
Linguistic Foundations
for

Bidirectional Transformations

Benjamin Pierce
University of Pennsylvania

Invited tutorial, PODS 2012

I The world is full of replicated data

I ... that is subject to updates

I ... that then need to be propagated to other replicas

I The world is full of replicated data

I ... that is subject to updates

I ... that then need to be propagated to other replicas

I The world is full of replicated data

I ... that is subject to updates

I ... that then need to be propagated to other replicas

I Things get more interesting when different replicas can
have different schemas

I ... or even different data models

I ... and even more interesting when some of the
information in one structure is not reflected in the other

I ... and yet more interesting when some information in
each structure is not reflected in the other

Connections to PODS

I View update problem [Dayal, Bernstein ’82, Bancilhon,
Spryatos ’81, Gottlob, Paolini, Zicari ’88, etc., etc., etc.]

I Inverse mappings in Data Exchange

I Federated databases

I ...

... And Beyond

... And Beyond

an in-memory heap structure its marshalled disk representation

... And Beyond

an in-memory heap structure its marshalled disk representation

a text pane in a GUI the scroll bar for this text pane

... And Beyond

an in-memory heap structure its marshalled disk representation

a text pane in a GUI the scroll bar for this text pane

a relational schema an ER diagram of the same schema

... And Beyond

an in-memory heap structure its marshalled disk representation

a text pane in a GUI the scroll bar for this text pane

a relational schema an ER diagram of the same schema

a requirements model of a soft-
ware system

an implementation model of the same
system

... And Beyond

an in-memory heap structure its marshalled disk representation

a text pane in a GUI the scroll bar for this text pane

a relational schema an ER diagram of the same schema

a requirements model of a soft-
ware system

an implementation model of the same
system

So the question is...

What is a good way to program
bidirectional transformations?

“Easy” Approach

Standard way of building a bidirectional transformation: Write
two functions, each propagating updates in one direction.

+ Uses standard technology

+ Works fine for simple transformations

– Scales badly

– Maintenance nightmare

“Easy” Approach

Standard way of building a bidirectional transformation: Write
two functions, each propagating updates in one direction.

+ Uses standard technology

+ Works fine for simple transformations

– Scales badly

– Maintenance nightmare

A Better Idea

Write one function in some familiar programming language
and infer the other

But:

– In general, many possible translations of a given update

– Choosing a “best” one is hard
I indeed, even NP-hard! [Buneman/Khanna/Tan 2002]
I ...and can involve fragile heuristics

A Better Idea

Write one function in some familiar programming language
and infer the other

But:

– In general, many possible translations of a given update

– Choosing a “best” one is hard

I indeed, even NP-hard! [Buneman/Khanna/Tan 2002]
I ...and can involve fragile heuristics

A Better Idea

Write one function in some familiar programming language
and infer the other

But:

– In general, many possible translations of a given update

– Choosing a “best” one is hard
I indeed, even NP-hard! [Buneman/Khanna/Tan 2002]
I ...and can involve fragile heuristics

An Even Better Idea

Design a new language in which every program is naturally
bidirectional!

Many instances of this idea...
I ad hoc libraries and tools (marshallers/unmarshallers,

parsers/prettyprinters, ...)
I bidirectional variants of standard languages (XQuery,

UnQL, relational algebra, ...)
I domain-specific bidirectional languages

I “coupled grammars” (XSugar, biXid, TGGs, ...)
I combinator-based (lenses) (Focal, Boomerang, Augeas,

...)

Key Questions

Semantics:

I What is the fundamental shape of a bidirectional
transformation?

I Are the inputs and outputs states or edits?
I Are extra context inputs needed to restore missing

information?

I What laws do we expect it to satisfy?

I What properties follow from the laws? What sorts of
generic constructions are possible? (E.g., composition)

Syntax:

I What is a good bidirectional notation for transformations
over a specific data model?

I Tension between expressiveness and well-behavedness

Key Questions

Semantics: interesting

I What is the fundamental shape of a bidirectional
transformation?

I Are the inputs and outputs states or edits?
I Are extra context inputs needed to restore missing

information?

I What laws do we expect it to satisfy?

I What properties follow from the laws? What sorts of
generic constructions are possible? (E.g., composition)

Syntax:

I What is a good bidirectional notation for transformations
over a specific data model?

