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A Wake-Up Call

“At SIGCSE this year,  someone mentioned 
to me that the programming languages 
course is in danger of disappearing from the 
CS curriculum.  Is there any truth to this?  I 
also heard there was talk about this at a 
recent SIGPLAN meeting.  Is the course in 
danger at your school?”       

From a recent email exchange with a textbook editor...

SIGCSE =  ACM 
Special Interest 

Group on 
Computer Science 

Education
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Is The Sky Falling?

• I don’t think so 

• There are a lot of great ideas in our community, 
and their impact in the wider world is increasing, 
not decreasing

• Witness Haskell, F#, Scala, ... (not to mention many bits 
of Java and C#)

• However, I do think we’re not doing a good enough 
job on packaging our ideas in a form that seems 
optimally relevant or compelling to our students

Innovate or die...
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What / Why?

•What belongs in a course on “Software 
Foundations for the masses”?

•Why do the masses need to know it?
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My List

• FPLs are going mainstream (Haskell, Scala, 
F#, ...)

• Individual FP ideas are already mainstream
• mutable state = bad (e.g. for concurrency)
• polymorphism = good (for reusability)
• higher-order functions = useful

• ...

• Language design is a pervasive activity

• Program meaning and correctness are 
pervasive concerns

• Types are a pervasive technology



Oops, forgot one thing...

• The difficulty with teaching many of these 
topics is that they presuppose the ability to 
read and write mathematical proofs.

• In a course for arbitrary computer science 
students, this appears to be a really bad 
assumption.
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My List (II)

Proof! 
• The ability to recognize and 

construct rigorous 
mathematical arguments

Sine qua non...

But...
Very hard to teach these skills effectively in a large class 

(while teaching anything else)

Requires an instructor-intensive feedback loop
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automated proof assistant 
= 

one TA per student
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One Giant Leap!

•Using a proof assistant completely shapes 
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a 
significant intellectual challenge

⇒ Restructure entire course 
around the idea of proof 



What is a Proof?
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formal vs. informal

plausible 
vs. 

deductive inductive vs. deductive

careful vs. rigorous

detailed vs. formal

explanation vs. proof

intuition vs. knowledge
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A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Possible to teach 
(with tool support!)

Not adequately addressed 
elsewhere in the curriculum

Critically needed for doing PL
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Varieties of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

mostly ignore concentrate here

teach by example



Goals

We would like students to be able to 
1. write correct definitions 
2. make useful / interesting claims about them
3. verify their correctness (and find bugs)
4. write clear proofs demonstrating their 

correctness

(ideally)

^



The Software Foundations 
Course



Parameters

•40-70 students

•Mix of undergraduates, MSE students, and  
PhD students (mostly not studying PL)

• 13 weeks, 23 lectures (80 minutes each), 
plus 3 review sessions and 3 exams

•Weekly homework assignments (~10 hours 
each -- solutions not easily available)



Choosing One’s Poison
Many proof assistants have been used to teach  
programming languages...

Isabelle

HOL
Coq

Tutch

SASyLF

Agda

ACL2

etc.
None is perfect

(usually to a narrower audience)
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Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP 
through “programming with propositions”

• Automation

• Familiarity

• Local expertise  

•
And now that we’ve got the hard 
part out of the way...



Overview

•Basic functional programming (and 
fundamental Coq tactics)

• Logic (and more Coq tactics)

•While programs and Hoare Logic

• Simply typed lambda-calculus

• Records and subtyping



Interactive session in lecture



Expanded version for handouts and homework assignments



Typeset variants for easier reading *

*... in a web browser, with an index 
and hyperlinks to definitions



Outcomes
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The Actuality

•Bottom 15% does not turn into 60%

•Middle 70% learn at least as much about 
PL, and they get a solid grasp of what 
induction means   

• Top 15% really hone their understanding, 
both of proofs and of PL theory

•Most students perform better on paper 
exams 



The Video-Game Effect

•Concrete confirmation of the correctness 
of each proof step is nice

•Getting Coq to say “Proof complete” is 
extremely satisfying
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What About Those Goals?

We would like students to be able to 
1. write correct definitions 
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well

imperfectly

pretty well

a little
yes!



