
Adventures in
Bidirectional Programming

Benjamin Pierce

University of Pennsylvania

FSTTCS
December 2007

Bidirectional Mappings

I Most programs work in one direction—from source to target

I But sometimes we want to update the target

I ...and “translate” this update to obtain an appropriately
updated source

S T

Bidirectional Mappings

I Most programs work in one direction—from source to target

I But sometimes we want to update the target

I ...and “translate” this update to obtain an appropriately
updated source

S T

Updated
T

update

Bidirectional Mappings

I Most programs work in one direction—from source to target

I But sometimes we want to update the target...

I ...and “translate” this update to obtain an appropriately
updated source

S T

Updated
T

Updated
S

The View Update Problem

This is called the view update problem in the database literature.

Database View
View definition

Update translation policy

false3z
2y true
1x true

CBA

100
x 1
A

false
B C

truey

The View Update Problem In Practice

It also arises with picklers and unpicklers...

Binary File In-memory representation

Updated binary file

application
update

The View Update Problem In Practice

...in structure editors...

Document Screen presentation

Updated document

edit operation
on screen

XML Editor

XML Editor

The View Update Problem In Practice

...and in data synchronizers, such as the Harmony system.

source in format B

source in format A Common target
format

Synchronized source in
format A

Synchronized source in
format B

Approaches to View Update

Bad: Write the two transformations as separate functions.

I Hard to write

I Harder to maintain

Good: Derive both from a single description.

Approaches to View Update

Bad: Write the two transformations as separate functions.

I Hard to write

I Harder to maintain

Good: Derive both from a single description.

Research challenge: Find good ways to give such
descriptions.

Fertile Area for Research

I Complex design space, full of surprising constraints
I Desiderata for particular cases often clear; general case

often unclear
I Interesting to see what can be done in a principled way

I Pragmatic state of the art is pretty bad
I Bidirectional transformations common in software

systems
I Mostly hand-crafted
I Bugs abound

Clean solutions — even partial solutions — welcome

This Talk...

1. Introduces bidirectional programming languages

2. Gives some technical details of what we’ve achieved so far

3. Describes some current and future challenges

Bidirectional Programming
Languages

A Linguistic Approach

I Clean semantic foundation
I Behavioral laws guide language design

I Compositional syntax
I Build complex bidirectional transformations out of

simpler ones

I Expressive type system
I Guarantee totality and well-behavedness by local static

checks

Terminology

Terminology

lens

Terminology

get

lens

Terminology

get

create

lens

Terminology

get

put

lens

Semantics

A lens l from S to T is a triple of functions

l .get ∈ S → T

l .put ∈ T → S → S

l .create ∈ T → S

obeying three “round-tripping” laws:

l .put (l .get s) s = s (GetPut)

l .get (l .put t s) = t (PutGet)

l .get (l .create t) = t (CreateGet)

String Lenses

String Lenses

Data model: Strings over a finite alphabet

Computation model: Finite-state string transducers, written
using regular-expression-like syntax

Type system: Regular languages (with interesting side
conditions)

Why strings? Simple setting → exposes fundamental issues

...and there’s a lot of string data in the world...

...and programmers are familiar with finite-state transducers
and regular expressions.

Composer Lens (Get)

Source string:

"Benjamin Britten, 1913-1976, English"

Target string:

"Benjamin Britten, English"

Composer Lens (Put)

Putting new target

"Benjamin Britten, British"

into original source

"Benjamin Britten, 1913-1976, English"

yields new source:

"Benjamin Britten, 1913-1976, British"

Composer Lens (Definition)

let ALPHA : regexp = [A-Za-z]+
let YEAR : regexp = [0-9]{4}
let YEARS : regexp = YEAR . "-" . YEAR

let c : lens = cp ALPHA . cp ", "
. del YEARS . del ", "
. cp ALPHA

Benjamin Britten, 1913-1976, English

!

