion
of embedding to have some semantic justification. We
therefore introduce a generic notion of semantic embeddings
between label algebras (§IV), parameterized by the choice
of “semantics”: different semantics may lead to different
notions of embeddings. We study embeddings for two
different semantics: a boolean semantics, which focuses on
an observer’s possible observations of labeled boolean values
in a given label algebra, and an evaluation semantics, which
additionally takes into account the behavior of computations
over labeled data. For each of them, we derive an algebraic
characterization theorem that can be used to verify the
existence or nonexistence of embeddings.

Finally, we use these concepts to define and study a number
of concrete label algebras, including simple examples that
illustrate dimensions of the design space of label models,
realizations of the familiar taint, endorsement, readers, and
distrust models (§V), and more complex examples based
on real-world languages and operating systems (§VI). In
particular, we define label algebras corresponding to the
disjunction category (DC) model [3], the Decentralized Label
Model (DLM) [2] without principal hierarchies, Asbestos [4],
HiStar [5], [6], and Laminar [7]; we also discuss Flume [8]
and show that its labels are a little more flexible than what
label algebras can represent. We settle the existence or non-
existence of embeddings among all of the simple examples
and some of the real-world ones—in particular, we show that
(the secrecy part of) the DLM with no principal hierarchy
cannot be embedded in the DC model (we conjecture the
converse embedding is impossible too), but that, when
authorities are not considered, embeddings between the
underlying label lattices do exist in both directions. Finally,
we discuss models with principal hierarchies (such as the
full DLM [2]) and show how these can be modeled as
a component of the authority structure of a label algebra
(§VII). A known order-theoretic weakness of the DLM with
a principal hierarchy prevents it from satisfying all the
requirements to be a label model, but we can complete
its order structure to yield a label algebra with nearly the
same behavior.

We survey related work in §VIII and sketch directions for
future work in §IX.

Two important caveats should be mentioned at the outset.
First, our definition of label algebra covers just a small

set of core features—labels, label ordering, authority, and
defaults—omitting some of the interesting complexities
associated with real-world label models. In particular, this
paper does not address dynamic generation of principals
and authorities, although we briefly sketch an extension of
label algebras that handles this feature in §IX. Second, since
evaluation embeddings are defined in terms of computation,
their properties necessarily depend on the details of the
programming language under consideration; adding other
features such as first-class labels will change some of our
results. This specificity is inherent to our approach; indeed,
we show that injections are the only form of encoding that
is system independent.

We have verified most of our theorems with the Coq proof
assistant [9] (these theorems are labeled with the symbol).
The full Coq development can be found at http://www.cis.
upenn.edu/∼bcpierce/papers.

II. LABEL ALGEBRAS

Basic definitions. Recall that a pre-lattice is a preorder with
meet and join operations. Note that there may be cycles in a
preorder (x ≤ y and y ≤ x with x 6= y).

II.1 Definition: A label algebra M comprises:
• a pre-lattice of labels (L,v,u,t)
• a lower-bounded join pre-semilattice of authorities
(A,≤,∨, 0),

• for each authority A, a flows-to relation vA on L, such
that:

1) v0 = v
2) if A ≤ A′ and L1 vA L2, then L1 vA′ L2

3) each (L,vA,u,t) is a pre-lattice
• a designated default label Ldef.

We write L1 ≡A L2 when L1 vA L2 and L2 vA L1;
we write ≡ to denote ≡0; we also write A1 ≡ A2 when
A1 ≤ A2 and A2 ≤ A1. We write LA for the set of label
algebras.

The main structure in a label algebra is the set of labels,
which must form a pre-lattice—i.e. labels must be equipped
with a pre-order v and a greatest lower bound u and a least
upper bound t.

Authorities can be understood as permissions to bend
the rules of information flow, allowing more flows between
labels. The least (or empty) authority, written 0, carries no
privilege: the relation v0 is exactly the flows-to relation of the
underlying pre-lattice of labels (axiom 1 about authorities).

The authority-indexed flows-to relations are compatible
with the ordering on authorities (axiom 2): increasing
authority makes it easier to flow from one label to another.
Declassification (or downgrading) is the exercise of authority
to permit a flow that would not otherwise be allowed. The
0-authority flows-to relation describes the flows that are
always allowed.

Axiom 3 requires that all the pre-lattices in the family have
the same joins and meets—i.e. joins and meets don’t depend
on authority. Remember that in a pre-lattice, joins and meets
are unique up to equivalence. Axiom 3 is consistent with the
fact that information flow analyses combine labels in a way
that is independent of the authority that a piece of program
could use.

Many label models have distinguished bottom and top
labels, but we do not ask the label pre-lattices to be bounded.

The last bullet in the definition specifies that there should
be a designated default label. That label could be used,
for instance, to annotate all data values by default, unless
they have been downgraded. This is useful when labels are
used for endorsement: by default, a data value starts out life
endorsed by no one (i.e., with a high label), and its label
gets lowered only by the explicit exercise of authority. In
the evaluation semantics defined in §IV, this is achieved by
using the default label as the starting value of the pc label
when a term is evaluated.

Examples. We will see many examples of label algebras in
§V and §VI; for now, let’s look at just a few simple ones.

Most label algebras are defined over some enumerable set
of principals, written P. We write p for specific principals,
P for sets of principals, and P(P) for the set of sets of
principals. It is sometimes convenient to consider P(P) as a
lattice, with intersection and union corresponding to meet and
join. Similarly, Pfin(P) is the set or lattice whose elements
are finite sets of principals. 1 is the unit lattice; its single
element is written either ⊥ or 0.

One very simple label algebra is the public / secret model,
which we call 2 for short; it is also sometimes called the
binary model [10]. Its set of labels is a two-point lattice, and
it has only one authority.

2: Public / Secret Model

L = {⊥, >} ⊥v> Ldef = ⊥ A = 1

A more interesting label algebra is the readers model
(written CR, rather than just R, for consistency with a group
of related label algebras that we will encounter in §V).

CR: Readers Model

L = Pfin(P) ∪ {P} Ldef = P
A = Pfin(P) ∪ {P} A1 ≤ A2 = A1 ⊆ A2

L1 vA L2 = L1 ∪A ⊇ L2

Its labels are either the full set of principals or one of its
finite subsets, ordered by reverse inclusion. Intuitively, the
principals in a label are the ones who may read some piece
of data. Its default label is P (which is the bottom element of
the label lattice)—i.e. anybody is allowed to read data with
the default label. A value labeled with some set of principals

can freely be relabeled with a smaller set (fewer allowed
readers)—in particular, in the labeled lambda-calculus in
§III, it will always be legal to take a value with the default
label and relabel it (restrict its readership) to some finite
set of principals. Authorities are sets of principals, and an
authority containing a principal p permits flows from labels
not including p (i.e. data that p cannot read) to labels where
p is allowed as a reader. For example, it is legal to relabel
a value labeled {q, r} into one labeled {p, q, r} using the
authority {p, s}. The top element of the authority lattice, P,
is an omnipotent authority: it allows any flow whatsoever.
We do not expect it to be used by any actual program or
observer.

Another simple label algebra is the endorsement model
(CE). It differs from the readers model only in its default
label, which is the top element. The principals in a label
indicate who has endorsed some data value. By default,
nobody endorses anything.
CE: Endorsement Model

L = Pfin(P) ∪ {P} Ldef = ∅
A = Pfin(P) ∪ {P} A1 ≤ A2 = A1 ⊆ A2

L1 vA L2 = L1 ∪A ⊇ L2

Operations on label algebras. The space of label algebras is
closed under some simple operations, including dualization
and product; these can be useful for describing examples
compactly.

Suppose M is a label algebra. Its dual, Mop , is obtained
by reversing the vA relations:
Mop: Dual of M

Lop = L Aop = A
L1 vopL2 = L2 vL1 top = u uop = t
L1 vop

A L2 = L2 vA L1 (Ldef)op = Ldef

Because authorities have no top element in general, we
do not invert the authority structure (there would be no
canonical way of choosing a bottom authority). Moreover,
because there is no canonical “complement” for the default
element, we keep it the same.