Bottom Line

•The course can still be improved

• But the way it works for the students is 
very encouraging even as it stands
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There is one small catch...

• Making up lectures and homeworks 
takes between one and two orders of 
magnitude more work for the 
instructor than a paper-and-pencil 
presentation of the same material!

Oops, forgot one thing...



The Software Foundations 
Courseware



What It Is

•A pretty-well-thought-out stylistic framework 
and some tool support for building 
formalized instructional material 

•One semester’s worth of fairly finished 
lectures, homework, and solutions



Status
• The course has been taught twice at Penn, and once each 

at Maryland, UCSD, Purdue, and Portland State

• Being taught at Maryland, Lehigh, Iowa, and Princeton this 
semester, and at Penn (and hopefully some other places!) in 
the Spring

• Notes (minus solutions) are publicly available as Coq 
scripts and HTML files:

http://www.cis.upenn.edu/~bcpierce/sf

• Instructors who want to use the material in their own 
courses can obtain read/write access to the SVN 
repository by emailing me.

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/


What’s Next
• Our plans for this year:

• polish existing material
• experiment with ssreflect package 
• consider replacing subtyping by references (and 

maybe a stack machine) 

• Contributions welcome!
• Exceptions, etc.
• Other languages (FJ, ...)
• More advanced type systems, ...
• Program analysis
• More / deeper aspects of Coq

• Translating the whole thing to another prover...?  Sure!



Guided Tour



Cold Start
Start from bare, unadorned Coq

• No libraries

• Just inductive definitions, structural 
recursion, and (dependent, polymorphic) 
functions



Basics
Inductively define booleans, numbers, etc.  Recursively 
define functions over them

Inductive nat : Type :=
  | O : nat
  | S : nat -> nat.

Fixpoint plus (n : nat) (m : nat) {struct n} : nat :=
  match n with
    | O => m
    | S n' => S (plus n' m)
  end. Coq’s internal functional language 

is pretty much like core ML, 
Haskell, etc., except that only 
structural recursion is allowed



Theorem plus_0_l : forall n:nat,  plus 0 n = n.

Proof. reflexivity. Qed.

Proof by Simplification
A few simple theorems can be proved just by beta-
reduction...



Theorem plus_id_example : forall n m:nat,
  n = m -> plus n n = plus m m.

Proof.
  intros n m. (* move both quantifiers into the context *)
  intros H. (* move the hypothesis into the context *)
  rewrite -> H. (* Rewrite the goal using the hypothesis *)
  reflexivity. Qed.

Proof by Rewriting
A few more can be proved just by substitution using 
equality hypotheses.



Theorem plus_1_neq_0 : forall n,
  beq_nat (plus n 1) 0 = false.

Proof.
  intros n. destruct n as [| n'].
    reflexivity.
    reflexivity. Qed.

Proof by Case Analysis

More interesting properties require case 
analysis...

numeric 
comparison, 
returning a 

boolean



Theorem plus_0_r : forall n:nat, plus n 0 = n.

Proof.
  intros n. induction n as [| n'].
  Case "n = 0". reflexivity.
  Case "n = S n'". simpl. rewrite -> IHn'.
       reflexivity. 
Qed.

Proof by Induction

... or, more generally, induction



Functional Programming
Similarly, we can define (as usual)

• lists, trees, etc.
• polymorphic functions (length, reverse, etc.)
• higher-order functions (map, fold, etc.)
• etc.

Inductive list (X:Type) : Type :=
  | nil : list X
  | cons : X -> list X -> list X.

Notation "x :: y" := (cons x y) 
                     (at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[ x , .. , y ]" := (cons x .. (cons y []) ..).
Notation "x ++ y" := (app x y) 
                     (at level 60, right associativity).



Theorem map_rev : forall (X Y : Type) (f : X -> Y) (l : list X),

  map f (rev l) = rev (map f l).

Properties of Functional Programs
The handful of tactics we have already seen are 
enough to prove a a surprising range of properties of 
functional programs over lists, trees, etc.  



A Few More Tactics

To go further, we need a few additional tactics...

• inversion 

• e.g., from [x]=[y] derive x=y

• generalizing induction hypotheses

• unfolding definitions

(“tactic” = command in a proof script, causing 
Coq to make some step of reasoning)



Programming with Propositions

Coq has another universe, called Prop, where 
the types represent mathematical claims and 
their inhabitants represent evidence.



