
Lambda,
The Ultimate TA

Benjamin C. Pierce
University of Pennsylvania

Using a Proof Assistant to Teach
Programming Language Foundations

ICFP 2009

A Wake-Up Call

“At SIGCSE this year, someone mentioned
to me that the programming languages
course is in danger of disappearing from the
CS curriculum. Is there any truth to this? I
also heard there was talk about this at a
recent SIGPLAN meeting. Is the course in
danger at your school?”

From a recent email exchange with a textbook editor...

SIGCSE = ACM
Special Interest

Group on
Computer Science

Education

Is The Sky Falling?

Is The Sky Falling?

• I don’t think so

Is The Sky Falling?

• I don’t think so

• There are a lot of great ideas in our community,
and their impact in the wider world is increasing,
not decreasing

• Witness Haskell, F#, Scala, ... (not to mention many bits
of Java and C#)

Is The Sky Falling?

• I don’t think so

• There are a lot of great ideas in our community,
and their impact in the wider world is increasing,
not decreasing

• Witness Haskell, F#, Scala, ... (not to mention many bits
of Java and C#)

• However, I do think we’re not doing a good enough
job on packaging our ideas in a form that seems
optimally relevant or compelling to our students

Is The Sky Falling?

• I don’t think so

• There are a lot of great ideas in our community,
and their impact in the wider world is increasing,
not decreasing

• Witness Haskell, F#, Scala, ... (not to mention many bits
of Java and C#)

• However, I do think we’re not doing a good enough
job on packaging our ideas in a form that seems
optimally relevant or compelling to our students

Innovate or die...

One Small Step

One Small Step

Theory of PL
for PL geeks

From...

One Small Step

Software Foundations
for the masses

Theory of PL
for PL geeks

From...

To...

What / Why?

•What belongs in a course on “Software
Foundations for the masses”?

•Why do the masses need to know it?

My List

Logic

• Inductively defined relations
• Inductive proof techniques

My List

Logic

• Inductively defined relations
• Inductive proof techniques

Functional Programming
• programs as data,

polymorphism, recursion, ...

My List

Logic

• Inductively defined relations
• Inductive proof techniques

Functional Programming
• programs as data,

polymorphism, recursion, ...

PL Theory

• Precise description of program
structure and behavior
• operational semantics
• lambda-calculus

• Program correctness
• Hoare Logic

• Types

My List

Logic

• Inductively defined relations
• Inductive proof techniques

Functional Programming
• programs as data,

polymorphism, recursion, ...

PL Theory

• Precise description of program
structure and behavior
• operational semantics
• lambda-calculus

• Program correctness
• Hoare Logic

• Types

logic

software engineering EE, civil, mechanical, ...

calculus
=

My List

Logic

• Inductively defined relations
• Inductive proof techniques

Functional Programming
• programs as data,

polymorphism, recursion, ...

PL Theory

• Precise description of program
structure and behavior
• operational semantics
• lambda-calculus

• Program correctness
• Hoare Logic

• Types

logic

software engineering EE, civil, mechanical, ...

calculus
=

My List

• FPLs are going mainstream (Haskell, Scala,
F#, ...)

• Individual FP ideas are already mainstream
• mutable state = bad (e.g. for concurrency)
• polymorphism = good (for reusability)
• higher-order functions = useful

• ...

Logic

• Inductively defined relations
• Inductive proof techniques

Functional Programming
• programs as data,

polymorphism, recursion, ...

PL Theory

• Precise description of program
structure and behavior
• operational semantics
• lambda-calculus

• Program correctness
• Hoare Logic

• Types

logic

software engineering EE, civil, mechanical, ...

calculus
=

My List

• FPLs are going mainstream (Haskell, Scala,
F#, ...)

• Individual FP ideas are already mainstream
• mutable state = bad (e.g. for concurrency)
• polymorphism = good (for reusability)
• higher-order functions = useful

• ...

• Language design is a pervasive activity

• Program meaning and correctness are
pervasive concerns

• Types are a pervasive technology

Oops, forgot one thing...

• The difficulty with teaching many of these
topics is that they presuppose the ability to
read and write mathematical proofs.

• In a course for arbitrary computer science
students, this appears to be a really bad
assumption.

My List (II)

Proof!
• The ability to recognize and

construct rigorous
mathematical arguments

My List (II)

Proof!
• The ability to recognize and

construct rigorous
mathematical arguments

Sine qua non...