Suppose M1 and M2 are two label algebras. We define
their product M1 ×M2 as follows:
M1 ×M2: Product of M1 and M2

L = L1 × L2 A = A1 ×A2 Ldef = (Ldef
1 , Ldef

2)
(L1, L2) v(A1,A2) (L

′
1, L
′
2) = (L1 vA1 L

′
1 ∧ L2 vA2 L

′
2)

Real world systems often combine secrecy and integrity
into a single model by taking a label algebra of the form
M×Mop for some M (see §VI).

We can also drop the authority part of an arbitrary label
algebra. (We will use this operation several times in §V and

§VI.) Given a label algebra M, its 0-authority projection,
written M0, is defined as follows:
M0: 0-authority projection of M

L0 = L A0 = 1 L1 v0
A L2 = L1 vL2 Ldef0 = Ldef

Label algebra morphisms and injections. We compare the
expressiveness of label algebras by studying the absence
or existence or certain kinds of maps between them. We
begin with a very loose notion of maps and then consider
morphisms—i.e. structure-preserving maps—and injections—
i.e. structure-reflecting morphisms. Later (§IV), we define
embeddings—i.e. semantics-preserving and reflecting maps—
which will be our real objects of study. We will see that
any injection is an embedding (Theorem IV.7), but that
embeddings are not necessarily morphisms (Theorems IV.8
and IV.10).

II.2 Definition: Given two label algebras M1 =
(L1,A1, . . .) and M2 = (L2,A2, . . .), a label algebra map
m from M1 to M2, written m ∈M1 →M2, is a pair of:
• a function (also written m) from L1 to L2, and
• a function (also written m) from A1 to A2.

II.3 Definition [Morphism]: A map m ∈M1 →M2 is a
morphism when:
• L1 vA L2 implies m(L1) vm(A) m(L2)

• m(Ldef
1) ≡ Ldef

2

• L1 ≡ L2 implies m(L1) ≡ m(L2)
• m(L1 t L2) ≡ m(L1) tm(L2)
• m(L1 u L2) ≡ m(L1) um(L2)
• m(01) ≡ 02
• A1 ≡ A2 implies m(A1) ≡ m(A2)
• m(A1 ∨A2) ≡ m(A1) ∨m(A2)

A morphism is a structure-preserving map: it is mono-
tone, preserves the default labels and the bottom authority,
commutes with joins and meets, and preserves equivalence
classes. We have chosen the most natural definition for a
structure preserving map. One can notice however that some
items in the definition are redundant. For instance, item 3 is
implied by the conjunction of item 1, item 7 and axiom 1
of label algebras.

II.4 Definition [Injection]: A morphism m ∈ M1 →M2

is an injection when:
• m(L1) vm(A) m(L2) implies L1 vA L2;
• m(A1) ≡ m(A2) implies A1 ≡ A2;
• m(L1) ≡ m(L2) implies L1 ≡ L2.

In that case, we write m ∈ M1 ↪→M2. We write M1 ↪→
M2 if there exists m ∈ M1 ↪→M2, and we say that M1

injects into M2.

Injections are morphisms that also reflect the structure:
they reflect the authority-indexed flows-to relation and the

b ::= tt | ff (booleans)
t ::= b | x | λx .t | t t | t lA L (terms)
v ::= b | 〈ρ, λx . t〉 (values)
a ::= v@L (atoms)
ρ ::= • | ρ, x = a (environments)

Figure 1. Syntax of terms, values, atoms and environments.

equivalence classes. Note that injections also necessarily
reflect the orderings on labels and on authorities. Our notion
of injection is reminiscent of the notion of order embedding
(i.e. order-preserving and reflecting functions).

II.5 Proposition: The relation ↪→ between label algebras is
reflexive and transitive.

Given the strong algebraic flavor of injections, one could
consider that they would make a good definition of embed-
ding. It turns out that they are too constraining: they ask for
the whole structure to be preserved and reflected, whereas
a given information-flow system or language may use the
flows-to relation only (as in DStar [11]), while another one
may additionally use joins but make no use of meets (like
the toy λ-calculus of §III), and yet another may use both
meets and joins (like Jif [2]). In these cases, why should
embeddings talk about the label algebra ingredients that a
system does not use? The next two sections develop a more
refined notion that takes these issues into account.

III. LABELED LAMBDA-CALCULUS

We now define a small programming language λM param-
eterized by a label algebra M. For simplicity, we choose an
untyped language with dynamic information-flow tracking,
similar to that of [12].

Syntax and semantics. The syntax of λM, together with
the sets of values and labeled values (atoms), is shown
in Figure 1. Its syntax comprises booleans, variables, λ-
abstractions, applications and a construct t lA L to relabel
the result of the evaluation of t with the constant label L
using authority A. Note that in this tiny language labels and
authorities are not first-class: they can only occur in the
relabeling construct.

The fact that the language λM is so small and simple
is a deliberate choice: for example, there is no construct
that controls who can exercise which authority. While it may
look unrealistic, this modeling simplification permits to easily
define the static authority of a program (Definition III.1).

The big-step operational semantics of λM is given in
Figure 2. The evaluation judgment has the form pc, ρ `
t ⇓ a . Evaluation produces atoms, denoted by a, which are
labeled values. We write v@L to denote the atom whose
value component is v and whose label is L. The environment
ρ maps variables to closed atoms.

The label pc is the program counter label; as usual, it tracks
implicit flows of information through the control state of the

pc, ρ ` tt ⇓ tt@pc
EVAL TRUE

pc, ρ ` ff ⇓ ff@pc
EVAL FALSE

ρ(x) = v@L

pc, ρ ` x ⇓ v@(pc t L)
EVAL VAR

pc, ρ ` (λx .t) ⇓ 〈ρ, λx . t〉@pc
EVAL ABS

pc, ρ ` t1 ⇓ 〈ρ1, λx . t〉@L1

pc, ρ ` t2 ⇓ a2
L1, (ρ1, x = a2) ` t ⇓ a3

pc, ρ ` (t1 t2) ⇓ a3
EVAL APP

pc, ρ ` t1 ⇓ v1@L1

L1 vA L2

pc, ρ ` t1 lA L2 ⇓ v1@L2
EVAL RELABEL

Figure 2. Big-step semantics.

program. The pc label is modified by branching over a secret
value: in particular, the pc label may change when a function
is called (third premise of rule EVAL APP). If our language
had other control constructs such as conditionals, they would
need similar side conditions. In the variable lookup rule, the
label on the variable’s value from the environment is joined
with the current pc label to form the label on the result,
reflecting the fact that the choice to look up this variable
(as opposed to another one, for example) may have been
influenced by sensitive information. This detail is crucial for
the non-interference theorem (III.3).

We can lift a label algebra map m to a function m̂ on
programs (resp. values, atoms, environments) as a term
homomorphism (resp. values, etc.) that transforms label
constants and authorities using m and copies everything
else unchanged. The operation of lifting label algebra maps
commutes with composition of maps, and transforms the
identity map into the identity function.

Basic properties. We now establish some fundamental results
about λM—in particular, a standard non-interference property.
This is mainly a sanity check on our labeled lambda-calculus:
the only part of this development that is used in later sections
is Definition III.2.

III.1 Definition: The authority of a program t , written
Auth(t), is the join of all the authorities that occur in t .
The definition is lifted to atoms, values, and environments.

The relation ≈L
A expresses indistinguishability of booleans

for observers at label L and authority A.

III.2 Definition: b1@L1 ≈L
A b2@L2 iff either

• L1 6vAL and L2 6vAL, or
• L1 vA L and L1 ≡ L2 and b1 = b2.

Note that this relation is an equivalence.

III.3 Theorem [Non-interference]: If
• pc, ρ1 ` t ⇓ b1@L1 and pc, ρ2 ` t ⇓ b2@L2,
• dom ρ1 = dom ρ2 and ρ1(x) ≈L

A ρ2(x) for every x ∈
dom ρ1,

• Auth(t) ≤ A,
then b1@L1 ≈L

A b2@L2.