I Tension between expressiveness and well-behavedness

Key Questions

Semantics: interesting

I What is the fundamental shape of a bidirectional
transformation?

I Are the inputs and outputs states or edits?
I Are extra context inputs needed to restore missing

information?

I What laws do we expect it to satisfy?

I What properties follow from the laws? What sorts of
generic constructions are possible? (E.g., composition)

Syntax: challenging!

I What is a good bidirectional notation for transformations
over a specific data model?

I Tension between expressiveness and well-behavedness

Outline

I Extended example
I Bijective transformations over strings

I The non-bijective case

I Alignment and edits

I Other data models

I Challenges

Leaving math in the background...
Feel free to ask questions...

Extended Example: Bijective
Transformations on Strings

Example

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

Schubert [1797-1828]
Monteverdi [1567-1643]

1797-1828: Schubert
1567-1643: Monteverdi

Example

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

Schubert [1797-1828]
Monteverdi [1567-1643]

1797-1828: Schubert
1567-1643: Monteverdi
1810-1856: Schumann

1797-1828: Schubert
1567-1643: Monteverdi

Example

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

1797-1828: Schubert
1567-1643: Monteverdi
1810-1856: Schumann

1797-1828: Schubert
1567-1643: Monteverdi

Schubert [1797-1828]
Monteverdi [1567-1643]
Schumann [1810-1856]

Schubert [1797-1828]
Monteverdi [1567-1643]

Example

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

1797-1828: Schubert
1567-1643: Monteverdi
1810-1856: Schumann

1797-1828: Schubert
1567-1643: Monteverdi

Schubert [1797-1828]
Monteverdi [1567-1643]
Schumann [1810-1856]

Schubert [1797-1828]
Monteverdi [1567-1643]

Overview

Semantics:

I Fundamental shape? a pair of total functions
I inputs and outputs states or edits? states
I extra context inputs needed? no

I What laws do we expect it to satisfy? bijectivity

I What sorts of generic constructions are possible? e.g.,
composition

Syntax:

I Data model: strings

I Schemas: regular expressions

I Primitives based on finite-state transducers

Data Model: Strings

Not a lot to say.

Schemas: Regular Expressions

Standard notations:

R ::= “string ′′ singleton
R1 · R2 concatenation
R∗ repetition
R1 | R2 union

Each regular expression denotes a set of strings.

Examples

Schema with composers first:

(ALPHA . " [" . DATE . "]\n")*

Schema with dates first:

(DATE . ": " . ALPHA . "]\n")*

where...
ALPHA = ("a"|...|"z"|"A"|...|"Z")*

DATE = ("0"|...|"9"|"-")*

String Transducers

Starting point for our bijective language:

I simple form of (unidirectional!) string transducers

I reminiscent of finite-state transducers

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

Schubert copy ALPHA Schubert

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

Schubert del ALPHA

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

foo "foo"⇒ "bar" bar

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

fooXYZ ("foo"⇒ "bar") · (copy ALPHA) barXYZ

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

A ("A"⇒ "B") | ("B"⇒ "A") B

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

AAABA ("A"⇒ "B" | "B"⇒ "A")∗ BBBAB

String Transducers

f ::= copy R recognize R and copy it
del R recognize R and emit nothing
r ⇒ s recognize (singleton) r and emit s
f1 · f2 concatenation
f1 | f2 union
f ∗ repetition

f1 ∼ f2 swapping concatenation

fooXYZ ("foo"⇒ "bar") ∼ (copy ALPHA) XYZbar

Next step

Bidirectionalize!

Issue #1: Deletion

Problem:

I Deletion operator throws away information

Schubert del ALPHA

I Cannot be part of a bijective transformation

Solution:

I Throw it away (it will come back later)

N.b.: “Singleton deletion” is bijective

foo "foo"⇒ ""

Issue #2: Union

Problem:

I in general, union of two string transducers defines a
relation, not a function

A ("A"⇒ "B") | ("A"⇒ "C") {B,C}

I indeed, even when the union of two string transducers is a
function, it may not be injective

Solution:

