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NEWS FLASH

Computer systems 
are insecure!

Non-



Legacy design decisions, 
now deeply embedded in HW/SW 

ecosystem

Major contributing factor:



1. Huge increases in hardware resources
➜ Reconsider traditional sources of complexity 
➜ Spend hardware to increase security 

2. Huge advances in formal methods
➜ Machine-checked correctness proofs for 
significant programs becoming practical

What’s changed?



SAFE
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Outline
1.  Overview of CRASH/SAFE

2.  Verification challenges

Many challenges! 



Questions welcome!
(any time)



Vision



• Clean-slate redesign of the 
HW / OS / PL stack

• Support at all levels for 
• Memory safety
• Strong dynamic typing
• Information flow and access control

• Co-design for verifiability



Low-level view



Fat pointers

Every pointer includes base and bounds:

(Logarithmic encoding scheme 
➜ compact representation)

[Brown et al, 2000]



Strong typing

Every data value is annotated with its 
atomic group 

int64
double
pointer

instruction
...



Rich tagging



Tag interpretation
• “This pointer can only by followed by the scheduler”

• “This instruction can only be executed by the 
memory allocator”

• “This integer can only be read by user-defined 
principal P”

• “The document at the other end of this pointer has 
been endorsed by principal P”

• “This string came directly off the network and has 
not been sanitized yet”

• etc.
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(Eliding PC tag...)











High-level view



Breeze
Summary:

• ML-like (CBV, mostly functional)

• Channel-based communication 
• á la CML / Pict

• Dynamically typed
• maybe statically, later
• for now: rich contract system

• Information flow and access control

A high-level, security-
oriented programming 
language



Principals
• Breeze execution state include a set of 

principals

• New principals can be created dynamically



Authority
• Creating a principal also creates an authority, 

representing the capability to act as that 
principal

• Abstract machine maintains a current authority 
• and offers primitives for raising authority 

(adding known capability to current authority) 
and dropping authority

• Attempting an operation not permitted by the 
current authority aborts the running thread



Labels
• Every value comes with a label describing its 

security policy 

• Labels form a lattice

v@L
value label



Information Flow

Labels are propagated during evaluation

40@P  +  2@Q  ⇓  42@(P&Q)

PC label tracks implicit flows

if secret-belonging-to-P 
then 5@⊥ else 6@⊥ ⇓  5@P



Major
verification 

target



Verifying the 
HW / SW Stack



System structure
BREEZE source-level operational semantics

... (more layers for compiler passes)

CW TM plus inter-process communication
TM MM plus tag management

MM SCHED plus memory management

SCHED ISA plus scheduler

ISA bare hardware (in Coq)

ISA-BS bare hardware (in BlueSpec)Test

Verify

Verify

Verify

Verify

Verify

Verify

Verify metatheorems

A stack of abstract machines...



Relating 
Abstract Machines 



An abstract machine

      
machine configurations M

external event traces T

step relation M         M’
T



Nondeterminism

Specification doesn’t want to nail down 
some aspects of machine’s behavior
• “By how many cycles does the countdown timer 

decrease when each instruction is executed...?”

Loose specification permits any outcome
• “An instruction can take any number of cycles”

However...



Nondeterminism makes reasoning hard!



Oracles
A nice trick: 

M = MO × MS  

Oracle captures nondeterminism
• “Each instruction takes some particular number of cycles in a 

given run, but the step function doesn’t know how many; it 
consults the given oracle to find out.”

Step relation now becomes a function

  (MO,MS)                   (MO’,MS’)
T

config = oracle + state



Relating machines

Given a concrete machine C and an 
abstract machine A, suppose we 
want to argue that “C is a correct 
implementation of A.”



A is implemented by C if
there is some correspondence relation 

(written ~) between abstract and concrete 
machine configurations such that 

A A’

C C’*

~

T

~
T

Wait... any 
relation ~?

First try...

Need to 
require that ~ 

be “total”...



A is implemented by C if
there is some correspondence relation 
~ such that 

1.∀ A ∃ C with A ~ C
2. this diagram commutes:

A A’

C C’*

~

T

~
T

Wait... is this 
the right order 
of quantifiers 

for the oracles?

Second try...

No:  The abstract 
oracle’s choices 

should depend on 
the concrete one’s! 



A is implemented by C if
there is some correspondence relation ~ 
such that 

1. ∀ AS ∃ CS such that
∀ CO ∃ AO with
(AO,AS) ~ (CO,CS)

2. this diagram commutes:

But we can 
streamline it a 

little...

(AO,AS) (AO’,AS’)

*

~

T

~
T

(CO,CS) (CO’,CS’)

Final version! 