A point to note about the non-interference theorem is the
mention of authority in its third assumption: the theorem
requires the observer to have at least the same authority as
the one of the program that is observed. This assumption
permits the observer to perform all the downgradings that
the program could perform, and thus gives more precision
to the observation. (Removing the assumption would falsify
the theorem: the new statement would say that all programs
would be non-interfering in the usual sense, even those which
downgrade labels.)

IV. SEMANTICS OF LABELS

Now we can return to the question of what it means
to claim that “Label model M2 can encode label model
M1”. We can give at least two interpretations of this claim
with a firm basis in semantics—that is, in some notion of
observation. The first is based on the notion of observation
of boolean values from Definition III.2; we call maps that
preserve and reflect such observations boolean embeddings.
The second is based on observing the results of evaluation
of programs; we call maps that preserve and reflect these
observations evaluation embeddings. The latter interpretation
is probably the more interesting one, since it is ultimately
the behavior of whole programs that we are concerned
with, but the first is also worth studying because claims
about encodability of one label model in another are often
justified by appealing to a static embedding of labels, without
reference to the behavior of programs using those labels.

It is technically convenient to derive both interpretations
from a common framework. In this section we define a
general notion of semantics for labels, from which arises a
generic notion of embedding. We connect this semantic notion
of embedding to the injections that we have seen earlier. Then,
we present the boolean and evaluation embeddings as two
instances of that general framework.

Basic definitions. We write R1 - R2 when R1 is a coarser
relation than R2—that is, when R2 ⊆ R1.

IV.1 Definition [Label semantics]: A label semantics is a
label-algebra-indexed family of sets X = {XM}M∈LA
together with a function

J·K : (M : LA)→ (AM × LM)→ BinRel(XM)

that maps each pair (A,L) of an authority and a label from
the same label algebra M to a binary indistinguishability

relation on XM. The notation (M : T) → U denotes
a dependent product. Since M can be recovered from A
and L we elide the first argument and write J(A,L)K for
J·K M (A,L).

Below (Definitions IV.3 and IV.4), we will define two label
semantics—one a semantics of boolean atoms (where XM
is the set of boolean atoms over M), the other a semantics
of programs (where XM is the set of programs over M).

This definition of label semantics is quite loose; in what
follows, we restrict ourselves to good semantics.

IV.2 Definition [Good semantics]: A label semantics J·K is
good if:

1) A1 ≤ A2 implies J(A1, L)K - J(A2, L)K
2) L1 vA L2 implies J(A,L1)K - J(A,L2)K
3) X is equipped with an action of label algebra maps—

i.e. for any m ∈M1 →M2, there is a function
m̂ ∈ XM1

→ XM2
such that îd = id and m̂1 ◦m2 =

m̂1 ◦ m̂2

4) J·K is invariant under injections, i.e. for any in-
jection m ∈M1 ↪→M2 and any x, y, A, and L,
we have (x, y) ∈ J(A,L)K iff (m̂(x), m̂(y)) ∈
J(m(A),m(L))K.

The first two points require that a semantics captures
a notion of observation: the relation J(A,L)K describes
an observer with authority A and clearance L, and its
observations get finer when one raises its authority or its
clearance. Point 3 asks that it makes sense to apply a
label algebra map to the objects that are observed. This
is crucial, as we will see later that our notion of embedding
is based on the changes that the application of a map could
produce on observations. The action of label algebra maps on
objects will be the key ingredient for transitive reasoning on
embeddings (Proposition IV.6). Point 4 requires the semantics
not to distinguish two label algebras that are the same up
to injections. Take for instance the label algebra CR’ that
is the same as CR, except that labels and authorities are
lists of principals instead of finite sets. There is clearly an
injection m from any of these two label algebras to the other
one: they are indeed morally “the same”. Point 4 rules out
any semantics J·K where J(A,L)K would be different from
J(m(A),m(L))K. We will see later that a consequence of
point 4 is that injections necessarily preserve and reflect good
semantics (that is one half of Theorem IV.7).

In the rest of the paper, we consider two semantics:
the boolean semantics is exactly the indistinguishability
relation used by the non-interference theorem (III.3); the
evaluation semantics is a semantics of programs, and relates
programs that lead to indistinguishable booleans when they
are evaluated in the empty environment, starting with the
default label.

IV.3 Definition [Boolean semantics]: The boolean seman-
tics, written J·Kb is defined as follows: J(A,L)Kb

= ≈L
A.

IV.4 Definition [Evaluation semantics]: The evaluation se-
mantics, written J·Ke is defined as follows: J(A,L)Ke

=
{(t1, t2) | Ldef, • ` t1 ⇓ b1@L1 and Ldef, • ` t2 ⇓
b2@L2 and b1@L1 ≈L

A b2@L2}.

Note that the evaluation semantics is the first definition
that makes use of the default label of label algebras.

Both the boolean semantics and the evaluation semantics
are good (). For the evaluation semantics, we picked a
particular partial equivalence on programs: it is rather simple
but already interesting. It is also natural to consider different
semantics (e.g. closed under contexts, dealing with non-
termination, trace-based. . .). We leave that for future work.

Label algebra embeddings. We now define some properties
that characterize label algebra maps that behave well with
respect to some semantics.

IV.5 Definition [Sound, Complete, Embedding]:
Suppose m ∈M1 →M2 and J·K is a label semantics.
• We say that m is sound with respect to J·K if (x, y) ∈

J(A,L)K implies (m̂(x), m̂(y)) ∈ J(m(A),m(L))K for
any A, L, x, and y.

• We say that m is complete with respect to J·K if
(m̂(x), m̂(y)) ∈ J(m(A),m(L))K implies (x, y) ∈
J(A,L)K for any A, L, x, and y.

• We call m an embedding with respect to J·K (written

m ∈M1

J·K
↪→M2) if it is both sound and complete.

• M1 embeds in M2 for the semantics J·K, (written

M1

J·K
↪→ M2) if there exists a function m such that

m ∈M1

J·K
↪→M2.

Intuitively, a sound map can only decrease the power of
an observer to distinguish, whereas a complete map can
only increase distinguishing power. Embeddings are the
maps that do not change the power of the observer. We’ll
see that different label semantics lead to different kinds of
embeddings.

For any good semantics, embeddability allows transitive
reasoning, thanks to item 3 of definition IV.2.

IV.6 Proposition: For any good label semantics J·K, the

relation
J·K
↪→ on label algebras is reflexive and transitive.

The notion of embedding is weaker than the notion of
injection, and an injections are the “best” embeddings for
good semantics.

IV.7 Theorem: Let M1 and M2 be two label algebras.

M1 ↪→M2 iff for any good semantics J·K, M1

J·K
↪→M2.

This theorem explains that injections form the most precise
notion of encoding: embeddings are less precise, and the loss
of information is specified by the semantics one has chosen.
The proof of that theorem relies on item 4 of definition IV.2

for one way of the implication; the other way is proved
by defining a good semantics for which embeddings are
necessarily injections.

Directly proving or refuting embeddability statements
between label algebras under a given semantics can be
a difficult task. To make it easier, the next two sections
are devoted to establishing algebraic characterizations for
boolean-embeddability and evaluation-embeddability.

Boolean embeddings. We write
b
↪→ to denote embeddability

with respect to the boolean semantics.

IV.8 Theorem [Characterization of
b
↪→]: A label algebra

map m ∈ M1 →M2 is a boolean embedding iff for any
L1, L2 ∈ L1 and A ∈ A1:

1) L1 vA L2 iff m(L1) vm(A) m(L2);
2) L1 ≡ L2 iff m(L1) ≡ m(L2).

Note that the second item is not implied by the first since
we know nothing about the image of the bottom authority.
Also, note that the default label does not occur in the
characterization of boolean embeddings since it is not used
in the definition of the boolean semantics. Thus, boolean
embeddings enjoy the following property.

IV.9 Proposition: Let M1 and M2 be two label algebras
differing only in their default labels. Then, M1

b
↪→M2.

Evaluation embeddings. We write
e
↪→ to denote embeddabil-

ity with respect to the evaluation semantics.