Benjamin Britten, English

Copy

cp E ∈ [[E]] ⇐⇒ [[E]]

get s = s

put t s = t

create t = t

Constant

u ∈ Σ∗ v ∈ [[E]]

const E u v ∈ [[E]] ⇐⇒ {u}

get s = u

put t s = s

create t = v

Constant (and Some Derived Forms)

u ∈ Σ∗ v ∈ [[E]]

const E u v ∈ [[E]] ⇐⇒ {u}

get s = u

put t s = s

create t = v

E ↔ u ∈ [[E]] ⇐⇒ {u}
E ↔ u = const E u (choose(E))

del E ∈ [[E]] ⇐⇒ {ε}
del E = E ↔ ε

ins u ∈ {ε} ⇐⇒ {u}
ins u = ε ↔ u

Concatenation

S1 ·! S2 T1 ·! T2

l1 ∈ S1 ⇐⇒ T1 l2 ∈ S2 ⇐⇒ T2

l1 · l2 ∈ S1 · S2 ⇐⇒ T1 · T2

get (s1 · s2) = (l1.get s1) · (l2.get s2)

put (t1 · t2) (s1 · s2) = (l1.put t1 s1) · (l2.put t2 s2)

create (t1 · t2) = (l1.create t1) · (l2.create t2)

S1 ·! S2 means “the concatenation of S1 and S2 is uniquely

splittable”

Kleene-*

l ∈ S ⇐⇒ T S !∗ T !∗
l∗ ∈ S∗ ⇐⇒ T∗

get (s1 · · · sn) = (l .get s1) · · · (l .get sn)

put (t1 · · · tn) (s1 · · · sm) = (l .put t1 s1) · · · (l .put tm sm) ·
(l .create tm+1) · · · (l .create tn)

create (t1 · · · tn) = (l .create t1) · · · (l .create tn)

Union

S1 ∩ S2 = ∅ l1 ∈ S1 ⇐⇒ T1 l2 ∈ S2 ⇐⇒ T2

l1 | l2 ∈ S1 ∪ S2 ⇐⇒ T1 ∪ T2

get s =

{
l1.get s if s ∈ S1

l2.get s if s ∈ S2

put t s =

{
li .put t s if s ∈ Si ∧ t ∈ Ti

lj .create t if s ∈ Si ∧ t ∈ Tj \ Ti

create a =

{
l1.create t if t ∈ T1

l2.create t if t ∈ T2 \ T1

The Role of Types

The typing rules for these combinators are designed so that
the target structure can be updated with no knowledge of the
source structure or the transformation between them.

I l .put can be applied to any target structure belonging to
the codomain of l

I every such put is guaranteed to succeed (i.e., put is a
total function on the specified types)

I round-tripping laws are guaranteed to hold

I.e., the target is a closed view in the sense of Hegner.

Strong requirement, suitable for off-line applications.

I In on-line situations, weaker guarantees may be
acceptable.

The Role of Types

The typing rules for these combinators are designed so that
the target structure can be updated with no knowledge of the
source structure or the transformation between them.

I l .put can be applied to any target structure belonging to
the codomain of l

I every such put is guaranteed to succeed (i.e., put is a
total function on the specified types)

I round-tripping laws are guaranteed to hold

I.e., the target is a closed view in the sense of Hegner.

Strong requirement, suitable for off-line applications.

I In on-line situations, weaker guarantees may be
acceptable.

The Role of Types

The requirement that well-typedness should guarantee totality
forces us to use an extremely precise type system.

Pros:

I Types capture detailed structural constraints on
source/target formats

I Typechecking exposes many programming errors that
would be invisible to a coarser type system

Cons:

I Programmers sometimes have to work hard to make the
typechecker happy

I Building an efficient typechecker is challenging...

Typechecker Engineering

Using regular expressions as types demands serious care in the
implementation:

I typechecking involves many automata-theoretic
operations and tests

I algorithms for checking “unambiguous splittability”
conditions are rarely implemented and computationally
expensive

I “expensive” operations like union, difference, and
interleaving are used heavily by programmers

→ naive “determinization” of NFAs will lead to huge
DFAs

Typechecker Engineering

Short-term approach:

I NFA representation

I aggressive memoization of automata-theoretic operations,
results of emptiness tests, etc. (see our [PLANX 07]
paper)

I Good enough for our prototype

Longer-term approach:

I Compile regular expressions to DFAs using derivatives
[Brzozowski 1964].