A is implemented by C if
there is some relation ~ between 
abstract and concrete states 
and a total function O : (CO,CS) → AO such that 

1. ∀ AS ∃ CS such that AS ~ CS
2. this diagram commutes:

Final version! 

(AO,AS) (AO’,AS’)

*

~

T

~
T

(CO,CS) (CO’,CS’)

(What’s this 
called?)



Example

BREEZE source-level operational semantics

... (more layers for compiler passes)

CW TM plus inter-process communication

TM MM plus tag management

MM SCHED plus memory management

SCHED ISA plus scheduler

ISA bare hardware (in Coq)

ISA-BS bare hardware (in BlueSpec)

(Suppose we were specifying the TM 
running directly on the bare ISA...)



ISA Spec
machine state:
• memory, registers

• countdown timer (cycle counter)

• hardware TMU rule cache

oracle:  
• how much does timer change on each instruction 

step function:
if timer = 0, then save PC and fault to interrupt handler entry point, 
else if hardware TMU cache has a rule allowing next instruction
    then ask oracle how much to decrement timer 
    and execute instruction 
else fault to TMU handler entry point



Tag Manager Spec
machine state:
• memory, registers, countdown timer as before

• no hardware TMU rule cache

• security state: set of principals, with associated lattice of labels, ...

oracle:  
• same as ISA 

step function:
if timer = 0 then fault to interrupt handler, 
else if next instruction is “call allocate-principal function”, then 

• allocate a principle (in one step) 
• and put its name in result register

else ... (similarly for other TM entry points) ...
else if security state says next instruction is legal
    then execute it, using security state to determine tags on results
else halt machine



Metatheorems



Challenge!

Beyond non-interference?
Vanilla non-interference is not 
enough...

• concurrent threads weaken it

• declassification breaks it

(...though better than nothing!)



Possible approaches
Methodological:
• Minimize number of audit points requiring ad 

hoc inspection:
• e.g., declassification, process creation 

• Make user-level code as deterministic as possible

Structural:
• Could user code be completely determinized??

• cf. Determinator [Ford et al.]



Challenge!

Poison Pills
How to prevent one component 
from “poisoning” another by 
sending it an inappropriately 
secret value...



One approach: Public labels

Fundamental issue: 
• In standard formulations of dynamic information flow, 

the security label on a piece of data can itself carry 
secret information

Idea:
• Rearrange primitives so that security labels can always 

be public

• Now, “victim” of a poison pill can look at the label and 
decide whether it is willing to raise its security level 
enough to look at the contents 



Challenge!

Application-level policies
How do we (formally) connect 
our language-level security 
primitives to user-level security 
policies?



One approach: Policy weaving

Idea [Harris, Farley, Jha, Reps 2011]
• Specify policy separate from application code
• Automatically “weave” them together

Side benefit: 
• Might work at ConcreteWare level, reducing 

the urgency of verifying the compiler!  



Challenge!

What is the 
attack model?



Attacker does not have physical access 
to the machine (either directly or via 
the supply chain)

Attacker does get to run their code on 
the machine, and it can interact with 
ours
• e.g., plug-ins

Clear part...



Clear implication

We need to be careful about where 
secrets can flow on the machine, not just 
at its external interface (the network)
• If we allow attacker code to see secrets, it can 

easily exfiltrate them using covert channels
• No practical way to prevent this!

• ➜ Need access control, not just information-
flow tracking



Not so clear part...

Real attacks often involve sending bad 
inputs that confuse some trusted 
component and cause it to behave badly
• e.g., buffer overflow attacks

We hope we’ve prevented many of the 
common cases, but there is no way to 
be certain.

➜  least-privilege design



Challenge!

What is “least privilege,” 
formally?



Possible definitions:

1. Given a fixed set of software 
components, how do we assign them 
privileges in a minimal fashion?

2. Given two alternative designs 
satisfying the same specification, 
which one is “more least privilege”?

Feasible

What we want



Finishing up...



• Breeze v0 design, interpreter, toy apps

• Machine-checked proofs of a few metatheorems for 
core calculi 

• Non-pipelined implementation of most instructions 
running on FPGA

• Toy versions of key services (allocator, scheduler, tag 
manager)

• Formal ISA spec under construction now

Status



Related work
Verified operating systems

• Gypsy [1989]
• VeriSoft [2008]
• seL4 [2009]
• Verve [2010]

Verified compilers and runtime systems
• Flint [2008]
• CompCert [2006,2009] and friends

Language-based operating systems
• Cedar/Mesa, Smalltalk, lisp machine, ...
• SPIN
• House/HASP
• Singularity
• Java OSs
• ...

Some of the vast amount of

ˇ



Thank you!
Join us!

We have a lot of exciting projects  
for PhD students and postdocs...