My List (II)

Proof!
• The ability to recognize and

construct rigorous
mathematical arguments

Sine qua non...

But...

My List (II)

Proof!
• The ability to recognize and

construct rigorous
mathematical arguments

Sine qua non...

But...
Very hard to teach these skills effectively in a large class

(while teaching anything else)

Requires an instructor-intensive feedback loop

automated proof assistant

automated proof assistant
=

automated proof assistant
=

one TA per student

One Giant Leap!

•Using a proof assistant completely shapes
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a
significant intellectual challenge

One Giant Leap!

•Using a proof assistant completely shapes
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a
significant intellectual challenge

⇒ Restructure entire course
around the idea of proof

What is a Proof?

formal vs. informal

formal vs. informal

plausible
vs.

deductive

formal vs. informal

plausible
vs.

deductive inductive vs. deductive

formal vs. informal

plausible
vs.

deductive inductive vs. deductive

careful vs. rigorous

formal vs. informal

plausible
vs.

deductive inductive vs. deductive

careful vs. rigorous

detailed vs. formal

formal vs. informal

plausible
vs.

deductive inductive vs. deductive

careful vs. rigorous

detailed vs. formal

explanation vs. proof

formal vs. informal

plausible
vs.

deductive inductive vs. deductive

careful vs. rigorous

detailed vs. formal

explanation vs. proof

intuition vs. knowledge

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach!

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Critically needed for doing PL

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Not adequately addressed
elsewhere in the curriculum

Critically needed for doing PL

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Possible to teach
(with tool support!)

Not adequately addressed
elsewhere in the curriculum

Critically needed for doing PL

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

instructions for writing...

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

instructions for writing...

program for constructing...

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

concentrate here

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

concentrate here

teach by example

Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

mostly ignore concentrate here

teach by example

Goals

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness (and find bugs)
4. write clear proofs demonstrating their

correctness

(ideally)

^

The Software Foundations
Course

Parameters

•40-70 students

•Mix of undergraduates, MSE students, and
PhD students (mostly not studying PL)

• 13 weeks, 23 lectures (80 minutes each),
plus 3 review sessions and 3 exams

•Weekly homework assignments (~10 hours
each -- solutions not easily available)

Choosing One’s Poison
Many proof assistants have been used to teach
programming languages...

Isabelle

HOL
Coq

Tutch

SASyLF

Agda

ACL2

etc.
None is perfect

(usually to a narrower audience)

Choosing My Poison

Choosing My Poison
I chose Coq

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Automation

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Automation

• Familiarity

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Automation

• Familiarity

• Local expertise

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Automation

• Familiarity

• Local expertise

•

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Automation

• Familiarity

• Local expertise

•
And now that we’ve got the hard
part out of the way...

Overview

•Basic functional programming (and
fundamental Coq tactics)

• Logic (and more Coq tactics)

•While programs and Hoare Logic

• Simply typed lambda-calculus

• Records and subtyping

Interactive session in lecture

Expanded version for handouts and homework assignments

Typeset variants for easier reading *

*... in a web browser, with an index
and hyperlinks to definitions

Outcomes

Old (Paper-and-Pencil) Syllabus

• inductive definitions
• operational

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references and

exceptions
• records and

subtyping
• Featherweight Java

New Syllabus
• inductive definitions
• operational

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references and

exceptions
• records and

subtyping
• Featherweight Java

• functional
programming

• logic (and Curry-
Howard)

• while programs
• program equivalence
• Hoare Logic
• Coq

New Syllabus
• inductive definitions
• operational

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references and

exceptions
• records and

subtyping
• Featherweight Java

• functional
programming

• logic (and Curry-
Howard)

• while programs
• program equivalence
• Hoare Logic
• Coq

The Fear

Comprehension Preparation /
aptitude

The Fear

Comprehension Preparation /
aptitude

The Actuality

•Bottom 15% does not turn into 60%

•Middle 70% learn at least as much about
PL, and they get a solid grasp of what
induction means

• Top 15% really hone their understanding,
both of proofs and of PL theory

•Most students perform better on paper
exams

The Video-Game Effect

•Concrete confirmation of the correctness
of each proof step is nice

•Getting Coq to say “Proof complete” is
extremely satisfying

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well
pretty well

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well
pretty well

yes!

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well
pretty well

a little
yes!

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well

imperfectly

pretty well

a little
yes!

Bottom Line

•The course can still be improved

• But the way it works for the students is
very encouraging even as it stands

Oops, forgot one thing...

