
Understanding Property-Based
Testing

by Talking to People
Benjamin C. Pierce

WG 2.8
May 2022

Partners in Crime

Joseph W. Cutler
1st Year PhD

Harrison Goldstein
3rd Year PhD

Adam Stein
1st Year PhD

Andrew Head
Asst. Prof

Property-Based Testing For All

Everyone loves PBT! Ask them? ^
 in this room

We want the other ~7.753 billion
people to love it too.

How do we find out what would help
them love it better?

A Preliminary User Study
(in preparation for a bigger one to come…)

Preliminary User Study
Focused on “interviews for need finding.”

Recruited 7 industry users of Hypothesis (in
Python).

Interview Questions

1. Tell us about your most memorable
time doing PBT.
(To get subjects thinking about a specific
experience.)

2. How did you come up with the
properties that you tested?

3. Did you need custom generators? If so,
what did they generate?

Analyzing Qualitative Data
1. Recruit Informants

a. We recruited from Twitter (@alpha_convert and @hgoldstein95 🙂)

2. Informants Sign Consent Form
3. Conduct Interviews

a. 30 minute interviews over Zoom
b. Calls were recorded, transcribed using Otter.ai

4. “Code” Data
a. Tag interesting paragraphs of the transcript with labels
b. Codes depend on the study goals
c. May need to compute “agreement”

5. Analyze Coded Data

More detail on coding (if requested)
Example codes:

● “Round-Trip property” (Usage)
● “Data Ingest Testing” (Usage)
● “Confidence in correctness” (Benefits)
● “Time/Effort” (Challenges)
● “Unclear Mental Model” (Challenges)
● “Cache Failed Tests” (Missing

Features)
● “Worries about Maintenance”

(Adoption)

Code categories:
● “Usage”: Specific details about how

informants had used PBT
● “Benefits”: Reasons the informants liked

using Hypothesis
● “Challenges”: Issues the informants faced

during their use of Hypothesis.
● “Missing features”: Features that the

informants either explicitly or implicitly
asked for

● “Adoption”: Grab bag of codes related to
the informants adoption and advocacy for
Hypothesis in their workplace

Analyzing Qualitative Data

What Have We Learned (So Far)?

What have we learned?
1. People who use PBT really like it!

“I've found probably half a dozen major corner case bugs”

“[PBT] was 1000 times better than the alternative”

“QuickCheck appealed to me as someone who makes a lot of mistakes and
wanted the computer to find them for me”

What have we learned?

Power Users

● Fully “bought in”
● Tend to have strong mathematical

backgrounds (often PhD in Math/CS)

● Need better generators
● Care about speed and efficiency

Everyday Users

● Use PBT occasionally
● More traditional SE background

● Need help “seeing” properties
● Tend to test simple, “extremal”

properties:
○ “Program doesn’t crash”
○ “Program behaves exactly like oracle”

2. There are two surprisingly distinct classes of users…

These groups can teach us different things!

What have we learned?
3. PBT is hard when code is poorly abstracted

○ Some reported that “carving out” an interface was much of their testing effort
○ Others reported resorting to “end-to-end” properties
○ “I can’t see any properties to test” was a common refrain

What have we learned?
4. We need to do a better job of teaching people PBT!

○ Several subjects cited lack of examples / experience as a problem
○ PBT documentation often uses terminology unfamiliar to engineers
○ We should all teach PBT in our courses!

Shriram Krishnamurthi has written a
bunch about how to do this!

What’s Next?

This is just the beginning!
We are planning a full-scale user study this summer.

Big Questions to Answer:

Where are the points of highest leverage for getting PBT out
into the world?

Concretely: What is the best way to move the needle with a
PhD dissertation or two over the next 2-3 years?

Discussion…

What would you want to learn from such a study?
Who should we interview? How do we contact them?

How do we find places in industry where PBT can help?

How can we help developers “see the properties”?

How do we help make PBT an ongoing part of a company’s culture?

Are today’s “property DSLs” sufficiently expressive? Aimed at the right set of
users?

Besides interviews, where else can we look for insight into these issues? (e.g.
GitHub?)

Watch This Space!