I Challenge: splittability checking

Boomerang

Combinators → Programming Language

Writing large programs using just these combinators would not
be much fun!

I Need abstraction facilities, so we can build reusable
libraries of parameterized lenses

Idea: Embed the combinators in a functional programming
language...

Combinators → Programming Language

Writing large programs using just these combinators would not
be much fun!

I Need abstraction facilities, so we can build reusable
libraries of parameterized lenses

Idea: Embed the combinators in a functional programming
language...

Boomerang

I Boomerang is a simply typed functional language over the
base types string, regexp, lens, ...

I ...with primitives:

get : lens -> string -> string
put : lens -> string -> string -> string
create : lens -> string -> string

union : lens -> lens -> lens
concat : lens -> lens -> lens
star : lens -> lens

etc.

Two-stage typechecking

I Typecheck initial functional program using these “rough
types”

I Execute it

I During execution, lens-constructing operators like union

and star perform precise typechecking according to the
rules above

Similar to hybrid checking [Flanagan, POPL 06].

Ordered Data

Composers (Get)

Suppose we want to extend the lens to handle ordered lists of
composers — i.e., so that

"Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

maps to

"Aaron Copland, American
Benjamin Britten, English"

and vice versa.

Composers (Lens)

let ALPHA : regexp = [A-Za-z]+
let YEAR : regexp = [0-9]{4}
let YEARS : regexp = YEAR . "-" . YEAR

let c : lens = cp ALPHA . cp ", "
. del YEARS . del ", "
. cp ALPHA

let cs : lens = cp "" | c . (cp "\n" . c)*

Example (Put)

Putting new target

"Aaron Copland, American
Benjamin Britten, British
Alexandre Tansman, Polish"

into original source

"Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

yields new source:

"Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

Kleene-* and Alignment

Unfortunately, there is a serious problem lurking here.

The put component of l* splits its T and S inputs into
sequences of elements

t = t1 . t2 . t3 . . .
s = s1 . s2 . s3 . . .

then invokes the put of l on t1 and s1, on t2 and s2, etc., and
then forms a list of the results.

A put function that works by position does not always give us
what we want!

For example...

A Bad Put

Putting

"Benjamin Britten, British

Aaron Copland, American"

into the same input as above...

"Aaron Copland, 1910-1990, American

Benjamin Britten, 1913-1976, English"

...yields a mangled result:

"Benjamin Britten, 1910-1990, British

Aaron Copland, 1913-1976, American"

A Serious Problem

It arises whenever lenses are used with ordered data and where
updates can add, delete, and rearrange elements.

Our experience writing lenses for a variety of real-world data
formats shows that it arises frequently in applications.

Neither our basic lenses nor any other variant of lenses in the
literature gets it right.

Dictionary Lenses

A Way Forward

In the composers lens, we want the put function to match up
lines with identical name components. It should never pass

"Benjamin Britten, British"

and

"Aaron Copland, 1910-1990, American"

to the same put!

To achieve this, the lens needs to identify:

I where are the re-orderable chunks in source and target;

I how to compute a key for each chunk.

A Better Composers Lens

Similar to previous version but with a key annotation and a
new combinator (<c>) that identifies the pieces of source and
target that may be reordered.

let c = key ALPHA . cp ", "

. del YEARS . del ", "

. cp ALPHA

let cs = cp "" | <c> . (cp "\n" . <c>)*

The put function operates on a dictionary structure where
source chunks are accessed by key.

