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“We can’t build 
software that works!”



Or…?



How did that happen?



• Better programming languages

• Powerful mechanisms for abstraction and modularity

• Better software development methodology

• Agile workflows, unit testing, …

• Stable platforms and frameworks

• Posix, Win32, Android, iOS, apache, DOM/JS, …



Are we done?

Nope



What about
secure software?



Grounds for hope…
• Better programming languages 

• Basic safety guarantees built in

• Better understanding of risks and vulnerabilities

• Better system architectures for security

• Separation kernels, hypervisors, sandboxing, TPMs, …

• Success stories of formal specification and machine-checked 
verification of critical software at scale
• Not a panacea (side channels, etc.)

• But a big step in the right direction!



design

code
Fixpoint compile (e : exp) : list instr :=
match e with
| Num n => [PUSH n]
| Plus e1 e2 => compile e1 ++ compile e2 ++ [PLUS]
| Minus e1 e2 => compile e1 ++ compile e2 ++ [MINUS]
| Mult e1 e2 => compile e1 ++ compile e2 ++ [MULT]
end.

Example e3 : 
assert (compiles_correctly (Plus (Num 2) (Num 2))).

Example e4 : 
assert (compiles_correctly (Plus (Num 5) (Num 3))).

unit tests
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Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et 
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex 
ea commodo consequat. …

informal specification

thinking

logical specification
Theorem compiles_correctly := 
∀(e : exp), execute [] (compile e)  =  [eval e].
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Definition compiles_correctly (e : exp) : Bool :=
eq (execute [] (compile e)) [eval e].

QuickCheck compiles_correctly.



Are logical specifications practical?



• Accepts most of ISO C 99

• Produces machine code for PowerPC, ARM, x86 (32-bit), 
and RISC-V architectures

• 90% of the performance of GCC  (v4, opt. level 1)



Verification really works!
Regehr’s Csmith project used random testing to assess all popular C 
compilers, and reported:

“The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 
2011, the under-development version of CompCert is the only 
compiler we have tested for which Csmith cannot find wrong-code 
errors. This is not for lack of trying: we have devoted about six 
CPU-years to the task. The apparent unbreakability of CompCert 
supports a strong argument that developing compiler optimizations 
within a proof framework, where safety checks are explicit and machine-
checked, has tangible benefits for compiler users.”

John Regehr
Univ. of Utah



• Real-world operating-system kernel

• With an end-to-end proof of implementation correctness 
and security enforcement

• Verified down to machine code



• Bedrock system

• Ur/Web compiler

• CompCert TSO compiler

• CompCert static analysis tools

• Jitk and Data6 verified filesystems

• Fscq file system from MIT

• Verdi distributed system framework

• Testable formal spec for AutoSAR

• CakeML compiler

• Vellvm: Verified LLVM optimizations

• IronClad Apps

• Full-scale formal specifications of 
critical system interfaces
• X86 instruction set
• TCP protocol suite
• Posix file system interface
• Weak memory consistency models for 

x86, ARM, PowerPC
• ISO C / C++ concurrency
• Elf loader format
• C language (Cerberus – also see 

Krebbers, K semantics, …)

And many, many more!



Verified Textbooks!

Coq

Isabelle

… and several others!SoftwareFoundations.org



Why now?

Urgent need for increased confidence
+

Diminishing value of “paper proofs”
+

Progress on enabling technologies



Enabling Technologies

• Logics
• Concurrent separation logic, …

• Proof assistants
• Coq, Isabelle, ACL2, Twelf, HOL-light, …

• Testing tools and methodologies
• QuickCheck, QuickChick, …

• DSLs for writing specifications 
• OTT, Lem, Redex, …

• Languages with integrated specifications
• Dafny, Boogie, JML, F*, Liquid Types, Verilog PSL, 

Dependent Haskell, ...

QuickCheck



Enabling Technologies



So are we done?
Nope.
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Lessons from seL4

• Original specification and correctness proof for seL4 kernel took 
~20 person years

• Later, the same team added a tool for setting up secure system 
configurations 
• where processes at different security levels were guaranteed not to interfere

• Proving correctness of this tool took ~4 person years, of which 1.5 
years were devoted to upgrading the kernel specification 
(and proof) to eliminate unwanted nondeterminism



Verified components 
must connect at 

specification boundaries

Two-sided specifications

Two-sided 
specifications



Formal

“Deep” specifications:

Rich

Live

mathematically rigorous

Two-sided

automatically checked against  
actual code (not just a model)

exercised by both “implementors” 
and “clients”

precisely expressing intended 
behavior of complex software
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And more importantly…