IV.10 Theorem [Characterization of
e
↪→]: A map m ∈

M1 → M2 is an evaluation embedding iff for any
A,A′ ∈ A1, and L,L1, L2 ∈ L1:
• m(Ldef

1) ≡ Ldef
2 ;

• if Ldef
1 vA′ L1, then L1 vA L2 iff m(L1) vm(A)

m(L2);
• if Ldef

1 vA L1, then L1 ≡ L2 implies m(L1) ≡ m(L2);
• if Ldef

1 vA L1 and Ldef
1 vA L2, then m(L1 t L2) ≡

m(L1) tm(L2).

Boolean and evaluation embeddings are incomparable no-
tions. In evaluation embeddings, unlike boolean embeddings,
defaults must be mapped to defaults (up to equivalence).
Conversely other properties, which recall the characterization
of boolean embeddings, are only required to hold for labels
that can be put above the defaults using some authority. Com-
pared to injections (Definition II.4), evaluation embeddings
do not require commutation with meets or with authority-
joins. Also, most laws do not have to hold for labels that
are not above the defaults. The fact that labels that are not
above Ldef don’t matter in the characterization of evaluation
embeddings is a direct consequence of the fact that Ldef is
the starting pc label of programs: it is an invariant of the
evaluation judgment that labels of results stay above the pc
label (using the program’s authority).

The proof of the characterization theorem (like its state-
ment) is somewhat intricate because it relies on complex
invariants of the evaluation judgment; without the help of a
proof assistant, it would be difficult to be confident of its
correctness.

Many real world examples of label algebras have a
bottom label, used as Ldef. For that case, the characterization
simplifies as follows.

IV.11 Corollary: Assume M1 and M2 such that Ldef
1 is

a bottom element for LM1
. Then, m ∈ M1 → M2 is an

evaluation embedding iff for any A, L1 and L2:
• m(Ldef

1) ≡ Ldef
2 ;

• L1 vA L2 iff m(L1) vm(A) m(L2);
• L1 ≡ L2 implies m(L1) ≡ m(L2);
• m(L1 t L2) ≡ m(L1) tm(L2).

In this special case, evaluation embeddings are also boolean
embeddings.

IV.12 Proposition: Assume M1
e
↪→M2 and that Ldef

1 is a

bottom element for LM1
. Then M1

b
↪→M2.

One can wonder under which conditions an evaluation
embedding can change the default label. It turns out that
if the default label changes from ⊥ to > (or from > to
⊥), then the input of the embedding must be a trivial label
algebra. This result is particularly useful for showing the
non-existence of evaluation embeddings.

IV.13 Corollary: Assume M1
e
↪→ M2. If Ldef

1 ≡ ⊥ and
Ldef
2 ≡ >, then L ≡ ⊥ for any L ∈ L1. Dually, if Ldef

1 ≡ >
and Ldef

2 ≡ ⊥, then L ≡ > for any L ∈ L1.

Consequently, if the default label of a non-degenerate model
is ⊥ or > then, since dualization changes bottoms to tops
(or conversely), there is no evaluation embedding between
the model and its dual. However, when the default label is
neither a bottom nor a top, an evaluation embedding may exist
between a label algebra and its dual. Indeed, for any label
algebra M, there is an injection (and thus, an evaluation
embedding thanks to theorem IV.7) from M × Mop to
(M×Mop)op : it suffices to take the map that swaps the
components of a pair.

V. ABSTRACT EXAMPLES

In this section, we define a number of relatively simple
label algebras and investigate embeddings among them.
Our goals are twofold: (1) to catalog common examples
from the literature, and (2) to expose some interesting
symmetries among these examples. In particular, we can
define four familiar label models—the Taint, Endorsement,
Readers, Distrust models—by varying the lattice order and
default label of the same basic structure, where labels are
sets of principals. We use the characterization theorems
to exhaustively settle the existence or non-existence of
embeddings among all of these simple models (Figure 4).

UE: Universal Endorsement Model

L1 vA L2 = L1 ∪A ⊇ L2 Ldef = ∅

UT: Universal Taint Model

L1 vA L2 = L1 ⊆ L2 ∪A Ldef = ∅

UR: Universal Readers Model

L1 vA L2 = L1 ∪A ⊇ L2 Ldef = P

UD: Universal Distrust Model

L1 vA L2 = L1 ⊆ L2 ∪A Ldef = P

Figure 3. Universal models. In this figure, L = A = P(P). Note that UE
and UR have the same flows-to relation. The same is true of UT and UD.

Universal models. We first consider four universal models:
the Universal Endorsement, Taint, Readers, and Distrust
models. They are “universal” in the sense that a label is
an arbitrary—finite or infinite—subset of the whole set
of principals. All four can be specified by varying two
parameters: the default label and the direction of the flows-to
relation (Figure 3). The universal endorsement model UE
generalizes the endorsement model CE from §II: it has more
labels and authorities, but behaves the same otherwise. In
the universal taint model UT, a label represents a set of
principals who have tainted some piece of data, and data is
untainted by default; authorities are used to remove taint. UT
differs from UE only by the orientation of its flow-to relation:
they are duals. The universal readers model UR extends CR
with arbitrary sets of principals as labels and authorities. The
universal distrust model UD is the same as UT, but with a
top default label. Labels in UD can be interpreted as sets of
principals who distrust some piece of data (this terminology
was proposed by [10]). The default label is P, meaning that,
by default, everyone distrusts everything. Authority is used to
remove a principal—i.e. to declare that it trusts some piece
of data. UD is the dual of UR.

Syntactic models. The universal models are not well suited
for real languages or systems because they are not syntactic—
in general, their labels may have no finite representation.
However, we define “cut-down” versions of the universal
models: CT, CE, CR and CD are versions of UT, UE,
UR and UD where labels and authorities are elements of
Pfin(P) ∪ {P}—i.e. either finite sets of the full set of
principals. Even smaller are T and E, which are versions of
UT and UE where labels and authorities are just finite sets
of principals. (Note that UR and UD cannot be cut down to
finite sets because their default labels are P.)

Ldef = >
Ldef = ⊥

v=⊇ v=⊆Endorsement Distrust

Readers Taint

UECEE UD CD

URCR UT CT T

Figure 4. Embeddings among universal and syntactic models. Dotted
arrows mean only boolean embeddings.

Embeddings among universal and syntactic models. The
relative expressiveness of the universal and syntactic models
is summarized in Figure 4. Additionally, we have proved
that, for these models, evaluation-embeddability coincides
with injectability.

Most of the embeddings are defined using the identity
map, and it is very easy to prove that they are indeed
embeddings. The evaluation embeddings between universal
models, such as the one from UR to UT, are exceptions,
since they are defined by complementation. Proving non-
existence of embeddings is significantly harder. Most of the
non-existence results are proved either using Corollary IV.13
(for evaluation embeddings between the lower and upper part
of the diagram) or else with variants of the following lemma
(a consequence of the pigeon-hole principle):

V.1 Lemma: There is no function from Pfin(P) to Pfin(P)
that is both bounded and injective.

The proof that there is no boolean embedding from CT to
T is an example of where the above lemma is used: assume
such an embedding exists, let us call it m = (mL,mA). From
Theorem IV.8, we know that mL is necessarily injective on
labels (item 2). We also know (item 1) that for any L ∈ CT,
mL(L) ⊆ mL(P) ∪ mA(P). Therefore, the restriction of
mL to finite sets satisfies the hypotheses of lemma V.1—a
contradiction.

Fig. 4 permits us to draw three (unsurprising) conclusions.
First, restricting models to Pfin(P) or Pfin(P)∪{P} leads to
strictly less expressive label algebras. Second, changing the
default label can be observed by evaluation-embeddings but
not by boolean embeddings (as stated by Corollaries IV.13
and IV.13 and by Proposition IV.9, respectively). And third,
complementation (i.e. the composition of dualization and
complementation of the default label) preserves embeddings
between universal models: indeed, the complementation map
is an injection.