There is one small catch...

• Making up lectures and homeworks
takes between one and two orders of
magnitude more work for the
instructor than a paper-and-pencil
presentation of the same material!

Oops, forgot one thing...

The Software Foundations
Courseware

What It Is

•A pretty-well-thought-out stylistic framework
and some tool support for building
formalized instructional material

•One semester’s worth of fairly finished
lectures, homework, and solutions

Status
• The course has been taught twice at Penn, and once each

at Maryland, UCSD, Purdue, and Portland State

• Being taught at Maryland, Lehigh, Iowa, and Princeton this
semester, and at Penn (and hopefully some other places!) in
the Spring

• Notes (minus solutions) are publicly available as Coq
scripts and HTML files:

http://www.cis.upenn.edu/~bcpierce/sf

• Instructors who want to use the material in their own
courses can obtain read/write access to the SVN
repository by emailing me.

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/

What’s Next
• Our plans for this year:

• polish existing material
• experiment with ssreflect package
• consider replacing subtyping by references (and

maybe a stack machine)

• Contributions welcome!
• Exceptions, etc.
• Other languages (FJ, ...)
• More advanced type systems, ...
• Program analysis
• More / deeper aspects of Coq

• Translating the whole thing to another prover...? Sure!

Guided Tour

Cold Start
Start from bare, unadorned Coq

• No libraries

• Just inductive definitions, structural
recursion, and (dependent, polymorphic)
functions

Basics
Inductively define booleans, numbers, etc. Recursively
define functions over them

Inductive nat : Type :=
 | O : nat
 | S : nat -> nat.

Fixpoint plus (n : nat) (m : nat) {struct n} : nat :=
 match n with
 | O => m
 | S n' => S (plus n' m)
 end. Coq’s internal functional language

is pretty much like core ML,
Haskell, etc., except that only
structural recursion is allowed

Theorem plus_0_l : forall n:nat, plus 0 n = n.

Proof. reflexivity. Qed.

Proof by Simplification
A few simple theorems can be proved just by beta-
reduction...

Theorem plus_id_example : forall n m:nat,
 n = m -> plus n n = plus m m.

Proof.
 intros n m. (* move both quantifiers into the context *)
 intros H. (* move the hypothesis into the context *)
 rewrite -> H. (* Rewrite the goal using the hypothesis *)
 reflexivity. Qed.

Proof by Rewriting
A few more can be proved just by substitution using
equality hypotheses.

Theorem plus_1_neq_0 : forall n,
 beq_nat (plus n 1) 0 = false.

Proof.
 intros n. destruct n as [| n'].
 reflexivity.
 reflexivity. Qed.

Proof by Case Analysis

More interesting properties require case
analysis...

numeric
comparison,
returning a

boolean

Theorem plus_0_r : forall n:nat, plus n 0 = n.

Proof.
 intros n. induction n as [| n'].
 Case "n = 0". reflexivity.
 Case "n = S n'". simpl. rewrite -> IHn'.
 reflexivity.
Qed.

Proof by Induction

... or, more generally, induction

Functional Programming
Similarly, we can define (as usual)

• lists, trees, etc.
• polymorphic functions (length, reverse, etc.)
• higher-order functions (map, fold, etc.)
• etc.

Inductive list (X:Type) : Type :=
 | nil : list X
 | cons : X -> list X -> list X.

Notation "x :: y" := (cons x y)
 (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x , .. , y]" := (cons x .. (cons y []) ..).
Notation "x ++ y" := (app x y)
 (at level 60, right associativity).

Theorem map_rev : forall (X Y : Type) (f : X -> Y) (l : list X),

 map f (rev l) = rev (map f l).

Properties of Functional Programs
The handful of tactics we have already seen are
enough to prove a a surprising range of properties of
functional programs over lists, trees, etc.

A Few More Tactics

To go further, we need a few additional tactics...

• inversion

• e.g., from [x]=[y] derive x=y

• generalizing induction hypotheses

• unfolding definitions

(“tactic” = command in a proof script, causing
Coq to make some step of reasoning)

Programming with Propositions

Coq has another universe, called Prop, where
the types represent mathematical claims and
their inhabitants represent evidence.

Definition true_for_zero (P:nat->Prop) : Prop :=
 P 0.

Definition true_for_n__true_for_Sn (P:nat->Prop) (n:nat) :
Prop :=
 P n -> P (S n).

