
Software Foundations,
15 years on

Newton Institute workshop on Formal Education
July 2022

Benjamin C. Pierce
University of Pennsylvania

Prehistory

The Problem

Large “PL Theory” class

Mixed backgrounds
In particular, widely varying degrees of mathematical preparation

Great unclarity about what constitutes a proof :-(

èNeed more TAs!
… Many more!
… Maybe even one per student?

Hmmm…

Early history

“Lambda, the Ultimate TA”

• Idea: Use a proof assistant to (sort of) give each student their
own TA

• First attempt in Fall 2007
• Continuous refinement ever since

The Fear

Comprehension

Preparation / aptitude

The Actuality

• Bottom 15% does not turn into 60%

• Middle 70% learn about as much about PL as before,
and they get a solid grasp of what induction means

• Top 15% really hone their understanding, both of
proofs and of PL theory

• Students actually perform better on paper exams

Logical Foundations covers
functional programming,
basic concepts of logic,
computer-assisted
theorem proving, and Coq.

Programming Language
Foundations surveys the
theory of programming
languages, including
operational semantics, Hoare
logic, and static type systems.

Recent history

Verified Functional Algorithms
shows how a variety of
fundamental data
structures can be specified
and mechanically verified.

QuickChick: Property-Based
Testing in Coq introduces
tools for combining
randomized property-
based testing with formal
specification and proof in
the Coq ecosystem.

Verifiable C is an extended
hands-on tutorial on
specifying and verifying real-
world C programs using the
Princeton Verified Software
Toolchain.

Separation Logic Foundations is
an in-depth introduction to
separation logic—a practical
approach to modular
verification of imperative
programs—and how to build
program verification tools on
top of it.

Current history

Software Foundations at Penn

• 40-70 students every year

• Mix of undergraduates, MSE students, and PhD students (mostly
not studying PL)

• 13 weeks, 23 lectures (80 minutes each), plus 3 review sessions
and 3 exams

• Weekly homework assignments (~10-15 hours each)

Software Foundations in the Large

• SF is now used at many institutions for undergraduate and
graduate teaching
• Maybe 150-200 students / year?

• 36 contributors to the github repo

Coq in the Browser (Emilio Gallego and Shachar Itzhaky)

Alectryon (Clément Pit-Claudel)

Coq

IsabelleAgda Lean

FRAP
Formal Reasoning
About Programs

Future history?
?
??

?

?

Future of Software Foundations

• New volumes under construction
• Discrete math (Greenberg -- see next talk!)

• Reasoning about interactive programs (Zdancewic)

• Got an idea for another volume? Let’s talk…

SF’s dual / triple mission

• Teaching logic and PL concepts to a broad
audience

• Providing a gentle onramp for learning Coq
fundamentals

• Explain how to apply Coq in specific domains

Lessons learned

Teaching with a proof assistant is a Giant Leap!

• Using a proof assistant significantly shapes the way
ideas are presented
•Working “against the grain” of the tool is a really bad

idea

• Learning to drive a proof assistant is a significant
intellectual challenge

⇒ Restructure entire course
around formal proof

Teaching Things to a Proof Assistant is a Giant Pain!

• Developing a machine-checked course is a massive effort
• Small infelicities cause large headaches

• No idea if basic definitions are well formulated until the last proof
says QED!

• Fortunately, there are several to choose from now :-)

A crucial distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very challenging to teach
both at the same time!

(good) informal proofs

(most) formal proofs

Flavors of “Formal Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

instructions for writing...

program for constructing...

mostly ignore concentrate here

teach by example

Is Coq the ultimate TA?

• Almost certainly not the ultimate one!
• Difficult to identify a “pedagogical subset” of features

• Easy for students to unwittingly wander into deep waters

• Lots of subtlety / complexity around even fairly vanilla features
• E.g., try asking a Coq expert exactly what the “simpl” tactic does…

• …But a pretty good stopgap
• With careful pedagogy, Coq can absolutely support effective teaching of a

broad range of material, even to relatively unsophisticated audiences

Thank you !
Discussion?