Apropos integrity. The observation that integrity can be
treated as a formal dual to confidentiality goes back at least
to Biba [13]. This agrees with the fact that UE is the formal
dual of UT and and UR the formal dual of UD. Many
real-world systems (e.g., [8], [14], [5]) have relied on this

observation to provide unified mechanisms for both.

VI. REAL-WORLD EXAMPLES

We now turn our attention to formalizing the label models
of several existing systems. While some do not perfectly fit
the formal structure of label algebras, even partial descriptions
in a common framework will hopefully help clarify their
similarities and differences. Moreover, we can use these
formalizations to study the existence or non-existence of
embeddings. We do not settle the question for all pairs
of examples, but we do establish several results involving
variants of the DLM and DC models.

Disjunction-Category (DC) labels. Disjunction Category
labels [3] come from a Haskell security library called
LIO [14], part of the HAILS framework for secure web
apps [15]. DC labels have a secrecy part and an integrity
part. We first focus on the secrecy part (DCS).

Labels of DCS are finite boolean formulae in conjunctive
normal form, containing no negations—i.e. finite conjunctions
of finite disjunctions of principals. We write F to denote
the set of such formulae. The flows-to relation is reverse
logical entailment, written ⇐. Intuitively, these formulae tell
who can observe a piece of labeled data. The v relation
allows us to make conservative approximations about who
is allowed to observe. True is the empty conjunction and is
the ⊥ element—it means that any principal can observe the
data; False is the empty disjunction and is the > element.

For example, the DCS label L = p1∧(p2∨p3) can be read
“this data can be read by somebody that has p1’s credentials
and either p2’s or p3’s.” It flows to p1∧p2, because somebody
that has p1’s and p2’s credentials respects the policy of L.

Authorities are also formulae: L1 vA L2 means that L1 ⇐
(L2 ∧ A). For example, L vp1 p2 ∨ p3, because somebody
that has either p2’s or p3’s credentials and the ability to use
p1’s credentials respects L.
DCS: DC Labels (secrecy part)

L = F Ldef = True A = F 0 = True
A1 ≤ A2 = A1 ⇐ A2 A1 ∨A2 = A1 ∧A2

L1 vA L2 = L1 ⇐ (L2 ∧A)
L1 t L2 = L1 ∧ L2 L1 u L2 = L1 ∨ L2

(Formulae are kept in normal form, so, strictly speaking,
the definitions of join and meet are up to renormalization.)

The full DC model adds an integrity component that is
the dual of DCS.
DC: Full DC Labels (LIO)

L = F × F Ldef = (True,True)
A = F 0 = True
A1 ≤ A2 = A1 ⇐ A2 A1 ∨A2 = A1 ∧A2

(S1, I1) vA (S2, I2) = S1⇐(S2 ∧A) and I2⇐(I1 ∧A)
(S1, I1) t (S2, I2) = (S1 ∧ S2, I1 ∨ I2)
(S1, I1) u (S2, I2) = (S1 ∨ S2, I1 ∧ I2)

Note that the default label is neither a top nor a bottom
element: it is the pair of the bottom for secrecy and the top
for integrity, i.e. the “most public” and the “least endorsed.”

Simplified DLM. We next describe a stripped-down version
of the Decentralized Label Model [2]: we focus on its secrecy
part only, and we defer modeling its principal hierarchy (acts-
for relation) until §VII. Labels in DLMS are sets of policies,
where policies are drawn from the set Pol = {p→ P | p ∈
P, P ∈ Pfin(P)}. The sets on the right hand side of the
arrow are called reader sets; they are akin to labels of CR
in that they decrease as we go up in the lattice of labels.
For instance, the label L1 = {p → {p1, p2}} says that the
principal p allows only principals p1 and p2 to read some
data. Label L2 = {p → {p1}} is strictly more secure than
L1—i.e. L1 vL2—since L2 allows fewer possible readers.

When (p → P) ∈ L, we say that principal p owns the
policy p→ P in L. This label model is called decentralized
because several principals can independently own different
policies on the same data. In L3 = {p → {p1, p2}, q →
{p1}}, principals p and q each express a policy. The resulting
policy is the intersection of p’s and q’s policies—i.e., both
of their policies must be enforced. Note that L1 vL3 and
that {q → {p1}} vL3.

Authorities are sets of owners. They specify which policies
can be modified: for any p in the authority, we can arbitrarily
change or remove policies that are owned by p, but other
policies can only be changed to more restrictive ones. For
instance, L3 v{p} {q → {p1}} and L3 v{p} {p →
{p1, p2, p3}, q → {p1}}. However, L3 6v{p}{q → {p1, p2}},
because in the latter label, the security policy owned by q is
more permissive than the one in L3.

DLMS: Simplified DLM (secrecy, no acts-for)

L = Pfin(Pol) Ldef = ∅ A = Pfin(P) 0 = ∅
L1 t L2 = L1 ∪ L2

L1 u L2 = {p→P1∪P2 | (p→P1)∈L1, (p→P2)∈L2}
L1vL2 = ∀(p→ P1) ∈ L1. ∃(p→ P2) ∈ L2. P2 ⊆ P1

L1vAL2 = L1vL2 t LA where LA = {p→ ∅ | p ∈ A}

Note that a given principal can own more than one
policy, and that this is different from owning a compound
policy: L1 v {p → {p1}, p → {p2}}, but not conversely.
Interestingly, the intuition based on readers sets does not
extend to the case of principals owning several policies. For
instance, one could expect that {p → {p1}, p → {p2}}
and {p → ∅} express the same requirement, i.e. “p says
that nobody can read the data”. However, the former label is
strictly lesser than the latter. Here is how we understand such
labels: the sets of the right hand side express disjunctions of
principals, whereas the juxtaposition of two policies means
their conjunction. We conjecture that one can isomorphically

CR0 T0CR T

DCS DLMS

DCS
0 DLMS

0

?

?

Figure 5. Embeddings with DLMS and DCS. Plain arrows are boolean
embeddings; crossed arrows denote non-existence of boolean embeddings;
‘?’ means conjecture.

represent DLMS labels as finite maps from principals to F
(conjunctions of disjunctions of principals).

Li et al. [10] state (informally) that the two point model, the
writer model, the endorsement model and the distrust model
can all be encoded in the DLM. Unfortunately, while they
describe the lattice structures of all the models they consider,
they do not specify their default labels, and they ignore
authority. We will see in the next section that authorities play
an interesting role.

Some embeddability results. Figure 5 gathers some boolean
embeddability results involving DCS, DLMS, and some of
the models from §V. Note that this table represents ongoing
work: we have not yet carried out an exhaustive exploration
of this area.

The first thing to notice is that neither CR nor T are
expressive enough to express DCS of DLMS labels (this is no
surprise). More interesting is that the presence of authorities
sometimes precludes embeddability. For instance, DCS

0 and
DLMS

0, which don’t have authorities, embed in each other,
but this is not true for their authority-enriched versions (we
have proved one way, conjectured the other): intuitively, there
is no notion of owner of a policy in DCS, while conversely
there is no way to form a disjunction of authorities in DLMS.
Another instance of this phenomenon is that CR does not
embed in DCS or DLMS, but its 0-authority version does. By
contrast, the behavior of T is not influenced by the presence
of authorities. For the sake of concreteness, we detail one
embedding and one non-embeddability arrow of Figure 5.

VI.1 Proposition: T
e
↪→ DLMS.

Proof: Define m(S) =
⋃

p∈S{p → ∅} and m(A) = A.
The map m verifies the conditions of Corollary IV.11. �

VI.2 Proposition: CR does not boolean embed in DLMS.

Proof: Assume that such a boolean embedding exists; let’s
call it m.

Let us first prove (1): there exists A0 such that for any label
L ∈ DCS, domm(L) ⊆ A0. Take A0 = m(0)∪ domm(∅).
For any label L ∈ CR, L v0 ∅, therefore m(L) vm(0) m(∅)
by Theorem IV.8. Then, domm(L) ⊆ A0 by definition.

Then, let us show (2): for any A ∈ ACR and L1, L2 ∈

LCR, m(L1) vm(A)∩A0
m(L2) iff m(L1) vm(A) m(L2).