Definition preserved_by_S (P:nat->Prop) : Prop :=
 forall n', P n' -> P (S n').

Definition true_for_all_numbers (P:nat->Prop) : Prop :=
 forall n, P n.

Definition nat_induction (P:nat->Prop) : Prop :=
 (true_for_zero P)
 -> (preserved_by_S P)
 -> (true_for_all_numbers P).

Theorem our_nat_induction_works : forall (P:nat->Prop),

 nat_induction P.

Inductive and (A B : Prop) : Prop :=
 conj : A -> B -> (and A B).

Logic

Familiar logical connectives can be built from
Coq’s primitive facilities...

Similarly: disjunction, negation, existential
quantification, equality, ...

Inductive le (n:nat) : nat -> Prop :=
 | le_n : le n n
 | le_S : forall m, (le n m) -> (le n (S m)).

Definition relation (X: Type) := X->X->Prop.

Definition reflexive (X: Type) (R: relation X) :=
 forall a : X, R a a.

Definition preorder (X:Type) (R: relation X) :=
 (reflexive R) /\ (transitive R).

Inductively Defined Relations

Inductive aexp : Type :=
 | ANum : nat -> aexp
 | APlus : aexp -> aexp -> aexp
 | AMinus : aexp -> aexp -> aexp
 | AMult : aexp -> aexp -> aexp.

Fixpoint aeval (e : aexp) {struct e} : nat :=
 match e with
 | ANum n => n
 | APlus a1 a2 => plus (aeval a1) (aeval a2)
 | AMinus a1 a2 => minus (aeval a1) (aeval a2)
 | AMult a1 a2 => mult (aeval a1) (aeval a2)
 end.

Expressions

(Similarly boolean expressions)

Fixpoint optimize_0plus (e:aexp) {struct e} : aexp :=

 match e with

 | ANum n => ANum n

 | APlus (ANum 0) e2 => optimize_0plus e2

 | APlus e1 e2 => APlus (optimize_0plus e1) (optimize_0plus e2)

 | AMinus e1 e2 => AMinus (optimize_0plus e1) (optimize_0plus e2)

 | AMult e1 e2 => AMult (optimize_0plus e1) (optimize_0plus e2)

 end.

Optimization

Theorem optimize_0plus_sound: forall e,
 aeval (optimize_0plus e) = aeval e.

Proof.
 intros e. induction e.
 Case "ANum". reflexivity.
 Case "APlus". destruct e1.
 SCase "e1 = ANum n". destruct n.
 SSCase "n = 0". simpl. apply IHe2.
 SSCase "n <> 0". simpl. rewrite IHe2. reflexivity.
 SCase "e1 = APlus e1_1 e1_2".
 simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
 SCase "e1 = AMinus e1_1 e1_2".
 simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
 SCase "e1 = AMult e1_1 e1_2".
 simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
 Case "AMinus".
 simpl. rewrite IHe1. rewrite IHe2. reflexivity.
 Case "AMult".
 simpl. rewrite IHe1. rewrite IHe2. reflexivity. Qed.

Automation

At this point, we begin introducing some simple
automation facilities.

(As we go on further and proofs become
longer, we gradually introduce more powerful
forms of automation.)

Theorem optimize_0plus_sound'': forall e,

 aeval (optimize_0plus e) = aeval e.

Proof.

 intros e.

 induction e;

 (* Most cases follow directly by the IH *)

 try (simpl; rewrite IHe1; rewrite IHe2; reflexivity);

 (* ... or are immediate by definition *)

 try (reflexivity).

 (* The interesting case is when e = APlus e1 e2. *)

 Case "APlus".

 destruct e1;

 try (simpl; simpl in IHe1; rewrite IHe1; rewrite IHe2; reflexivity).

 SCase "e1 = ANum n". destruct n.

 SSCase "n = 0". apply IHe2.

 SSCase "n <> 0". simpl. rewrite IHe2. reflexivity. Qed.

Inductive com : Type :=
 | CSkip : com
 | CAss : id -> aexp -> com
 | CSeq : com -> com -> com
 | CIf : bexp -> com -> com -> com
 | CWhile : bexp -> com -> com.

While Programs

Notation "'SKIP'" :=
 CSkip.
Notation "c1 ; c2" :=
 (CSeq c1 c2) (at level 80, right associativity).
Notation "l '::=' a" :=
 (CAss l a) (at level 60).
Notation "'WHILE' b 'DO' c 'LOOP'" :=
 (CWhile b c) (at level 80, right associativity).
Notation "'IF' e1 'THEN' e2 'ELSE' e3" :=
 (CIf e1 e2 e3) (at level 80, right associativity).