Definition true_for_zero (P:nat->Prop) : Prop :=
  P 0.

Definition true_for_n__true_for_Sn (P:nat->Prop) (n:nat) : 
Prop :=
  P n -> P (S n).

Definition preserved_by_S (P:nat->Prop) : Prop :=
  forall n', P n' -> P (S n').

Definition true_for_all_numbers (P:nat->Prop) : Prop :=
  forall n, P n.

Definition nat_induction (P:nat->Prop) : Prop :=
     (true_for_zero P)
  -> (preserved_by_S P)
  -> (true_for_all_numbers P).

Theorem our_nat_induction_works : forall (P:nat->Prop), 

  nat_induction P.



Inductive and (A B : Prop) : Prop :=
  conj : A -> B -> (and A B).

Logic

Familiar logical connectives can be built from 
Coq’s primitive facilities...

Similarly: disjunction, negation, existential 
quantification, equality, ...



Inductive le (n:nat) : nat -> Prop :=
  | le_n : le n n
  | le_S : forall m, (le n m) -> (le n (S m)).

Definition relation (X: Type) := X->X->Prop.

Definition reflexive (X: Type) (R: relation X) :=
  forall a : X, R a a.

Definition preorder (X:Type) (R: relation X) :=
  (reflexive R) /\ (transitive R).

Inductively Defined Relations



Inductive aexp : Type := 
  | ANum : nat -> aexp
  | APlus : aexp -> aexp -> aexp
  | AMinus : aexp -> aexp -> aexp
  | AMult : aexp -> aexp -> aexp.

Fixpoint aeval (e : aexp) {struct e} : nat :=
  match e with
  | ANum n => n
  | APlus a1 a2 => plus (aeval a1) (aeval a2)
  | AMinus a1 a2 => minus (aeval a1) (aeval a2)
  | AMult a1 a2 => mult (aeval a1) (aeval a2)
  end.

Expressions

(Similarly boolean expressions)



Fixpoint optimize_0plus (e:aexp) {struct e} : aexp := 

  match e with

  | ANum n => ANum n

  | APlus (ANum 0) e2 => optimize_0plus e2

  | APlus e1 e2 => APlus (optimize_0plus e1) (optimize_0plus e2)

  | AMinus e1 e2 => AMinus (optimize_0plus e1) (optimize_0plus e2)

  | AMult e1 e2 => AMult (optimize_0plus e1) (optimize_0plus e2)

  end.

Optimization



Theorem optimize_0plus_sound: forall e,
  aeval (optimize_0plus e) = aeval e.

Proof.
  intros e. induction e.
  Case "ANum". reflexivity.
  Case "APlus". destruct e1.
    SCase "e1 = ANum n". destruct n.
      SSCase "n = 0". simpl. apply IHe2.
      SSCase "n <> 0". simpl. rewrite IHe2. reflexivity.
    SCase "e1 = APlus e1_1 e1_2".
      simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
    SCase "e1 = AMinus e1_1 e1_2".
      simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
    SCase "e1 = AMult e1_1 e1_2".
      simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
  Case "AMinus".
    simpl. rewrite IHe1. rewrite IHe2. reflexivity.
  Case "AMult".
    simpl. rewrite IHe1. rewrite IHe2. reflexivity. Qed.



Automation

At this point, we begin introducing some simple 
automation facilities.  

(As we go on further and proofs become 
longer, we gradually introduce more powerful 
forms of automation.)



Theorem optimize_0plus_sound'': forall e,

  aeval (optimize_0plus e) = aeval e.

Proof.

  intros e.

  induction e; 

    (* Most cases follow directly by the IH *)

    try (simpl; rewrite IHe1; rewrite IHe2; reflexivity);

    (* ... or are immediate by definition *)

    try (reflexivity).

  (* The interesting case is when e = APlus e1 e2. *)

  Case "APlus".

    destruct e1; 

      try (simpl; simpl in IHe1; rewrite IHe1; rewrite IHe2; reflexivity).

    SCase "e1 = ANum n". destruct n.

      SSCase "n = 0". apply IHe2.

      SSCase "n <> 0". simpl. rewrite IHe2. reflexivity. Qed.



