
A History of Subtyping

Benjamin C. Pierce
University of Pennsylvania

PLMW, August 2023, Seattle

A History of Subtyping

Benjamin C. Pierce
University of Pennsylvania

PLMW, August 2023, Seattle

What Does Subtyping Mean?

Benjamin C. Pierce
University of Pennsylvania

PLMW, August 2023, Seattle

Me

• Grew up in Redlands, CA
• About halfway between Los Angeles and

Palm Springs

• PhD from CMU
• Advised by Bob Harper and John Reynolds

• Postdocs at Edinburgh, INRIA,
Cambridge

• With Robin Milner, Didier Rémy
• Taught at Indiana University for

two years
• At Penn since 1998

1963 -

I like…
writing

music

Kids :-)

contact improv

What about you?
Ask the people on both sides of you…
• Name?
• Hometown?
• Favorite kind of music?
• Favorite language with subtyping?

What this talk is about

• Some basic stuff about typing and subtyping
• (that may be familiar)

• Some other basic stuff
• (that may be less familiar)

• Some history
• Some people

Please interrupt me!

What Does Subtyping Mean?

What Does Subtyping Mean?

What Does Typing Mean?

What Does Typing Mean?

Let’s return to the source…

The Lambda Calculus

Syntax

constants
variables function

abstractions

function
applications

expressions

Operational Semantics

Example

Formally…

Aside: Reduction Strategies

Most programming languages restrict this “full beta-
reduction” to a deterministic function.
• Call by name
• Call by value
• Lazy
• Etc.

These distinctions are not needed for this talk.

Alonzo Church

Known for …
• the lambda calculus
• the Church–Turing thesis

• … that every effectively calculable
function is a computable function

• the undecidability of first-order
logic

• (and much more!)

“With his doctoral student Alan
Turing, Church is considered
one of the founders of computer
science.” [Wikipedia]

1903-1995

From the Mathematics Geneology project…

From the Mathematics Geneology project…

Adding Records

construction projection

Examples

Examples

constants

functions

records compound expressions

The Simply Typed
Lambda-Calculus

Syntax

empty
context

extended context

base types function types record types

Example

Typing

Typing Derivations

subderivation for S
subderivation for T

Correctness

What does typing “mean”?

Haskell B. Curry

Known (in PL) especially for:
• the Curry-Howard

Correspondence between the
fundamental structures found in
logic and in computation

• And, of course, the “currying”
operation on multi-argument
functions

 S x T -> U ~ S -> T -> U

Also: How many people have three
PLs named after them??

1900 - 1982

“Church style” vs. “Curry style”

“There are two versions of type assignment in the λ-calculus:
• Church-style, in which the type of each variable is fixed, and
• Curry-style (also called “domain free”), in which it is not.
As an example, in Church-style typing, λx:A.x is the identity
function on type A, and it has type A → A but not B → B for a type
B different from A.
In Curry-style typing, λx.x is a general identity function with type
C → C for every type C.” Bridging Curry and Church’s typing style,

Kamareddin et al, 2016

But the distinction
goes deeper…

I.e., this is not “just a matter of type inference”

“Extrinsic” View

“Extrinsic” View Terms come first

“Extrinsic” View Terms come first
Then reduction

“Extrinsic” View Terms come first
Then reduction
Then types

“Intrinsic” View

“Intrinsic” View Types come first

“Intrinsic” View Types come first
Then (typed) terms

“Intrinsic” View Types come first
Then (typed) terms
Then reduction

“Intrinsic” View Types come first
Then (typed) terms
Then reduction

Types come first
Then (typed) terms
Then reduction

Types come first
Then typing derivations
Then reduction

Reduction on typing
derivations??

Sure!

Reduction on Derivations

Reduction on Derivations

i.e., in Δ1 replace every
leaf where the T-Var rule
is used to look up x with
a copy of Δ2

For example…

Subtyping

Motivation

A perfectly reasonable program that is
not typeable in the STLC…

:-(

Ole-Johan Dahl
Kristin Nygaard

Inventors of the Simula and
Simula-67 languages
Simula-67 was the first
language to incorporate
subtyping
• (The underlying idea was inspired by

Tony Hoare)

1931 – 2002
1926 - 2002

Luca Cardelli

Long career in famous research labs
(Bell Labs, DEC SRC, Microsoft
Cambridge); currently at Oxford

Many contributions to PL (and systems
biology!)
• “Typeful programming”
• Bounded quantification (System F<:)
• Record calculi
• Mobile Ambients
• A Theory of Objects (with Abadi)

Winner of the Dahl-Nygaard prize in
2007 (among many other awards)

1954? -

Luca’s Dijkstra font

John Reynolds

Trained first as a professional
musician, then did a PhD in
theoretical physics

A few of his contributions:
• Definitional (“metacircular”)

interpreters
• Continuations
• Polymorphic lambda-calculus
• Forsythe, a language with

intersection types
• Syntactic control of interference

-> Separation logic
• Intrinsic semantics of subtyping

1935 - 2013

Typing

We add just one new rule to the typing relation
– the so-called “Rule of Subsumption”:

Subtyping

Now our term typechecks! :-)

Barbara Liskov

Professor at MIT. PhD (1970) with John
McCarthy on chess endgames(!).

Some big contributions to PL:
• Data abstraction

• CLU language
• Semantics of subtyping

• Liskov substitution principle (with Jeanette
Wing)

(Also major contributions in distributed
systems, byzantine consensus.)

Turing award, 1998

One of the first women to earn a PhD in
Computer Science.

1939 -

Who was the
very first?

Sister Mary Kenneth Keller

PhD in CS, 1965 (Wisconsin)

Missed being the very first CS
PhD by a few hours!

1913 - 1985

But we’re not quite done…

This derivation…

…doesn’t match the LHS
of the beta-reduction rule:

New reduction rule!
(Plus a similar rule for
when T-Sub appears
between T-Rcd and T-Proj.)

So… which is better?

Both!!

The extrinsic approach is appropriate when types truly are
‘after-the-fact descriptions’ of underlying untyped behavior
• e.g., gradual type systems for untyped languages

The intrinsic approach is needed when types “matter for
meaning”…
• coercions between numeric types, strings, etc
• Haskell typeclasses, etc.
• record calculi

Must we choose?

No!

E.g., Liquid Haskell
• Intrinsic core (Haskell)
• Extrinsic refinement types

What I hope you got out of this talk

• The distinction between intrinsic (Church-style) and
extrinsic (Curry-style) typing
• and why it matters

•How it extends to langauges with subtyping
•A sense of a few important people
• Fun?

Thank you!!

Any more questions,
discussion, …?