Definition factorial : com :=
 Z ::= !X;
 Y ::= A1;
 WHILE BNot (!Z === A0) DO
 Y ::= !Y *** !Z;
 Z ::= !Z --- A1
 LOOP.

With a bit of notation hacking...

Definition cequiv (c1 c2 : com) : Prop :=

 forall (st st':state), (c1 / st ~~> st') <-> (c2 / st ~~> st').

Program Equivalence

Definitions and basic properties
• “program equivalence is a congruence”

Case study: constant folding

Hoare Logic
Assertions
Hoare triples
Weakest preconditions
Proof rules

• Proof rule for assignment
• Rules of consequence
• Proof rule for SKIP
• Proof rule for ;
• Proof rule for conditionals
• Proof rule for loops

Using Hoare Logic to reason about programs
• e.g. correctness of factorial program

Small-Step Operational Semantics

At this point we switch from big-step to small-
step style (and, for good measure, show their
equivalence).

Types
Fundamentals

• Typed arithmetic expressions

Simply typed lambda-calculus

Properties
• Free variables
• Substitution
• Preservation
• Progress
• Uniqueness of types

Typechecking algorithm

 The POPLMark Tarpit

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle? Twelf?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle? Twelf?

• Finesse the problem!

A Cheap Solution

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context
invariance” lemma makes this presentation very
clean.

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context
invariance” lemma makes this presentation very
clean.

• Downside: Doesn’t work for System F

Subtyping

•Records

• Subtyping relation

• Properties

Parting Thoughts

Is Coq The Ultimate TA?
Pros:

• Can really build everything we need from scratch
• Curry-Howard

• Proving = programming

• Good automation

Cons:

• Curry-Howard
• Proving = programming → deep waters
• Constructive logic can be confusing to students

• Annoyances
• Lack of animation facilities
• “User interface”

• Notation facilities
• Choice of variable names

My Coq proof scripts do not have the
conciseness and elegance of Jérôme
Vouillon's. Sorry, I've been using Coq
for only 6 years...

— Leroy (2005)

Is Some Proof Assistant
The Ultimate TA?

•For students with less mathematical
preparation, emphatically yes
• better motivation, better performance

• But there are some caveats:

• making up new material is hard
• needs of formalization significantly shape

choice and presentation of material
• important to remember who’s boss

(hint: it’s not you)

Back To That Wake-Up Call...

Back To That Wake-Up Call...

• Did we address the original concern?

Back To That Wake-Up Call...

• Did we address the original concern?

• Of course not.

• This course is theoretical and mainly focused at the graduate
level

• For pure undergrad courses, we surely need something
different

Back To That Wake-Up Call...

• Did we address the original concern?

• Of course not.

• This course is theoretical and mainly focused at the graduate
level

• For pure undergrad courses, we surely need something
different

• Indeed,

Back To That Wake-Up Call...

• Did we address the original concern?

• Of course not.

• This course is theoretical and mainly focused at the graduate
level

• For pure undergrad courses, we surely need something
different

• Indeed,

• But to succeed, we need to make better connections with the
rest of the curriculum...

Back To That Wake-Up Call...

• Did we address the original concern?

• Of course not.

• This course is theoretical and mainly focused at the graduate
level

• For pure undergrad courses, we surely need something
different

• Indeed,

• But to succeed, we need to make better connections with the
rest of the curriculum...

...and come to terms with the fact that real-world software
construction has changed a lot since we last looked carefully!

In Particular

In Particular
We’re missing a huge opportunity for
promoting our ideas...

In Particular
We’re missing a huge opportunity for
promoting our ideas...

There is a window of opportunity for someone
to make $$$ by writing “The Book” for CS1
(intro programming / first year CS)

• Using F#
• GUI-based
• Emphasizing “scripting” examples (using .NET

libraries)

Thanks!

http://www.cis.upenn.edu/~bcpierce/sf/

SF courseware co-authors:
Chris Casinghino and Michael Greenberg

Additional contributions:
Jeff Foster, Ranjit Jhala, Greg Morrisett, Andrew Tolmach

Good ideas:
Andrew Appel (and many others!)

There is strictly speaking no such thing as a
mathematical proof; we can, in the last analysis, do
nothing but point...

 Hardy, 1928

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/

