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If you want to build software 
that works, it is helpful to know 

what you mean by "works"!
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Simple ⟶ Rich
• C Language Reference

• 592 pages

• also Java (792 pages), C++ (1354 
pages, etc.

• x86 CPU reference
• 1499 pages

• AUTOSAR standardized 
automotive architecture
• 3000 pages



Informal ⟶ Precise 

• Z,  Alloy,  VDM,  ACL2, 
Coq, Isabelle, …
• x86 instruction set (and 

many others)

• Ada, Java virtual machine, 
C, JavaScript, …

• …

Formal specification languages



Disconnected ⟶ Integrated

• Formal verification tools
• Human constructs “proof script”; computer checks it

• Capable in principle of establishing connections 
between arbitrary specifications and code

• Challenging to use at scale

• Type systems
• Highly successful “lightweight formal methods”

• Built into programming languages

• Limited expressiveness, but “always on”















Deep specifications

1. Rich

2. Formal

3. Integrated with code



early tours de force…



CompCert C compiler

• Fully verified translator from C to machine code

• Accepts most of ISO C 99 

• Produces machine code for PowerPC, ARM, and 
IA32 (x86 32-bit) architectures

• 90% of the performance of GCC  (v4, opt. level 1)



seL4

Real-world operating-system kernel with 
an end-to-end proof of implementation 
correctness and security enforcement



Emerging trends…



New specification / verification tools

• Coq

• Isabelle

• ACL2

• …

• F*

• Dafny

• Boogie

• …

Powerful 
proof assistants and 

program logics

Quasi-automatic verifiers
based on SMT solvers



Formal verification of real software

• Verified TLS implementation
• (Core technology for secure web communications)

• Verified compilers
• CakeML, Bedrock, CompCertTSO, …

• Verified distributed systems
• Verdi, …

• Verified operating systems and OS components
• CertiKOS, Ironclad Apps, Jitk, …

• Verified cryptography 

• …



Expressive type systems
• security types

• session types

• component types / object types / module 
systems

• generalized abstract datatypes

• …



Property-based random testing

• TCP networking protocol suite [Sewell et al., 
Cambridge]

• Testable AutoSAR model  [Quviq, Göteborg]
• Found >200 faults in AUTOSAR Basic Software, 

including >100 inconsistencies in the informal standard

• Testable model of Dropbox and other 
synchronization frameworks [ongoing work 
with Quviq]

• …
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One possibility…

A zero-vulnerability software stack
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Thank you!

(Any questions?)