The direct way holds by properties of label algebras, since
m(A) ∩ A0 ≤ m(A). Let us show the converse: assume
m(L1) vm(A) m(L2). Assume p → P1 ∈ m(L1). If p ∈
m(A) ∩ A0, then (p → ∅) ∈ m(L2) t Lm(A)∩A0

, which
concludes the proof. Assume now, that p /∈ m(A) ∩ A0.
We know that p ∈ A0 by (1), thus p /∈ m(A). Therefore,
there exists P2 such that p → P2 ∈ m(L2) and P2 ⊆ P1,
by definition of v in DLMS. Then, p → P2 ∈ m(L2) t
Lm(A)∩A0

, which concludes the proof that m(L1) vm(A)∩A0

m(L2).
Let us consider the function f = λA. A∩A0. Let us show

that f is injective. Assume that m(A1) ∩ A0 = m(A2) ∩
A0 (3). Then, for any L1 and L2:

L1 vA1
L2

iff m(L1) vm(A1) m(L2) by Theorem IV.8
iff m(L1) vm(A1)∩A0

m(L2) by (2)
iff m(L1) vm(A2)∩A0

m(L2) by (3)
iff m(L1) vm(A2) m(L2) by (2)
iff L1 vA2 L2 by Theorem IV.8.

Then, since ∅ vA2
A2, we have ∅ vA1

A2 (by taking L1 = ∅
and L2 = A2), i.e. A2 ⊆ A1. Similarly, since ∅ vA1

A1, we
have ∅ vA2 A1, i.e. A1 ⊆ A2. We proved A1 = A2. Thus,
f is injective. The function f is also bounded by A0, which
contradicts Lemma V.1. Therefore, the embedding m cannot
exist. �

These examples show that authorities should be included
in discussions of encodability between label models, as they
can lead to surprising results. And informal claims about the
expressive power of label models really need to be taken
with a grain of salt!

Asbestos. Asbestos [4] is a high-security operating system
based on information flow. Its labels are maps from principals
to security levels. Level is the set {?, 0, 1, 2, 3} equipped
with the total order ? < 0 < 1 < 2 < 3. Labels are composed
of a finite map from principals to levels, plus a default level
for the principals (“categories”) that are not mentioned in the
map. If L = (f, l) ∈ (P fin→ Level)× Level , let L(p) denote
f(p) when p ∈ dom f and the default level l otherwise. The
ordering on labels is the pointwise extension of the level
ordering.

Each Asbestos process owns a set of “privileges,” i.e., a
set of principals: if p is in that set, a process is allowed to
freely change the level owned by p in a label L, à la DLM.

Asbestos:

L = (P fin→ Level)× Level Ldef = ({}, 1)
A = Pfin(P) 0 = ∅
L1 vA L2 = ∀p, p ∈ A or L1(p) ≤ L2(p)

Early HiStar. Different descriptions of the HiStar operating
system propose somewhat different notions of labels. The
earliest version [5] uses labels inspired by Asbestos, but with
several differences in the way they are used—e.g., thread
label changes are required to be explicitly stated. In the rest
of the section, we focus on differences with respect to labels.

The main difference is the way untainting (reclassification)
is handled. In HiStar, the level ? is a privileged level that
can only appear in thread labels (as opposed to other kernel
objects, such as files), where it confers the right to untaint a
principal. It is low in the lattice (below the default level) so
that threads need authority to gain untainting privileges.

When a thread with label LT attempts to observe an
object with label LO, common information-flow rules would
require that LO vLT . However, that would not correspond
to ? being an untainting privilege, since its low position in
the lattice prevents flows instead of allowing more flows. The
authors explain that the meaning of ? is either bottom or top,
depending on the situation. For that purpose, they introduce
a special level J (high star) that behaves like a maximum
level, but is not really part of the lattice of levels: “level
J is only used in access rules and never appears in labels
of actual objects”. Now, the actual read check is LO vLJ

T ,
where LJ

T is the label LT in which every occurrence of ? is
replaced with the special top element J.

As it stands, HiStar does not fit the label algebra interface,
though we conjecture and it is possible to recast the
definitions so that labels do form a label algebra. Indeed,
the fact that ? occurs in a thread label is a way to express
the privileges that are owned by that thread. We can define
Auth(L) = {p | L(p) = ?}: it is the authority of a thread
that has L as a thread label. Then, under the assumption
that ? does not occur in L1, L1 v LJ

2 is equivalent to
L1 vAuth(L2) L2, where the indexed flows-to relation is the
one of Asbestos. (Note that our assumption about L1 makes
sense, since L1 is supposed not to be a thread label.) We leave
the details of this reconstruction of HiStar to future work
(but it probably does not warrant very high priority, since
HiStar’s original label model was in any case subsequently
abandoned by its designers).

Later HiStar & DStar. The DStar system [11] and the more
recent version of HiStar [6] use a much simpler form of labels
that does fit our framework. Their labels are pairs of finite
sets of principals (one for secrecy, one for integrity). Indeed,
the only difference from T×E is that DStar’s set of secrecy
principals is disjoint from its set of integrity principals.

Flume & Laminar. In the Flume [8] and Laminar [7]
information-flow operating systems, labels are pairs of sets
of principals (“tags”), one for secrecy, the other for integrity.
Like the latest HiStar, these labels are essentially the product
of the taint model with the endorsement model.

However, Flume has a notion of authority that makes

Flume: not a label algebra

L = Pfin(P)× Pfin(P) Ldef = (∅, ∅)
(S1, I1) v(S2, I2) = S1 ⊆ S2 and I1 ⊇ I2

A = Pfin(P)× Pfin(P) 0 = (∅, ∅)
(C+

1 , C
−
1) ≤ (C+

2 , C
−
2) = C+

1 ⊆ C
+
2 and C−1 ⊆ C

−
2

(S1, I1) v(C+,C−) (S2, I2) =
S2 \ S1 ⊆ C+ and S1 \ S2 ⊆ C−
and I2 \ I1 ⊆ C+ and I1 \ I2 ⊆ C−

Figure 6. Flume labels and authorities.

the description above inaccurate: authorities are sets of
“capabilities”, which are principals equipped with a polarity
annotation, positive or negative. A positive capability permits
adding a principal to a label (in whichever component),
whereas a negative capability allows removing a principal.
That behavior of authorities is captured in Figure 6.

The definition does not form a label algebra, because using
the least authority is not the same as using no authority: v0

is the equality relation on labels, which is different from the
relation v of the underlying lattice. This refinement makes
Flume more flexible: the way thread labels can change is
completely programmable, which gives programmers a lot
of freedom to define the shape of the lattice. In practice,
we don’t know whether programmers actually used all this
flexibility. If not, we can easily restrict Flume to yield a
label algebra by using disjoint principals for confidentiality
and integrity and by always giving threads the p+ authority
for confidentiality principals p and the q− capability for
endorsement principals q.

VII. PRINCIPAL HIERARCHIES

Several information-flow systems (e.g., Jif [2] and Aeo-
lus [16]) allow users to define a hierarchy of principals, often
called an acts-for relation, which can be used to delegate
authority between principals and to implement authorization
groups. Because the goal of principal hierarchies is to relax
the rules of how information can flow, they can be viewed
as part of the authority structure of a label algebra.

