
The Age of
Deep Specification

Benjamin C. Pierce
University of Pennsylvania

May, 2015

“We can’t build
software that works…”

“We can’t build
software that works…”

But just look at all the
software that does work!

But just look at all the
software that does work!

How did that
happen?

Lots of ways!

Lots of ways!

• Better software development methodology

Lots of ways!

• Better software development methodology

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

Lots of ways!

• Better software development methodology

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better testing

Lots of ways!

• Better software development methodology

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better testing

• Better use of specifications

Lots of ways!

• Better software development methodology

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better testing

• Better use of specifications

I.e., descriptions of what software
does (as opposed to the

instructions for how to do it)

Lots of ways!

• Better software development methodology

• Better programming languages

• Basic safety guarantees built in

• Powerful mechanisms for abstraction and modularity

• Better testing

• Better use of specifications

I.e., descriptions of what software
does (as opposed to the

instructions for how to do it)

Why are
specifications useful?

Why are
specifications useful?

If you want to build software
that works, it is helpful to know

what you mean by "works"!

A Specification:

The “sort” function should take a list of
items and return a list of the same items

in increasing order.

A Specification:

The “sort” function should take a list of
items and return a list of the same items

in increasing order.

useful!

A Specification:

The “sort” function should take a list of
items and return a list of the same items

in increasing order.

useful!

but…

simple

A Specification:

The “sort” function should take a list of
items and return a list of the same items

in increasing order.

useful!

but…

simple informal

A Specification:

The “sort” function should take a list of
items and return a list of the same items

in increasing order.

useful!

disconnected
 from code

but…

simple informal

Simple ⟶ Rich
• C Language Reference

• 592 pages

• also Java (792 pages), C++ (1354
pages, etc.

• x86 CPU reference
• 1499 pages

• AUTOSAR standardized
automotive architecture
• 3000 pages

Informal ⟶ Precise

• Z, Alloy, VDM, ACL2,
Coq, Isabelle, …
• x86 instruction set (and

many others)

• Ada, Java virtual machine,
C, JavaScript, …

• …

Formal specification languages

Disconnected ⟶ Integrated

• Formal verification tools
• Human constructs “proof script”; computer checks it

• Capable in principle of establishing connections
between arbitrary specifications and code

• Challenging to use at scale

• Type systems
• Highly successful “lightweight formal methods”

• Built into programming languages

• Limited expressiveness, but “always on”

Deep specifications

1. Rich

2. Formal

3. Integrated with code

early tours de force…

CompCert C compiler

• Fully verified translator from C to machine code

• Accepts most of ISO C 99

• Produces machine code for PowerPC, ARM, and
IA32 (x86 32-bit) architectures

• 90% of the performance of GCC (v4, opt. level 1)

seL4

Real-world operating-system kernel with
an end-to-end proof of implementation
correctness and security enforcement

Emerging trends…

New specification / verification tools

• Coq

• Isabelle

• ACL2

• …

• F*

• Dafny

• Boogie

• …

Powerful
proof assistants and

program logics

Quasi-automatic verifiers
based on SMT solvers

Formal verification of real software

• Verified TLS implementation
• (Core technology for secure web communications)

• Verified compilers
• CakeML, Bedrock, CompCertTSO, …

• Verified distributed systems
• Verdi, …

• Verified operating systems and OS components
• CertiKOS, Ironclad Apps, Jitk, …

• Verified cryptography

• …

Expressive type systems
• security types

• session types

• component types / object types / module
systems

• generalized abstract datatypes

• …

Property-based random testing

• TCP networking protocol suite [Sewell et al.,
Cambridge]

• Testable AutoSAR model [Quviq, Göteborg]
• Found >200 faults in AUTOSAR Basic Software,

including >100 inconsistencies in the informal standard

• Testable model of Dropbox and other
synchronization frameworks [ongoing work
with Quviq]

• …

Where are we going?

Where are we going?

Where are we going?

One possibility…

A zero-vulnerability software stack

A zero-vulnerability software stack

Thank you!

(Any questions?)