I Use schemas to ensure that domains and ranges are
disjoint

l1 ∈ R1
 S1 l2 ∈ R2
 S2

R1 ∩ R2 = ∅ S1 ∩ S2 = ∅
l1 | l2 ∈ R1 | R2
 S1 | S2

Issue #2: Union

Problems:
I in general, union of two string transducers defines a

relation, not a function
I indeed, even when the union of two string transducers is a

function, it may not be injective

A ("A"⇒ "B") | ("C"⇒ "B") B

... in which case it can’t be part of a bijective
transformation

Solution:
I Use schemas to ensure that domains and ranges are

disjoint

l1 ∈ R1
 S1 l2 ∈ R2
 S2

R1 ∩ R2 = ∅ S1 ∩ S2 = ∅
l1 | l2 ∈ R1 | R2
 S1 | S2

Issue #2: Union

Problems:

I in general, union of two string transducers defines a
relation, not a function

I indeed, even when the union of two string transducers is a
function, it may not be injective

Solution:

I Use schemas to ensure that domains and ranges are
disjoint

l1 ∈ R1
 S1 l2 ∈ R2
 S2

R1 ∩ R2 = ∅ S1 ∩ S2 = ∅
l1 | l2 ∈ R1 | R2
 S1 | S2

Issue #3: Concatenation

Problem:

I In general, concatenation is not deterministic

ABCD (copy ALPHA) · (del ALPHA) ???

Solution:

I Schemas again...

l1 ∈ R1
 S1 l2 ∈ R2
 S2

R1 ·! R2 S1 ·! S2

l1 · l2 ∈ R1 · R2
 S1 · S2

i.e., every element of R1 · R2 can be formed in exactly
one way by concatenating an element of R1 and an
element of R2 (and similarly for S1 and S2)

Issue #3: Concatenation

Problem:

I In general, concatenation is not deterministic

ABCD (copy ALPHA) · (del ALPHA) ???

Solution:

I Schemas again...

l1 ∈ R1
 S1 l2 ∈ R2
 S2

R1 ·! R2 S1 ·! S2

l1 · l2 ∈ R1 · R2
 S1 · S2

i.e., every element of R1 · R2 can be formed in exactly
one way by concatenating an element of R1 and an
element of R2 (and similarly for S1 and S2)

Formally...

A bijective lens l between a set R and a set S , written

l ∈ R
 S

comprises two functions

l→ ∈ R → S
l← ∈ S → R

where l→ and l← are inverses:

l← (l→ r) = r
l→ (l← s) = s

Typing Rules

copy R ∈ R
 R

“s”⇔ “t” ∈ “s”
 “t”

l1 ∈ R1
 S1 l2 ∈ R2
 S2 R1 ·! R2 S1 ·! S2

l1 · l2 ∈ R1 · R2
 S1 · S2

l ∈ R
 S R∗! S∗!

l∗ ∈ S∗
 R∗

l1 ∈ R1
 S1 l2 ∈ R2
 S2 R1 ∩ R2 = ∅ S1 ∩ S2 = ∅
l1 | l2 ∈ R1 | R2
 S1 | S2

l1 ∈ R1
 S1 l2 ∈ R2
 S2 R1 ·! R2 S1 ·! S2

l1 ⇔ l2 ∈ R1 · R2
 S2 · S1

Type Soundness

Theorem: If l ∈ R
 S according to the typing rules, then l is
a bijective lens between R and S .

Example (Recap)

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

Schubert [1797-1828]
Monteverdi [1567-1643]

1797-1828: Schubert
1567-1643: Monteverdi

Example (Recap)

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

Schubert [1797-1828]
Monteverdi [1567-1643]

1797-1828: Schubert
1567-1643: Monteverdi
1810-1856: Schumann

1797-1828: Schubert
1567-1643: Monteverdi

Example (Recap)

((copy ALPHA) ~ (" ["<=>"" . copy DATE . "]"<=>": ")

. copy "\n") *

1797-1828: Schubert
1567-1643: Monteverdi
1810-1856: Schumann

1797-1828: Schubert
1567-1643: Monteverdi

Schubert [1797-1828]
Monteverdi [1567-1643]
Schumann [1810-1856]

Schubert [1797-1828]
Monteverdi [1567-1643]

Recap

We’ve defined a small but complete bidirectional language...