Formally, a principal hierarchy is a partial order over prin-
cipals. Let H denote the set of all such partial orders. When
H ∈ H and (p1, p2) ∈ H , we say “p2 acts for p1 (under H).”
The bottom principal hierarchy is H0 = {(p, p) | p ∈ P},
because by default, each principal acts for himself. We also
need to add a top element toH, because label algebras require
a join on authorities: without that top element, it would be
impossible to fulfill that requirement. Indeed, “joining” two
partial orders leads in general to a preorder: cycles can appear.
Here is an example of that phenomenon: suppose that p acts
for q in H1, and that q acts for p in H2. If H1 ∨H2 existed
as a partial order, then p would necessarily act for q under
H1 ∨ H2 and vice versa—a contradiction. Adding a top

DLMS-H: not a label algebra

L = Pfin(Pol) A = {>}+ (H×Pfin(P))
0 = (H0, ∅)
(H,P) ≤ > = true
(H1, P1) ≤ (H2, P2) = H1 ⊆ H2 and P1 ⊆ P2

(H1, P1) ∨ (H2, P2) = ((H1 ∪H2)
+, P1 ∪ P2)

if (H1 ∪H2)
+ is a partial order

A1 ∨A2 = > otherwise
L1 v> L2 = true
L1 v(H,∅) L2 = ∀(p1 → P1) ∈ L1, ∃(p2 → P2) ∈ L2,

(p1, p2) ∈ H and
∀p′2 ∈ P2,∃p′1 ∈ P1, (p

′
1, p
′
2) ∈ H

L1 v(H,A) L2 =
L1 v(H,∅) L2 t LA where LA = {p→ ∅ | p ∈ A}

Figure 7. DLMS with principal hierarchy.

element is a technical expedient that allows us to turn a
partial join into a total one: top can be understood as an
“invalid” principal hierarchy.

To illustrate how this might work, Figure 7 gives a defini-
tion of DLMS-H—the extension of DLMS with principal
hierarchies. Authorities are pairs of a hierarchy and a set of
principals; as in DLMS, this set is used to remove policies
from labels. The relation v(H0,A) of DLMS-H is exactly
the relation vA of DLMS.

However, DLMS-H is not a label algebra, because the
u operation on labels does not necessarily define the
greatest lower bound of labels. (This was already noted
by Myers [17].)

We can add principal hierarchies to other label algebras in
a similar way, leading to similar problems in most instances.
The following table sums up the effect of that change on
the joins and meets of some of the label algebras we’ve
discussed. The checkmark 3 indicates that joins (resp. meets)
remain least upper bounds (greatest lower bounds); the cross
7 denotes that joins (meets) are not the best upper bound
(lower bound).

Adding acts-for to... T R D E DCS DLMS

t still works 3 7 3 7 3 3
u still works 7 3 7 3 3 7

Interestingly, none of the set-based models of §V extends well
with principal hierarchies (some of them lose joins, others
lose meets), whereas DCS presents no problem. The reason is
that set intersection loses some information, whereas syntactic
meets—i.e. disjunctions in the case of DCS—keep all the
available information. (Take, for example, a hierarchy H such
that p acts for q in H . In T, {p} u {q} = {p} ∩ {q} = ∅,
although {q} vH {p}, so a more precise lower bound for
{p} and {q} is {q} when they are considered under H .)

Fortunately, there is a generic way to recover the joins or

meets that disappeared while adding principal hierarchies.
Given a preorder (X,v), we can define the join- and meet-
completion of v, written vt and vu. These restore the
accuracy of joins or meets by adding new points in the
preorder structure as needed. Informally, the meet-completed
preorder introduces new points that represent a syntactic n-ary
meets of points. Formally, vu is the relation on Pfin(X) such
that L1 vuL2 = ∀l2 ∈ L2,∃l1 ∈ L1, l1 v l2. Meet is just set
union: {l1, . . . , ln} literally represents the meet of l1, . . . , ln.
If X has joins, then the join in the meet-completed preorder
is defined as follows: L1tuL2 = {l1tl2 | l1 ∈ L1, l2 ∈ L2}.
Meet-completion does not change the accuracy of joins: for
L1 and L2 in X , {L1} tu {L2} = {L1 t L2}.

The definition of join-completion is dual to the one of meet-
completion: join-completion adds syntactic n-ary joins to the
set of points. The definitions of join- and meet-completions
can be found in the Appendix.

Adding acts-for to R and then performing join-completion
leads to a label algebra. Similarly, meet-completing DLMS-
H gives back a label algebra.

Interestingly, Tu and Rt are isomorphic to DCS: the
DC label model seems to be the simplest model that is
an extension of the set-based models and that supports the
addition of principal hierarchies.

VIII. RELATED WORK

Sabelfeld and Sands [18] describe some aspects of
declassification and what rules it should follow. One of
them is conservativity: “Security for programs with no
declassification is equivalent to noninterference”. This rule
corresponds to one of the axioms of label algebras, namely:
v=v0, i.e. the bottom authority plays no role. Instantiat-
ing Theorem III.3 with the 0-authority gives indeed non-
interference for programs that do not declassify.

Mantel and Sands [19] study intransitive non-interference,
a security property of programs that perform declassification.
They use PERs that rely on bisimulations of labeled transition
systems: by definition, a strongly secure program is related
to itself. This seems akin to our evaluation semantics,
although they use a more intensional PER on programs.
Like our λ-calculus (§III), their language identifies which
parts of the code perform declassification. Their small-
step semantics is labeled with the authority that is used
during reduction. (Keeping such a trace and using it in the
evaluation semantics of labels is an interesting direction
for future work for us.) Label algebras are not well suited
to model intransitive policies, since the ordering on labels
is required to be transitive. If we consider the transitive
closures of the relations used by the authors, there seems to
be only two authorities—no authority (⊥) and declassification
authority (>). The declassification relation (), which allows
exceptional flows, is not required to be transitive, and neither
is v⊥ ∪ in general. In our notation, v> corresponds to
the relation (v∪)+.

Paralocks [20] is a language for building statically ver-
ifiable information-flow policies. It is based on locks that
are guarded by policies in the form of Horn clauses, which
form a pre-lattice. The authors prove that the DLM can be
encoded into Paralocks by defining a function on labels that
preserves and reflects the flows-to relation and commutes
with joins and meets: ignoring authority and the default label,
this is a label algebra injection. It is not clear whether they
take authority into account.

Jaume [21] compares the security policies induced by
access control and by information flow analysis. For that
purpose, he uses techniques that are similar to the ones we
use. A security policy P is a triple of a set of security targets
T, a set of configurations C, and a predicate |=⊆ C × T,
where c |= t means that the target t is secure with respect
to the configuration c. Assuming the policies P1 and P2 are
defined over the same set of targets, P1 can be embedded
into P2 when ∀c1 ∈ C1,∃c2 ∈ C2,∀t ∈ T, c1 |=1 t ⇔
c2 |=2 t. Policies over different sets of targets are studied by
interpreting them into policies over the same targets.

IX. FUTURE WORK

This exploration of label algebras and embeddings is just
a beginning. Ultimately, we would like to build an exhaustive
map of all known label algebras along with the existence or
absence of embeddings between every pair. However, even
for the part of this map that we’ve completed so far, using
a proof assistant has been more than just helpful—it was
actually a necessity. For one thing, it helped us to come up
with cleaner definitions (as formalization always does). More
importantly, without machine checking we would not have
trusted our proof of Theorem IV.10, nor would we probably
ever have been confident in the correctness of Figure 4.
Formally verifying further embeddability results—especially
among real-world label algebras—is a natural next step.

Since it depends on the semantics of a programming
language, the evaluation semantics from §IV is sensitive
to the set of features of the language. It would be interesting
to extend our language with first-class labels and authorities,
and possibly imperative features, and see the implications
on the characterization Theorem IV.10. We conjecture that
extending the language in a way that makes use of more
features of label algebras leads to embeddings that need to
preserve and reflect more aspects of label algebras.

We would like also to experiment with different instances
of the abstract label semantics: for example, our evaluation
semantics could use a more semantic notion of program
equivalence. We could also consider an information-flow
type system for our language (i.e., one parameterized over
label algebras) and then use the typability judgment to define
a label semantics.

Label algebras cannot currently describe systems that
dynamically generate principals (and associated authorities
and labels). We have defined an extension that deals with

dynamicity, but a full exposition is beyond the scope of this
paper. The extension relies on two ingredients: (1) standard
techniques from nominal logics (permutation of principals,
finite support, equivariance, etc.) for dealing with generation
of fresh principal names, and (2) a pair of reification and
reflection functions that define a syntactic representation
of labels and authorities. We are currently studying the
properties of evaluation embeddings for a language with
these features.