Semantics of Dictionary Lenses

A dictionary lens l ∈ S
R,D⇐⇒ T is a tuple of functions

l .get ∈ S → T
l .parse ∈ S → R × D

l .key ∈ T → K
l .put ∈ T → R × D → S × D

l .create ∈ T → D → S × D

A dictionary lens can be coerced to a basic lens l̂ ∈ S ⇐⇒ T :

l̂ .get s = l .get s

l̂ .put t s = π1(l .put t (l .parse s))

l̂ .create t = π1(l .create t {})

The Essential Dictionary Lens

l ∈ S
R,D⇐⇒ T

<l> ∈ S
{�},D′
⇐⇒ T

<l>.get s = l .get s

<l>.put t (�, d) = π1(l .put t (r , d ′′)), d ′

where (r , d ′′), d ′ = lookup (l .key t) d

<l>.parse s = �, {(l .key (l .get s)) 7→ [s]}

Some Applications of
Dictionary Lenses

Address Books (vCard Source)

BEGIN:VCARD

VERSION:3.0

N:Sanjiva Prasad;;;;

FN:Sanjiva Prasad

TEL;type=WORK;type=pref:+91 11 2659 1294

X-ABUID:827704A0-38A3-4034-84BF-BADFB87EB1E2 ABPerson

NOTE:FSTTCS

END:VCARD

BEGIN:VCARD

VERSION:3.0

N:Pierce;Benjamin C.;;;

FN:Benjamin C. Pierce

TEL;type=WORK:215 898-6222

TEL;type=HOME:215 732-4684

X-ABUID:87B85E7E-AB0F-4819-8647-0BD532019144 ABPerson

END:VCARD

Address Books (vCard Source)

BEGIN:VCARD

VERSION:3.0

N:Sanjiva Prasad;;;;

FN:Sanjiva Prasad

TEL;type=WORK;type=pref:+91 11 2659 1294

X-ABUID:827704A0-38A3-4034-84BF-BADFB87EB1E2 ABPerson

NOTE:FSTTCS

END:VCARD

BEGIN:VCARD

VERSION:3.0

N:Pierce;Benjamin C.;;;

FN:Benjamin C. Pierce

TEL;type=WORK:215 898-6222

TEL;type=HOME:215 732-4684

X-ABUID:87B85E7E-AB0F-4819-8647-0BD532019144 ABPerson

END:VCARD

Address Books (vCard Source)

BEGIN:VCARD

VERSION:3.0

N:Sanjiva Prasad;;;;

FN:Sanjiva Prasad

TEL;type=WORK;type=pref:+91 11 2659 1294

X-ABUID:827704A0-38A3-4034-84BF-BADFB87EB1E2 ABPerson

NOTE:FSTTCS

END:VCARD

BEGIN:VCARD

VERSION:3.0

N:Pierce;Benjamin C.;;;

FN:Benjamin C. Pierce

TEL;type=WORK:215 898-6222

TEL;type=HOME:215 732-4684

X-ABUID:87B85E7E-AB0F-4819-8647-0BD532019144 ABPerson

END:VCARD

Address Books (vCard Source)

BEGIN:VCARD

VERSION:3.0

N:Sanjiva Prasad;;;;

FN:Sanjiva Prasad

TEL;type=WORK;type=pref:+91 11 2659 1294

X-ABUID:827704A0-38A3-4034-84BF-BADFB87EB1E2 ABPerson

NOTE:FSTTCS

END:VCARD

BEGIN:VCARD

VERSION:3.0

N:Pierce;Benjamin C.;;;

FN:Benjamin C. Pierce

TEL;type=WORK:215 898-6222

TEL;type=HOME:215 732-4684

X-ABUID:87B85E7E-AB0F-4819-8647-0BD532019144 ABPerson

END:VCARD

Address Books (Target)

Sanjiva Prasad, +91 11 2659 1294 (w), FSTTCS (note)

Pierce, Benjamin C., 215 898-6222 (w), 215 732-4684 (h)

Address Books (Lens)

let chunk : ? <-> AbsAddr =

del "BEGIN:VCARD" . del NL .

del "VERSION:3.0" . del NL .

(name; key (atype name)) . del NL .