I standard data model

I standard schema language (with a couple of unusual
operations)

I bidirectional combinators
I each atomic form denotes a bijective pair of functions: a

“bijective lens” (copy, ⇔)
I each combining form maps lenses to lenses (concat,

union, kleene star, swapping concat)

I some “expected” combinators don’t make sense (delete)

I schemas used to restrict to well-behaved cases
I type soundness theorem

The Non-Bijective Case

Asymmetric vs. Symmetric

I Asymmetric

I One direction loses information
I Example: A database and a materialized view
I Classic view update problem

I Symmetric

I Both directions lose information
I Example: Two models of different aspects of a software

system

Complements

If information is lost in one direction, it must be restored from
someplace in the other direction!

C

Complements

In the asymmetric case, the larger structure can also serve as
the complement

Intuition

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

dates only here countries only here

Let’s consider the symmetric case...

Intuition

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

add an extra structure (the
"complement") that stores the

"private information" from both sides

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

each transformation propagates
updates both to the target artifact

and to the complement...

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

each transformation propagates
updates both to the target artifact

and to the complement...

...using the complement to fill in
information not available in the

source

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi, unknown

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

Intuition

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi, unknown

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

Formally...

A symmetric lens l between a set R and a set S comprises a
complement set C with a distinguished element missing,
together with two functions

l→ ∈ R × C → S × C
l← ∈ S × C → R × C

where

l→(r , c) = (s ′, c ′)

l←(s ′, c ′) = (r , c ′)

l←(s, c) = (r ′, c ′)

l→(r ′, c ′) = (s, c ′)

N.b.: Other laws can be considered — e.g., a “Put-Put” law

Formally...

A symmetric lens l between a set R and a set S comprises a
complement set C with a distinguished element missing,
together with two functions

l→ ∈ R × C → S × C
l← ∈ S × C → R × C

where

l→(r , c) = (s ′, c ′)

l←(s ′, c ′) = (r , c ′)

propagating a null update changes nothing

l←(s, c) = (r ′, c ′)

l→(r ′, c ′) = (s, c ′)

ditto

N.b.: Other laws can be considered — e.g., a “Put-Put” law

Deletion

I We’ve dropped the requirement that transformations be
injective

I ... so we can have the del operator back again!

I Indeed, since we’re in a symmetric setting, we can have
two delete operators

I del→ (“delete when going left to right”)
I del← (“delete when going right to left”)

d ∈ R

del→ R d ∈ R
 ””

d ∈ S

del← S d ∈ ””S

Example (Recap)

composers =

(copy ALPHA .

", " <=> ", " .

// delete dates in -> direction

del-> ALPHA "?dates?" .

// delete country in <- direction

del<- ALPHA "?country?" .

"\n" <=> "\n")*

Key Issue: Totality

The assumption that l→ and l← are total functions is quite
strong:

I It means that our update translators must be able to
handle any update, with respect to any complement

Can we relax this restriction?

Depends on the application!

Key Issue: Totality

The assumption that l→ and l← are total functions is quite
strong:

I It means that our update translators must be able to
handle any update, with respect to any complement

Can we relax this restriction?

Depends on the application!

Totality

I If our lenses are being used in an on-line setting, where
edits are propagated immediately, totality can be dropped

I ... but dropping it leads to theories where it’s hard to
predict which edits will succeed

I In an off-line setting, arbitrary changes can accumulate
before we get a chance to propagate them

I ... so totality is critical

Duplication

A particular case in point:

I It would be useful to have a duplicate combinator that (in
one direction) makes two copies of its input on its output

I But how should the other direction behave?
I If one of the copies is changed and the other is not,

what should happen??

This operator is the source of a deep split among different
bidirectional transformation frameworks

I Some choose duplicate

I Some choose totality

I (Can’t have both)

Alignment and Edits

Alignment

Depending on the data model, representing the alignment of
structures before and after updates can raise additional
challenges...

I unordered data (sets, tables, etc.): straightforward (align
by keys)

I ordered data (lists, documents): more problematic

Alignment

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

???

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

1567-1643
1797-1828
1810-1856

Italy
Austria
Germany

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Alignment

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

1567-1643
1797-1828
1810-1856

Italy
Austria
Germany

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

How to represent this alignment information?