Move from

point success stories
to

sustainable engineering practice 
at industrially relevant scale

Goal:
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Andrew
Appel

Lennart
Beringer

Program	logic	for	
proving	correctness	of
(concurrent)	C	programs

Proof	automation	tools
for	applying	the	program
logic

Demo	projects:

crypto	primitives,

“mailbox”
communication	system,

garbage	collector
for	Certicoq

B+	Trees	DBMS

web	server



Operating
System
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“Certified	Abstraction	Layers”

a	new	refinement-based
methodology	for	software
correctness	proofs

.	.	.	of	programs	with	low-level
concerns	such	as	interrupts,
virtual-memory	mapping,
scheduling,	.	.	.

Zhong
Shao

Demo	project:

Certified	Kit	Operating	System	(CertiKOS)

Configurable	as	supervisor	or	hypervisor

Runs	on	Intel,	AMD,	ARM	platforms

.	.	.	multicore

Hosts	Linux	(or	other	client/guest	software)



LLVM
compiler	intermediate

language
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widely	used	
compiler	framework
based	on	Static	
Single-Assignment	(SSA)

Vellvm:
Formal	specification
of	LLVM;	proofs	of
correctness	of	LLVM	
compiler	phases

Demo	project:

Use	as	basis	for
testing	correctness
of	GHC,	using	
QuickChick

Steve
Zdancewic



Haskell
Language

Specification
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Stephanie
Weirich

Haskell:		widely	used	
pure	functional
programming	language
with	lazy	evaluation

Haskell	Core:		
near-source-level
intermediate	language
inside	GHC	compiler

Haskell	Core	Spec:	

Formal	specification
of	semantics	of	the
Haskell	core	language	

Demo	projects:

Prove	correctness	
of	some	GHC	phases	
using
hs-to-coq

Use	as	basis	for
testing	correctness
of	GHC,	using	
QuickChick



Verified
Compiler	for
Coq	programs
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Gallina:
functional	programming
language	inside	Coq

“Extraction:”
Translate	Gallina
to	ML,	compile	with
Ocaml compiler

Extraction	is	quite	good,
but	it’s	not	verified
correct

CertiCoq:

A	verified	compiler
for	Gallina

Demo	projects:

Resolution	theorem
prover	for	Separation
Logic

(?)	CompCert

(?)	database	query
optimization

(?)	parts	of	web	server

Andrew	Appel Greg	Morrisett

Write	your	software	as	a	
pure	functional	program	in	Coq,
prove	its	correctness	using	Coq,
use	CertiCoq to	compile	
to	efficient	machine	code



Verified
processor
design
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Adam	Chlipala
Old	way:
Write	reference	manual	for	ISA

Write	RTL	program	in	VHDL

Compile	VHDL	
into	transistors

Decent	formal
tools	exist	for
verifying	this
part

New	way:
Formal	specification	of		ISA

Write	RTL	program	
in	Bluespec

Compile	Bluespec
into	VHDL

Compile	VHDL	
into	transistors

Prove	correctness
of	Bluespec program

Prove	correctness
of	Bluespec compiler

Use	existing	tools
to	verify	correctness

Demo	project:		
specification	/	verification	of
RISC-V	processor	implementation



Specification-
based

random	testing
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Old	way:
Fuzz	testing

Recent	ways:
Semantic	fuzz	testing

Tool:	QuickCheck,	for	Haskell	and	
Erlang;		fuzzes	over	(tree)	data	
structures,	automatically	reduces	
bugs	found	into	minimal	input	
cases

QuickChick:
Semantic	fuzz	testing	based
on	conformance	to	formal
specification	in	Coq

Benjamin
Pierce

Demo	projects:

Apache	web	server
DeepSpec web	server

Haskell	compiler



Verification	of
cryptographic
primitives
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High-level	cryptographic
specs	(“pseudorandom	function,	
cryptographic	advantage”),
Message	authentication,
Random	number	generation

High-level	functional	specs	(elliptic	
curves	in	finite	fields)

Low-level	functional	specs	(multibit	
carry)

Efficient	imperative	implementations

Demo	projects:		these	crypto	applications
serve	as	demo	projects	for	several	of	our
other	tools:

