Software Foundations,
|5 years on

Benjamin C. Pierce
University of Pennsylvania

Newton Institute workshop on Formal Education

' July 2022 '

The Problem

Large “PL Theory” class
Mixed backgrounds

In particular, widely varying degrees of mathematical preparation

Great unclarity about what constitutes a proof :-(

eNeed more TAs!

... Many more!

... Maybe even one per student!?
4 P Hmmm...

: Programming
Logical Language
Foundations Foundations

Michael Hicks, Ranj
Greg Morrisett, Jenni
Paykin, Mukund
Raghothaman, Chung-
Shan, Leonid Spesi
drew Tolma
Weiric!l; and St

“Lambda, the Ultimate TA”

® ldea: Use a proof assistant to (sort of) give each student their
own TA

® First attempt in Fall 2007

® Continuous refinement ever since

The Fear

Comprehension

Preparation / aptitude

The Actuality

® Bottom 15% does not turn into 60%

® Middle 70% learn about as much about PL as before,
and they get a solid grasp of what induction means

® Top 5% really hone their understanding, both of
proofs and of PL theory

® Students actually perform better on paper exams

Logical
Foundations

Michaeil‘ Hicks,
Greg Morrisett, Jenn
~ Paykin, Mukund

PHOTO: Benj;

Logical Foundations covers
functional programming,
basic concepts of logic,
computer-assisted
theorem proving, and Cogq.

SOFTWARE

Programming
Language
Foundations

amin C. ierce

rthur Azevedo de £

Programming Language
Foundations surveys the
theory of programming
languages, including
operational semantics, Hoare
logic, and static type systems.

SOFTWARE SOFTWARE
BlolikE

QuickChick

Property-Based Testing in Coq

Verified Functional
Algorithms

Andrew W. Appel

SOFTWARE

Separati 4
ngiacra > Verifiable C

Foundations
.

SOFTWARE

Verified Functional
Algorithms

Andrew W. Appel

Verified Functional Algorithms
shows how a variety of
fundamental data
structures can be specified
and mechanically verified.

SOFTWARE

QuickChick

Property-Based Testing in Coq

QuickChick: Property-Based
Testing in Coq introduces
tools for combining
randomized property-
based testing with formal
specification and proof in
the Coq ecosystem.

SOFTWARE

Verifiable C

And rew W. Appel

Qinxiang Cao

Verifiable C is an extended
hands-on tutorial on
specifying and verifying real-
world C programs using the
Princeton Verified Software
Toolchain.

DFTWARE

§eparation
LOgIC
joundations

Separation Logic Foundations is
an in-depth introduction to
separation logic—a practical
approach to modular
verification of imperative
programs—and how to build
program verification tools on
top of it.

Current history

Programming Language Foundations in Agda

Software Foundations (Lean)

Lean Isabelle

Formal Reasoning
About Programs

Mathewatical
Componcnts

nimmezo1d g
3 A Isnoifnud

sgeuans |
ZHOIF INUo

iddAiu
R c o

Concrete

Semantics

o

Computer Arithmetic and
Formal Proofs

Sylvie Bokdo and Gulllaume Meiquiond

Veritying Foating-paint Algorihms
e

Software Foundations at Penn

® 40-70 students every year

® Mix of undergraduates, MSE students, and PhD students (mostly
not studying PL)

® 13 weeks, 23 lectures (80 minutes each), plus 3 review sessions
and 3 exams

® Weekly homework assignments (~10-15 hours each)

Software Foundations in the Large

® SFis now used at many institutions for undergraduate and
graduate teaching

® Maybe 150-200 students / year?

® 36 contributors to the github repo

COq in the Browser (Emilio Gallego and Shachar Itzhaky)

SOFTWARE FOUNDATIONS

It
Welcome to the jsCog-powered version of Software Foundations.
This version contains the same text and code from the beloved Software Foundations series. All the code in the book is b
executable and can be run directly on the page while reading the book. Look for the jsCoq icon on the top right corner of -
= each page.

Programming
Language

Logical
Foundations Foundations

-‘ﬁ".- "'

Alectryon (Clément Pit-Claudel)

Theorem t1_length_pred : forall l:natlist,
pred (length 1) = length (tl 1).

Proof.
intros 1. = destruct 1 as [n 1'].

1 : natlist

Nat.pred (length 1) = length (tl1 1)

rere, Uie it Cdase WOIrkKs pecCduse we ve CI10S€I1 LO JdellIle LL ML L =111 L. INOLICE Lldl LI1E€ d5 dIlIl0Lld10I11 OI1
the destruct tactic here introduces two names, n and 1 ', corresponding to the fact that the cons
constructor for lists takes two arguments (the head and tail of the list it is constructing).

Usually, though, interesting theorems about lists require induction for their proofs.

Programming Language Foundations in Agda

Certified Programming with
Dependent Types

FRAP

Formal Reasoning
About Programs

3nimmes13019
986U3N6]
zno%sbnuo:l

- Is:ig‘c?

2noitsbnuod

Software Foundations (Lean)

Lean

/S

Isabelle

Programs and Proofs
Nevsog Masberastos asth opamsiont Trpen

Lovies Naos

2idiud

po ni gAitesT bsseaN@Ieq 019

Isnoitdnu baitiaV D oldsitiaV

2mifitoglA

15qgA W we1bnA

08D 3nsiXIO

7

Mdthematical
Components

r‘lolJS‘IEqBé
igod
2ﬂoi]sbmu01

Tobias Nipkow - Gerwin Kleif

Concrete
Semantics

With Isabelle/HOL

=

Computer Arithmetic and
Formal Proofs

Sylvie Boldo and Gulllaume Melquiond

Veritying Floating-point Algorthms
with the Cog System

Future history

2

Future of Software Foundations

® New volumes under construction

® Discrete math (Greenberg -- see next talk!)

® Reasoning about interactive programs (Zdancewic)

® Got an idea for another volume? Let’s talk...

SF’s dual / triple mission

® Teaching logic and PL concepts to a broad
audience

® Providing a gentle onramp for learning Coqg
fundamentals

® Explain how to apply Coq in specific domains

| essons learned

Teaching with a proof assistant is a Giant Leap!

® Using a proof assistant significantly shapes the way
ideas are presented

®Working “against the grain” of the tool is a really bad
idea

® Learning to drive a proof assistant is a significant
intellectual challenge

Teaching Things to a Proof Assistant is a Giant Pain!

® Developing a machine-checked course is a massive effort

® Small infelicities cause large headaches

® No idea if basic definitions are well formulated until the last proof
says QED!

® Fortunately, there are several to choose from now :-)

A crucial distinction

Proofs optimized for conveying understanding

VS.

Proofs optimized for conveying certainty

Flavors of “Formal Proofs”

//'_\ teach by example

v :
|. Detailed proof in natural language

2. Proof_assistant Script ‘ \Jnstl‘uctions for Writing...

> —~—

3. FOI;mal oof objectw,_, _’) program for constructing...

~

mostly ignore concentrate here

Is Cog the ultimate TA?

® Almost certainly not the ultimate one!
® Difficult to identify a “pedagogical subset” of features
® Easy for students to unwittingly wander into deep waters

® Lots of subtlety / complexity around even fairly vanilla features
® E.g., try asking a Coq expert exactly what the “simpl” tactic does...
® ...Buta pretty good stopgap

® With careful pedagogy, Coq can absolutely support effective teaching of a
broad range of material, even to relatively unsophisticated audiences

Thank you!

SSSSSSSSS