Acknowledgments

We are grateful to Steve Zdancewic, David Mazières, Deian
Stefan, and the members of the SAFE team for fruitful
discussions and to Michael Greenberg for a close reading of
an earlier draft. Robin Morisset helped initiate the design of
label algebras. Greg Morrisett and Adrien Surée participated
in early discussions and gave us essential feedback on
the technical definitions. This material is based upon work
supported by the DARPA CRASH program through the US
Air Force Research Laboratory (AFRL) under Contract No.
FA8650- 10-C-7090. The views expressed are those of the
authors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

REFERENCES

[1] D. E. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, pp. 236–243, May 1976.
[Online]. Available: http://doi.acm.org/10.1145/360051.360056

[2] A. C. Myers and B. Liskov, “Protecting privacy using
the decentralized label model,” ACM Trans. Softw. Eng.
Methodol., vol. 9, pp. 410–442, October 2000. [Online].
Available: http://doi.acm.org/10.1145/363516.363526

[3] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell,
“Disjunction category labels,” in 16th Nordic Conference
on Secure IT Systems, ser. NordSec. Springer, 2011, pp.
223–239. [Online]. Available: http://www.scs.stanford.edu/
∼deian/pubs//stefan:2011:dclabels.pdf

[4] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris, “Labels and event processes in the Asbestos
operating system,” in 20th Symposium on Operating Systems
Principles, ser. SOSP. ACM, 2005, pp. 17–30. [Online].
Available: http://asbestos.cs.ucla.edu/pubs/asbestos-sosp05.pdf

[5] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” in Proceedings
of the 7th symposium on Operating systems design and
implementation, ser. OSDI. USENIX Association, 2006, pp.
263–278. [Online]. Available: http://www.scs.stanford.edu/
∼nickolai/papers/zeldovich-histar.pdf

[6] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” Communications
of the ACM, vol. 54, no. 11, pp. 93–101, 2011.
[Online]. Available: http://www.scs.stanford.edu/∼dm/home/
papers/zeldovich:histar-cacm.pdf

[7] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel, “Laminar: Practical fine-grained decentralized
information flow control,” in Proceedings of the Conference
on Programming Language Design and Implementation,
ser. PLDI. ACM, 2009, pp. 63–74. [Online]. Available:
http://www.cs.utexas.edu/users/witchel/pubs/roy09pldi.pdf

[8] M. N. Krohn, A. Yip, M. Z. Brodsky, N. Cliffer,
M. F. Kaashoek, E. Kohler, and R. Morris, “Information
flow control for standard OS abstractions,” in 21st
Symposium on Operating Systems Principles, ser. SOSP.
ACM, October 2007, pp. 321–334. [Online]. Available:
http://pdos.csail.mit.edu/∼max/docs/flume.pdf

[9] The Coq Proof Assistant, 2012, version 8.4. [Online].
Available: http://coq.inria.fr/refman/

[10] P. Li, Y. Mao, and S. Zdancewic, “Information integrity
policies,” in Proceedings of the Workshop on Formal Aspects in
Security & Trust (FAST), September 2003. [Online]. Available:
http://www.cis.upenn.edu/∼stevez/papers/LMZ03.pdf

[11] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres, “Securing
distributed systems with information flow control,” in 6th
Symposium on Networked Systems Design and Implementation,
San Francisco, CA, April 2008. [Online]. Available: http:
//www.scs.stanford.edu/∼dm/home/papers/zeldovich:dstar.pdf

[12] T. H. Austin and C. Flanagan, “Efficient purely-dynamic
information flow analysis,” SIGPLAN Notices, vol. 44,
pp. 20–31, December 2009. [Online]. Available: http:
//slang.soe.ucsc.edu/cormac/papers/plas09.pdf

[13] K. J. Biba, “Integrity considerations for secure computer
systems,” Mitre, Tech. Rep. ESD-TR-76-372, MTR-3154 Rev
1, Apr. 1977.

[14] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,
“Flexible dynamic information flow control in Haskell,” in
Proceedings of the 4th Symposium on Haskell. ACM, 2011,
pp. 95–106. [Online]. Available: http://www.scs.stanford.edu/
∼deian/pubs//stefan:2011:flexible-ext.pdf

[15] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo, “Hails: Protecting data privacy
in untrusted web applications,” in 10th Symposium on
Operating Systems Design and Implementation (OSDI).
USENIX, 2012, pp. 47–60. [Online]. Available: http:
//www.scs.stanford.edu/∼deian/pubs//giffin:2012:hails.pdf

[16] W. Cheng, D. R. K. Ports, D. Schultz, J. Cowling,
V. Popic, A. Blankstein, D. Curtis, L. Shrira, and
B. Liskov, “Abstractions for usable information flow
control in Aeolus,” in Proceedings of the 2012
USENIX Annual Technical Conference, Jun. 2012.
[Online]. Available: http://pmg.csail.mit.edu/pubs/cheng12
abstr usabl infor flow contr aeolus-abstract.html

[17] A. C. Myers, “Mostly-static decentralized information
flow control,” Ph.D. dissertation, Massachusetts Institute
of Technology, January 1999. [Online]. Available: http:
//www.cs.cornell.edu/andru/release/tr783.pdf

[18] A. Sabelfeld and D. Sands, “Dimensions and principles
of declassification,” in Computer Security Foundations
18th Workshop, IEEE, Ed., June 2005, pp. 255–269.
[Online]. Available: http://www.cse.chalmers.se/∼dave/papers/
sabelfeld-sands-CSFW05.pdf

[19] H. Mantel and D. Sands, “Controlled declassification based
on intransitive noninterference,” in Proc. Asian Symp. on
Programming Languages and Systems, ser. LNCS. Springer-
Verlag, 2004, pp. 129–145. [Online]. Available: http://www.
cse.chalmers.se/∼dave/papers/Mantel-Sands-TR04.pdf

[20] N. Broberg and D. Sands, “Paralocks: role-based information
flow control and beyond,” SIGPLAN Not., vol. 45, pp.
431–444, January 2010. [Online]. Available: http://www.cse.
chalmers.se/∼dave/papers/Broberg-Sands-POPL10.pdf

[21] M. Jaume, “Semantic comparison of security policies:
from access control policies to flow properties,” in IEEE
Workshop on Semantic Computing and Security, WSCS’2012
IEEE CS Security and Privacy Workshops (SPW). IEEE
Computer Society Press, 2012, pp. 60–67. [Online]. Available:
http://www-spi.lip6.fr/∼jaume/wscs2012.pdf

APPENDIX

OTHER OPERATIONS ON LABEL ALGEBRAS

A. Meet completion

Meet completion takes a preorder and gives a meet-
prelattice. If the preorder has joins, its meet completion
preserves them.

Lu: Meet completion of L

Lu = Pfin(L)
L1 vuL2 = ∀l2 ∈ L2,∃l1 ∈ L1, l1 v l2
L1 tu L2 = {l1 t l2 | l1 ∈ L1, l2 ∈ L2}
L1 uu L2 = L1 ∪ L2

A.1 Lemma: Meet completion improves the accuracy of
lower bounds: for any l, l1, l2 ∈ L, such that l v l1 and
l v l2, we have {l} vu{l1} uu {l2}.

A.2 Lemma: Assume L is a join-prelattice. Meet com-
pletion preserves joins: for any l1, l2 ∈ L, {l1 t l2} =
{l1} tu {l2}.

B. Join completion

Join completion takes a preorder and gives a join-prelattice.
If the preorder has meets, its join completion preserves them.

Lt: Join completion of L

Lt = Pfin(L)
L1 vtL2 = ∀l1 ∈ L1,∃l2 ∈ L2, l1 v l2
L1 tt L2 = L1 ∪ L2

L1 ut L2 = {l1 u l2 | l1 ∈ L1, l2 ∈ L2}

B.1 Lemma: Join completion improves the accuracy of
upper bounds: for any l, l1, l2 ∈ L, such that l1 v l and
l2 v l, we have {l1} tt {l2} vt{l}.

B.2 Lemma: Assume L is a meet-prelattice. Join completion
preserves meets: for any l1, l2 ∈ L, {l1 u l2} = {l1}ut {l2}.