(remove item numbers;

filterwith Field unnumbered entry) .

del "END:VCARD" . del NL

let vcards = (<chunk> . ins NL) * . ws

Bibliographic Data (BibTeX Source)

@inproceedings{utts07,
author = {J. Nathan Foster

and Benjamin C. Pierce

and Alan Schmitt},

title = {A {L}ogic {Y}our {T}ypechecker {C}an {C}ount {O}n:

{U}nordered {T}ree {T}ypes in {P}ractice},

booktitle = {PLAN-X},

year = 2007,

month = jan,

pages = {80--90},

jnf = "yes",

plclub = "yes",

}

Bibliographic Data (RIS Target)

TY - CONF

ID - utts07

AU - Foster, J. Nathan

AU - Pierce, Benjamin C.

AU - Schmitt, Alan

T1 - A Logic Your Typechecker Can Count On:

Unordered Tree Types in Practice

T2 - PLAN-X

PY - 2007/01//

SP - 80

EP - 90

M1 - jnf: yes

M1 - plclub: yes

ER -

Bibliographic Data (Lens)

let fields : lens =

let non author fields =

(do field (tag "T1") del "title" canonize title canonize title bare value nl

| do dates

| do field "" del "pages" page value page value none nl

| do std field (tag "T2") "booktitle" nl

| do std field (tag "JO") "journal" nl

| do std field (tag "VL") "volume" nl

| do std field (tag "IS") "number" nl

| do std field (tag "N1") "note" nl

| do std field (tag "AD") "address" nl

| do std field (tag "UR") "url" nl

| do std field (tag "L1") "pdf" nl

| do std field (tag "SN") "issn" nl

| do std field (tag "PB") "publisher" nl

| do std field (tag "N2") "abstract" nl

| do std field (tag "T3") "series" nl

| do field (tag "M1")

(fun (r:regexp) -> r . ins ": ")

([a-zA-Z]+ - ("author" | "title" | "booktitle" | "journal" | "volume" | "number"

| "note" | "pages" | "year" | "month" | "address" | "url" | "pdf"

| "issn" | "publisher" | "abstract" | "series"))

braced value quoted value bare value nl)* in

let author field = do field "" del "author" authors authors none nl in

author field . non author fields

Genomic Data (SwissProt Source)

CC -!- INTERACTION: Self;

NbExp=1; IntAct=EBI-1043398, EBI-1043398;

Q8NBH6:-;

NbExp=1;

IntAct=EBI-1043398, EBI-1050185;

P21266:GSTM3;

NbExp=1;

IntAct=EBI-1043398, EBI-350350;

Genomic Data (UniProtKB Target)

<comment type="interaction">

<interactant intactId="EBI-1043398"/>

<interactant intactId="EBI-1043398"/>

<organismsDiffer>false</organismsDiffer>

<experiments>1</experiments>

</comment>

<comment type="interaction">

<interactant intactId="EBI-1043398"/>

<interactant intactId="EBI-1050185">

<id>Q8NBH6</id>

</interactant>

<organismsDiffer>false</organismsDiffer>

<experiments>1</experiments>

</comment>

<comment type="interaction">

<interactant intactId="EBI-1043398"/>

<interactant intactId="EBI-350350">

<id>P21266</id>

<label>GSTM3</label>

</interactant>

<organismsDiffer>false</organismsDiffer>

<experiments>1</experiments>

</comment>

Genomic Data (Lens)

let interaction =

let id = escape name [\n:;] in

let esc = xml esc [\n;()] in

let esc no dash = xml esc [\n; ()] in

let esc space = xml esc [\n; ()] in

let label = (esc space . esc* . esc space) | esc no dash in

let prot = escape name [\n,;""] in

let inter =

xml opening tag with att " " "comment" (xml simple attribute "type" "interaction") .

((((xml gt . xml nl .

xml tag " " "id" id . del ":" .

(xml tag " " "label" label | del "-") .

xml closing tag " " "interactant".

xml tag " " "organismsDiffer"

("" <-> "false"

|" (xeno)" <-> "true"))

| xml sgt . xml nl . xml tag " " "organismsDiffer" ("Self" <-> "false")).

del "; " .

xml tag " " "experiments" (del "NbExp=" . [0-9]+ .del "; "))

(del "IntAct=" . xml tag with single att " " "interactant" "intactId" prot .

del ", " .

xml begin open tag " " "interactant" . xml space .

xml attribute "intactId" prot "")). del ";" .

xml closing tag " " "comment" in

del beg line "CC" . del "-!- INTERACTION:" . del spaces bis .