Lennart
Beringer

Adam
Chlipala

Fiat
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Andrew
Appel

Lennart
Beringer

Program logic for 
proving correctness of

(concurrent) C programs

Proof automation tools
for applying the program

logic

Demo projects:

crypto primitives,

“mailbox”
communication system

garbage collector
for Certicoq

B+ Trees DBMS

web server



Goal: Rich, formal, live, 2-sided specs
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Application demo?
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Application demos!
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DeepWeb

A web server built on DeepSpec



Many parts One whole



Challenges

• Extreme vertical integration
• Make progress through a sequence of “integration experiments”

• Multiple levels and styles of specifications
• Need a “lingua franca” for writing a variety of specs

• à Interaction trees

• Combining testing and verification

• Reasoning about server behavior “modulo the network”



Challenge: 
Vertical Integration



HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

Web server

Executable high-level specification of 
HTTP(S) protocols and web services

Instruction-set specification 

System call interface specification 

RTL-level description of circuit behaviors

=

Goal: A
 “sin

gle QED” 

encompassin
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e whole stac
k



HTTP(S) spec

OS

POSIX API

RISC-V

RISC-V ISA

Transistors

POSIX API

Web server

Low-level functional spec

RISC-V ISA

Executable high-level specification of 
HTTP(S) protocols and web services

RTL-level description of circuit behaviors

Instruction-set specification 
(machine-code level, flat memory model)

Instruction-set specification 
(assembly level, structured memory model)

System call interface specification 
(CertiKOS “layer interface”)

System call interface specification 
(separation logic Hoare triples)

Functional program with same observable 
behavior as C web server



Challenge: 
Disparate Specification Styles



Too many metalanguages!

• Network-level HTTP spec
• Nondeterministic “model implementation” (functional program)

• Client-side acceptance tester (functional program)

• Web server implementation
• CompCert “observation traces”

• VST C verification tool
• Hoare triples in separation logic

• CertiKOS
• “Layer interfaces”



Interaction trees



Reasoning 
“Modulo the Network”



Swap server specification

Server

Client 1
Cat

Dog

Bat

Cat Client 2

Client 3
Elk

Dog

52

Cat
Bat

Dog
Elk



Swap server: in the real world

Server
Clients

/
Tester

Cat

Dog

Dog

Bat
Elk

53

• Messages on different 
connections can be 
reordered

• Messages can be 
delayed indefinitely



Network refinement

Specification Observable behavior 
by clients

Network semantics

∪Inetwork-refines

Adaptation of Observational refinement/Linearizability

Implementation Observable behavior 
by clients

Network semantics



Challenge: 
Testable High-Level Specifications



Specification Observable behavior 
by clients

Network semantics

∪Inetwork-refines

Implementation Observable behavior 
by clients

Network semantics

What we have
Because (1) we want to 

test our C code and (2) the 
tester also needs to work 

with stock web servers

Where we have to stand 
for testing



Specification
(“model implementation”)

Tester
(“acceptance test”)

Main challenge: nondeterminism
• introduced by the network
• … or present in the original spec

Automatic 
derivation



59



Final theorem

• “If you put these bits (produced by compiling CertiKOS and the 
web server using CompCert) into a memory connected to this 
connection of transistors (produced by compiling a RISC-V 
implementation using Kami), the behaviors of the resulting
system will network refine the behaviors describe ed by the 
model implementation.”



Progress

• Vertical integration
• See CPP 2019 paper about testing and VST verification of a “swap server”

• Interaction trees
• https://github.com/DeepSpec/InteractionTrees
• See talks by Steve Zdancewic today and by Yann Régis-Giannis and Gil Hur

tomorrow

• Connecting VST and CertiKOS
• See talk by William Mansky today

• Connecting CertiKOS and Risc-V
• Ongoing work at Yale and MIT on a “flat memory” semantics for CompCert

https://github.com/DeepSpec/InteractionTrees


The demo is not the (only) scientific result!
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⊊

DeepSpec is not “build a verified stack”



DeepSpec is . . .
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COMPCERT

a coherent collection of tools and techniques . . .

…that can be connected, combined, and configured to allow users to build and 
foundationally verify high assurance, functionally correct software and hardware.



DeeoSpec Workshop 
Overview



Welcome and overview

Compiler Verification

Modular Reasoning

Interaction Trees and 
Algebraic Effects I



Hardware / Software 
Interface Specifications

Verifying all the things

Interaction Trees and 
Algebraic Effects II

Coinduction and testing



Join us!

Summer schools

Technical workshops
(like this one :-)

Visit deepspec.org to see what’s happening
and join our mailing list

visitors program
PhD and

Thank you!
(any (more) questions?)

postdoc positions

Teaching materials


