
Mysteries of Dropbox
Property-Based Testing of a	Distributed

Synchronization Service

John	Hughes,	Benjamin	Pierce,	
Thomas	Arts,	Ulf	Norell

Synchronization Services

400	million	(June	2015)

240	million	(Oct 2014)

250	million	(Nov	2014)

What do	they do?

Can we test them?

Are they trustworthy?
(exactly!)

TEST
ING

Writing test cases by hand

Generate test cases
from a model

(especially for testing
distributed systems!)

Our Goals

• Develop a precise specification of the core behavior
of a synchronization service
• Phrased from the perspective of users
• Applicable to a variety of different synchronizers

• Use property-based random testing to validate it
against Dropbox’s observed behavior

Why Generate Tests?

• Much wider variety!
• Crucial for	effective testing of
distributed services
• Subtle edge cases,	timing	dependencies,	
…

• More confidence!

QuickCheck

1999—invented by Koen Claessen and John Hughes,
for Haskell

2006—Quviq founded marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho, etc…

QuickCheck

API
under
test

A minimal failing
example

System
under test

Model

Test = list of operations

System
under test

System
under test

Obs1Each operation gives
rise to an observation

Op1 Op2 Op3

Obs1

Obs2 Obs3

Model
Obs2

Model
Obs3

A test fails when we
make an observation
that is not allowed by

the model

Each observation induces a
transition from one model

state to the next

Test Harness for Dropbox

Client	1

Client	2

Client	3

Dropbox	
server

Controller
process

Client
nodes

What operations and
observations do we

need?

One Simplification…

• Real filesystem APIs are complex
• Files, directories, timestamps, permissions, extended

attributes, symlinks, hard links, …

• We make a small restriction…

Filesystem = single file

Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

READN ⟶⊥ means that the file is missing
WRITEN (⊥) means delete the file

Use special value ⊥ for “no file”

Challenge #1: Conflicts
write(“a”) write("b") Dropbox’s answer:

The first value to reach the
server wins; other values
are moved to conflict files in
the same directory.

However, these conflict files
may not appear for a little
while!

What	should	
happen?

Operations Observations

READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”})

Same value in the file on all clients Same set of values in conflict
files on all clients

Second try…

Challenge #2: Background operations

• The Dropbox client communicates with the
test harness via the filesystem.

But…

• The Dropbox client also communicates with
the Dropbox servers!
• Timing of these communications is unpredictable

Invisible, unpredictable activity Nondeterminism!

Approach

• Model the whole system state including	the	
(invisible)	state	of	the	server

• Add ”conjectured observations” to the ones
we actually observe when running tests…

Operations Observations
READN READN ⟶ “current value”

WRITEN (“new value”) WRITEN (“new value”) ⟶ “old value”

STABILIZE STABILIZE ⟶ (“value”, {“conflict values”})

UPN

DOWNN

node N uploads its value to the server

node N is refreshed by the server

No explanation
= failing test

Explanation

starting state

all possible sequences of Up/Downs

hypothetical states

real observation (invalid in most
hypothetical states)

etc.

Test

Example:

Test

Observations

Test

Observations

Explanation

Example:

1. Generate a random sequence of operations Op1…Opn

2. Apply them to the system under test, yielding observations
Obs1…Obsn

3. Calculate all ways of interleaving Up and Down
observations with Obs1…Obsn

4. For each of these, check whether

is a valid sequence of transitions of the model

4. If the answer is “no” for every possible interleaving, we
have found a failing test; otherwise, repeat

Using the model for testing

init-state Obs1 Obs2 Obsn…… … …

Model states

• Stable value (i.e., the one on the server)

• Conflict set (only ever grows)

• For each node:
• Current local value
• ”FRESH” or ”STALE”
• ”CLEAN” or ”DIRTY”

i.e.,	has	the	global	value	changed	
since	this	node’s	 last	communication	

with	the	server

i.e.,	has	the	local	value	been	written	
since	this	node	was	last	refreshed	

by	the	server

Modeling the operations

Modeling the operations

Modeling the operations

Modeling the operations

Dealing with deletion

• Deletion can easily be added to the model:
DELETEN just means WRITEN ⊥

• Try adding this and run some tests…

Still not quite right…

Write	“a”	on	
client	1

Client	2	sees	
1’s	value

Delete	the	
file

2	sees	“missing”	(so	
stable	value	at	server	 is	

“missing”)

Now	client	3	writes	
"b".		Observes	

previous	value	‘a’	
(n.b.:	not	⊥).

We	now	observe	"b",	so	the	stable	
value	on	the	server	must	have	

been	overwritten,	despite	the	fact	
that	‘b’	was	in	conflict

Refining the specification…

• Add special cases for “missing” in Up and
Down actions:
• When “missing” encounters another value during an

up or down, the other value always wins

• I.e., when a write and a delete conflict, the
delete gets undone

Surprises…

Surprise: Dropbox can (briefly) delete
a newly created file…

Create file

Delete it

Observe
creationCreate it again

File is gone!

Timing is critical! Add Sleep operations
in tests

Surprise: Dropbox can (permanently)
re-create a deleted file…

Create file

Delete it

(other clients idle)

File is back!

(Again, timing is critical)

Surprise: Dropbox can lose data

Create file
Overwrite it

New value
persists on

client 1

(Again, timing is
important)

Old value
persists on

client 2!

Client 1 believes it is still Fresh, so if
we later write a new value on client 2,
it will silently overwrite client 1’s value

and no conflict file will be created

Wrapping up…

What did we do?

• Tested a	non-deterministic system	by	searching for	
explanationsusing a	model with hidden actions

• Used QuickCheck’s minimal	failing tests	to	refine the	
model,	until it	matched the	intended behaviour

• Nowminimal	failing tests	reveal unintendedsystem	
behaviour

What do	Dropbox say?

• The	synchronization team	has	reproduced the	buggy
behaviours

• They’re rare failureswhich occur under	very special	
circumstances

• They’re developing fixes

Synchronization is	subtle!

There’s much more to	do…

• Add directories!
• Directories and	files with the	same	names
• Conflicts between deleting a	directory	and	writing a	
file in	it
• …

• More file synchronizers!

Thank you!
(Any questions?)