(inter . del spaces bis)* . inter . del \n

Another Challenge: Aligning
Documents

Dealing with Documents

A key issue in view update is aligning the parts of source and
target.

I Basic string lenses align by absolute position

I Dictionary lenses align chunks using keys

But for many interesting forms of data, it is difficult to identify
“chunks” or “keys”

I raw text

I structured documents

I source code

I etc., etc.

Example (Get)

Source document:

Benjamin Britten (1913-1976) wrote operas.
Aaron Copland (1910-1990) wrote orchestral
works.

Target document:

Benjamin Britten wrote operas. Aaron Copland
wrote orchestral works.

Example (Put)

Original source:

Benjamin Britten (1913-1976) wrote operas.
Aaron Copland (1910-1990) wrote orchestral
works.

Updated target:

Aaron Copland is best known for his
orchestral works, while Benjamin Britten
wrote operas of great power and beauty.

Updated source:

Aaron Copland (1910-1990) is best known for
his orchestral works, while Benjamin Britten
(1913-1976) wrote operas of great power and
beauty.

Example (Put)

Original source:

Benjamin Britten (1913-1976) wrote operas.
Aaron Copland (1910-1990) wrote orchestral
works.

Updated target:

Aaron Copland is best known for his
orchestral works, while Benjamin Britten
wrote operas of great power and beauty.

Updated source:

Aaron Copland (1910-1990) is best known for
his orchestral works, while Benjamin Britten
(1913-1976) wrote operas of great power and
beauty.

Challenges

I How to combine global alignment with structural
transformations?

I conditional?
I composition?

I What is a good algorithm for performing global
alignment?

I ordinary diff?
I fancier algorithm allowing “block moves”?

(many now available, thanks to work in genome
matching!)

Another Challenge: Ignoring
Inessential Differences

Ignoring Inessential Differences

I The lens laws demand round-tripping “on the nose”

I But often this is more than we want
I e.g., in XML documents, want to ignore most

whitespace differences, ordering of attributes, etc.

I Idea: Loosen lens laws to hold only “up to an
equivalence”

I Problem: Not clear how composition should work

l .put (l .get s) s = s (GetPut)

l .get (l .put t s) = t (PutGet)

l .get (l .create t) = t (CreateGet)

Ignoring Inessential Differences

I The lens laws demand round-tripping “on the nose”

I But often this is more than we want
I e.g., in XML documents, want to ignore most

whitespace differences, ordering of attributes, etc.

I Idea: Loosen lens laws to hold only “up to an
equivalence”

I Problem: Not clear how composition should work

l .put (l .get s) s = s (GetPut)

l .get (l .put t s) = t (PutGet)

l .get (l .create t) = t (CreateGet)

Ignoring Inessential Differences

I The lens laws demand round-tripping “on the nose”

I But often this is more than we want
I e.g., in XML documents, want to ignore most

whitespace differences, ordering of attributes, etc.

I Idea: Loosen lens laws to hold only “up to an
equivalence”

I Problem: Not clear how composition should work

l .put (l .get s) s ∼ s (GetPut)

l .get (l .put t s) ∼ t (PutGet)

l .get (l .create t) ∼ t (CreateGet)

Ignoring Inessential Differences

I The lens laws demand round-tripping “on the nose”

I But often this is more than we want
I e.g., in XML documents, want to ignore most

whitespace differences, ordering of attributes, etc.

I Idea: Loosen lens laws to hold only “up to an
equivalence”

I Problem: Not clear how composition should work

t ∼ l .get s =⇒ l .put t s ∼ s (GetPut)

l .get (l .put t s) ∼ t (PutGet)

l .get (l .create t) ∼ t (CreateGet)

Ignoring Inessential Differences

I The lens laws demand round-tripping “on the nose”

I But often this is more than we want
I e.g., in XML documents, want to ignore most

whitespace differences, ordering of attributes, etc.