Inductive com : Type :=
  | CSkip : com
  | CAss : id -> aexp -> com
  | CSeq : com -> com -> com
  | CIf : bexp -> com -> com -> com
  | CWhile : bexp -> com -> com.

While Programs



Notation "'SKIP'" := 
  CSkip.
Notation "c1 ; c2" := 
  (CSeq c1 c2) (at level 80, right associativity).
Notation "l '::=' a" := 
  (CAss l a) (at level 60).
Notation "'WHILE' b 'DO' c 'LOOP'" := 
  (CWhile b c) (at level 80, right associativity).
Notation "'IF' e1 'THEN' e2 'ELSE' e3" := 
  (CIf e1 e2 e3) (at level 80, right associativity).



Definition factorial : com :=
  Z ::= !X;
  Y ::= A1;
  WHILE BNot (!Z === A0) DO
    Y ::= !Y *** !Z;
    Z ::= !Z --- A1
  LOOP.

With a bit of notation hacking...



Definition cequiv (c1 c2 : com) : Prop :=

  forall (st st':state), (c1 / st ~~> st') <-> (c2 / st ~~> st').

Program Equivalence

Definitions and basic properties
• “program equivalence is a congruence”

Case study: constant folding



Hoare Logic
Assertions
Hoare triples
Weakest preconditions
Proof rules

• Proof rule for assignment
• Rules of consequence
• Proof rule for SKIP
• Proof rule for ;
• Proof rule for conditionals
• Proof rule for loops

Using Hoare Logic to reason about programs
• e.g. correctness of factorial program



Small-Step Operational Semantics

At this point we switch from big-step to small-
step style (and, for good measure, show their 
equivalence).



Types
Fundamentals

• Typed arithmetic expressions

Simply typed lambda-calculus

Properties
• Free variables
• Substitution
• Preservation
• Progress
• Uniqueness of types

Typechecking algorithm
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 The POPLMark Tarpit

•Dealing carefully with variable binding is 
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle?  Twelf?

• Finesse the problem!
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A Cheap Solution

• Observation: If we only ever substitute closed 
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the 
standard weakening+permutation with a “context 
invariance” lemma makes this presentation very 
clean.

• Downside: Doesn’t work for System F



Subtyping

•Records

• Subtyping relation

• Properties



Parting Thoughts



Is Coq The Ultimate TA?
Pros:

• Can really build everything we need from scratch
• Curry-Howard

• Proving = programming

• Good automation

Cons:

• Curry-Howard
• Proving = programming → deep waters
• Constructive logic can be confusing to students

• Annoyances
• Lack of animation facilities
• “User interface”

• Notation facilities
• Choice of variable names

My Coq proof scripts do not have the 
conciseness and elegance of Jérôme 
Vouillon's.  Sorry, I've been using Coq 
for only 6 years...

— Leroy (2005)



Is Some Proof Assistant 
The Ultimate TA?

•For students with less mathematical 
preparation, emphatically yes
• better motivation, better performance

• But there are some caveats:

• making up new material is hard
• needs of formalization significantly shape 

choice and presentation of material
• important to remember who’s boss

(hint: it’s not you)
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• Did we address the original concern?

• Of course not.

• This course is theoretical and mainly focused at the graduate 
level

• For pure undergrad courses, we surely need something 
different

• Indeed, 

• But to succeed, we need to make better connections with the 
rest of the curriculum...

...and come to terms with the fact that real-world software 
construction has changed a lot since we last looked carefully!
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In Particular
We’re missing a huge opportunity for 
promoting our ideas...

There is a window of opportunity for someone 
to make $$$ by writing “The Book” for CS1 
(intro programming / first year CS)

• Using F#
• GUI-based
• Emphasizing “scripting” examples (using .NET 

libraries)



Thanks!

http://www.cis.upenn.edu/~bcpierce/sf/

SF courseware co-authors:
Chris Casinghino and Michael Greenberg

Additional contributions:
Jeff Foster, Ranjit Jhala, Greg Morrisett, Andrew Tolmach

Good ideas:
Andrew Appel (and many others!)

There is strictly speaking no such thing as a 
mathematical proof; we can, in the last analysis, do 
nothing but point...

 Hardy, 1928
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