1. As a separate structure, passed to the lens along with the
current state (“matching lenses”)

2. As an edit on the current state

Edit Lenses

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

(a) initial replicas

Edit Lenses

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Shumann, Germany

ins(3);
mod(3, (“Monteverdi”, “1567-1643”))

(b) a new composer is added to one replica

Edit Lenses

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

ins(3);
mod(3, (“Monteverdi”, 1))

(c) the lens adds the new composer to the other replica

Edit Lenses

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

mod(3, (1, "Italy"));
mod(2, ("Schumann", 1))

(d) the curator makes some corrections

Edit Lenses

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1;
mod(2, ("Schumann", 1))

some text

(e) the lens transports a small edit

Edit Lenses

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, ?country?
Schubert, Austria
Schumann, Germany

del(3); ins(1);
mod(1, (“Monteverdi”, “1567-1643”))

del(3); ins(1);
mod(1, (“Monteverdi”, 1))

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

reorder(3,1,2) reorder(3,1,2)

(f) two different edits with the same effect on the left

Formally...

Roughly:

I Endpoints of a lens are modules (not just sets):
I A set of states
I A monoid of edits
I An action of edits on states

I A lens between R and S is a pair of module
homomorphisms

See POPL 2012 paper for details...

Other Data Models

Other Data Models

I In practice, lenses over strings have been the most used
so far

I e.g., Augeas configuration management tool from
RedHat

I But there has been substantial work on other data
models...

Algebraic Data Structures

I Our bidirectional language over strings is essentially a way
of describing (all in the same expression!)

I two string parsers / unparsers that map strings to
algebraic structures built up from singletons, products,
disjoint unions, and sequences

I ... plus a bidirectional transform on the underlying
algebraic structures

I Alternative: Ignore the string concrete syntax and just
define transformations between algebraic structures

I Basis for study of lenses from a category-theoretic
viewpoint (details in POPL 2011 paper)

I Common example: in-memory data structures (as in lens
libraries for Haskell and Scala)

Relations

I A language of asymmetric bidirectional transformations
can be built using familiar relational operators as models
for the primitives

I dropping some relational operators
I refining others

I Precise schemas help restrict to cases where
bidirectionality makes sense

I “Tree-shaped functional dependencies”

See PODS 2006 paper for more details; also see related work
on Prism, Prima, Guava, ...

Trees

I Well-studied area
I Many proposals
I Serious examples

I Current state of the art not fully satisfactory
I Some proposals invent ad-hoc combinators, making it

hard to gauge expressiveness
I Others are based on standard tree-transformation

languages, but either give up totality or weaken lens laws

I Challenge: Find a total, law-abiding bidirectional variant
of some standard notation for tree transduction

Graphs

I Biggest current challenge (IMHO): Syntax for
bidirectional graph transformation

I Small amount of work in this direction so far
I Bidirectional variant of UnQL (dropping totality, and not

fully dealing with node identity)
I Recent proposal based on triple-graph-grammars (TGGs)

I A good solution would be very useful, e.g., for
bidirectional transformation of software models

Wrapping Up...

Take-Away Thoughts

I Bidirectionalizing programs in existing languages is hard
I alternative is to build new languages that are naturally

bidirectional

I Behavioral laws and totality are strong constraints
I fundamental tension between expressiveness and

well-behavedness
I precise schemas help balance this tension

I Semantic frameworks are interesting

I ... but the hardest problems are syntactic
I i.e., designing bidirectional combinators over specific

data models and schema languages

Resources

I Terwilliger, Cleve, and Curino, How Clean Is Your
Sandbox? Towards a Unified Theoretical Framework for
Incremental Bidirectional Transformations (Invited
talk/paper at ICMT 2012)

I International Workshop on Bidirectional Transformations
(BX 2012 and 2013)

I Report from Dagstuhl workshop on Bidirectional
Transformations (Dagstuhl Seminar 11031, 2011)

I Bidirectional Transformations: A Cross-Discipline
Perspective (Report from GRACE Workshop, 2008)

Thank You!

Aaron Bohannon, Davi Barbosa, Ravi Chugh, Julien Cretin,
Malo Denielou, Nate Foster, Michael Greenberg, Michael
Greenwald, Martin Hofmann, Owen Gunden, Sanjeev Khanna,
Keshav Kunal, Stéphane Lescuyer, Jon Moore,
Benjamin C. Pierce, Alexandre Pilkiewicz, Alan Schmitt, Jeff
Vaughan, Daniel Wagner, Zhe Yang

http://www.cis.upenn.edu/~bcpierce/

http://www.cis.upenn.edu/~bcpierce/

Extra Slides

Creation

Creation

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

I In the composers example, the top-level lens has the form

composers = composer*

I Since there is no entry in C for Monteverdi initially, the
composers lens needs to call the composer sublens with just
the S argument.