I Idea: Loosen lens laws to hold only “up to an
equivalence”

I Problem: Not clear how composition should work

t ∼ l .get s =⇒ l .put t s ∼ s (GetPut)

l .get (l .put t s) ∼ t (PutGet)

l .get (l .create t) ∼ t (CreateGet)

Another Challenge: Different
Data Models

Some Other Lens Languages

[POPL 05, PLANX 07]

Data model: Trees (XML)

Computation model: Local tree transformations plus mapping,
conditionals, composition, recursion.

Types: Regular tree languages.

[Bohannon et al PODS 06]

Data model: Relations

Computation model: Relational algebra, augmented with extra
parameters to determine put behavior.

Types: Schemas with functional dependencies.

Open questions

Streaming data

I Process source and target incrementally
I e.g., SwissProt sources are about 1Gb!
I [cf. recent work by Alexandre Pilkiewicz]

Graphs

I e.g., UML models

I Issue: What is a nice compositional language for
describing graph transformations?

(Any graph transformation experts in the audience?)

Wrapping Up...

Related Work

I Semantic Framework — many related ideas in database
literature

I [Dayal, Bernstein ’82] “exact translation”
I [Bancilhon, Spryatos ’81] “translators under constant

complement”
I [Gottlob, Paolini, Zicari ’88] “dynamic views”

I Bijective languages — many

I Bidirectional languages
I [Meertens] — language for constaint maintainers; similar

behavioral laws
I [Hu, Mu, Takeichi, et al.] — several languages for

structured document editors

See our TOPLAS paper for details...

Want to Play?

Our prototype Boomerang implementation is now available for
download...

I Source code (GPL)

I Binaries for Windows, OSX, Linux

I Tutorial and growing collection of demos

Thank You!

Recent collaborators on this work: Aaron Bohannon,
Nate Foster, Michael Greenberg, Alexandre Pilkiewicz, Alan
Schmitt

Other Harmony contributors: Ravi Chugh, Malo Denielou,
Michael Greenwald, Owen Gunden, Martin Hofmann, Sanjeev
Khanna, Keshav Kunal, Stéphane Lescuyer, Jon Moore, Jeff
Vaughan, Zhe Yang

Resources: Papers, slides, sources, binaries, and demos:

http://www.seas.upenn.edu/∼harmony/

http://www.seas.upenn.edu/~harmony/

Extra Slides

Refined Semantics

Quasi-Obliviousness

We want a property to distinguish the behavior of the first
composers lens from the version with chunks and keys.

Intuition: the put function is agnostic to the order of chunks
having different keys.

Let ∼ ⊆ S × S be the equivalence relation that identifies
sources up to key-respecting reorderings of chunks.

The dictionary composers lens obeys

s ∼ s ′

l .put t s = l .put t s ′
(EquivPut)

but the basic lens does not.

Quasi-Obliviousness

More generally we can let ∼ be an arbitrary equivalences on S .

The EquivPut law characterizes some important special
cases of lenses:

I Every lens is quasi-oblivious wrt the identity relation.

I Bijective lenses are quasi-oblivious wrt the total relation.

I For experts: Recall the PutPut law:

put(t2, put(t1, s)) = put(t2, s)

which captures the notion of “constant complement”
from databases. A lens obeys this law iff each equivalence
classes of the coarsest ∼ maps via get to T .

Another Challenge:
Higher-Level Syntax

Syntax

Writing finite-state transducers as annotated regular
expressions is simple, natural, and familiar.

But not always convenient...

I some transformations (e.g., lexing) are simpler to express
by writing FSAs directly

I others are naturally written using some form of binding

	Bidirectional Programming Languages
	String Lenses
	Boomerang
	Ordered Data
	Dictionary Lenses
	Some Applications of Dictionary Lenses
	Another Challenge: Aligning Documents
	Another Challenge: Ignoring Inessential Differences
	Another Challenge: Different Data Models
	Wrapping Up...
	Extra Slides
	Refined Semantics
	Another Challenge: Higher-Level Syntax