I One simple way to allow this is to assume that each lens
specifies a distinguished default element missing ∈ C

Creation

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

I In the composers example, the top-level lens has the form

composers = composer*

I Since there is no entry in C for Monteverdi initially, the
composers lens needs to call the composer sublens with just
the S argument.

I One simple way to allow this is to assume that each lens
specifies a distinguished default element missing ∈ C

Synchronization

Synchronization

So far, we’ve assumed that only one structure at a time can be
modified

To handle the case where both structures can be edited
between propagating updates, we need to add synchronization
to our story...

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

Step 1: Propagate edit from left to right with respect to existing
complement (i.e., using the private information from the original
right-hand structure)

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

Schubert, Austria
Schumann, Germany

Monteverdi, ?country?

Step 2: Combine (“synchronize”) result with edited right-hand
structure to obtain new right-hand structure

Synchronization

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Germany

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

Schubert, Austria
Schumann, Germany

Monteverdi, ?country?

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Step 3: Propagate new right-hand structure to left; everything
is now up to date

Inessential Information

Dealing With “Inessential Information”

I The round-tripping laws we’ve imposed are attractive for
both language designers and programmers

I However, writing lenses in practice, one quickly discovers
that they are a bit too strong

I Most real-world structures include “inessential
information” that should be preserved when possible but
that can be changed if necessary

I whitespace, diagram layout, order of rows in tables, etc.

I Need to loosen the lens laws just a little so that they
hold “up to changes in inessential information”

I An “obvious” idea, but takes some work to carry through

I Essential in practice

Our ICFP 2008 paper develops a semantic theory and syntactic
constructs for “quotient lenses” that embody this idea.

Controlling Alignment
Heuristics

Chunks and Keys

We also need to enrich the syntax a little so the programmer
can tell the aligner

1. where are the alignable chunks

2. what are their keys

Chunks and Keys

We also need to enrich the syntax a little so the programmer
can tell the aligner

1. where are the alignable chunks

2. what are their keys

composers =

(copy ALPHA .

", " <=> ", " .

del-> ALPHA "?dates?" .

del<- ALPHA "?country?" .

"\n" <=> "\n")*

Chunks and Keys

We also need to enrich the syntax a little so the programmer
can tell the aligner

1. where are the alignable chunks

2. what are their keys

composers =

< key ALPHA .

", " <=> ", " .

del-> ALPHA "?dates?" .

del<- ALPHA "?country?" .

"\n" <=> "\n" >*

Separation of Concerns

1. Alignment is a global matter

2. Alignment algorithms are complicated and messy
I Often heuristic
I Different kinds of alignment are useful for different data

I “bushy” (for “table-like” structures with keys)
I “diffy” (for “document-like” structures without keys)
I positional
I etc.?

To keep the theory (and implementation) clean, separate
finding the alignment from using the alignment to translate
updates.

Splittability

Footnote: Unique Splittability

The unique splittability conditions (·! and !∗) are strong!

I Not easy to check efficiently, even for regular expressions

I Can be annoying for programmers

But they are fundamental:

I We want to know that l1 · l2 is a bijective lens

I We’re using a type system (i.e., a compositional static
analysis) to check this automatically

I So we need to be able to prove that l1 · l2 is a bijective
lens, knowing only that l1 and l2 are

I This simply isn’t true without the unique splittability
restriction

Edit Lenses With Complements

Edit Lenses (With Complements)

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Tolstoy

inl, inr, inr, inl

(a) initial replicas:

I a tagged list of composers and authors on the left

I a pair of lists on the right

I a complement storing just the tags

Edit Lenses (With Complements)

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inl

(1, (ins(2); mod(2, “Salinger”)))

(b) an element is added to one of the partitions

Edit Lenses (With Complements)

inl(Schumann)
inr(Kerouac)
inr(Salinger)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inr, inl

ins(3); mod(3, inr(“Salinger”))

(c) the complement tells how to translate the index

	What is a good way to program bidirectional transformations?
	Extended Example: Bijective Transformations on Strings
	The Non-Bijective Case
	Alignment and Edits
	Other Data Models
	Wrapping Up...
	Extra Slides
	Creation
	Synchronization
	Inessential Information
	Controlling Alignment Heuristics
	Splittability
	Edit Lenses With Complements

