
Reprinted from Foundations of Software Engineering 2001

An Algebraic Approach to File Synchronization

Norman Ramsey

Division of Engineering and Applied Sciences

Harvard University

Cambridge, USA

nr@eecs.harvard.edu

Előd Csirmaz

Mihaly Fazekas Secondary Grammar School

Budapest, Hungary

elod@renyi.hu

Abstract

A file synchronizer restores consistency after multiple repli-
cas of a filesystem have been changed independently. We
present an algebra for reasoning about operations on filesys-
tems and show that it is sound and complete with respect
to a simple model. The algebra enables us to specify a
file-synchronization algorithm that can be combined with
several different conflict-resolution policies. By contrast,
previous work builds the conflict-resolution policy into the
specification, or worse, does not specify the synchronizer’s
behavior precisely. We classify synchronizers by asking
whether conflicts can be resolved at a single disconnected
replica and whether all replicas are identical after synchro-
nization. We also discuss timestamps and argue that there
is no good way to propagate timestamps when there is se-
vere clock skew between replicas.

1. Introduction

What is a file synchronizer? Suppose there are multiple
replicas of a filesystem; perhaps you have one on a server,
one on a computer at home, and one on a laptop. If you
make different changes at different replicas, the replicas no
longer contain the same information. A file synchronizer
makes them consistent again, while preserving changes you
made.

Not every set of replicas can be made consistent auto-
matically. For example, if src/hello.c is created to say
"Hello, world" on one replica and "Hello, Dolly" on an-
other replica, it is not obvious how to choose one or the
other. In cases like these, the file synchronizer needs a pol-
icy for conflict resolution. Reasonable people might differ
about what constitutes a good policy; some alternatives
appear in Section 6.

The behaviors of many synchronizers are not specified
precisely; understanding how they detect and resolve con-
flicts can be difficult. Balasubramaniam and Pierce (1998)

represents a major step forward; it specifies formal require-
ments for a file synchronizer, and it derives an algorithm
from those requirements. This algorithm is implemented in
the Unison file synchronizer.
Unison’s specification is based on reasoning about states

of the file system before and after synchronization. This
state-based approach leads to an unnecessarily narrow view
of conflicts. Balasubramaniam and Pierce (1998) actually
builds the conflict-resolution policy into the specification,
making it unclear how to implement an interesting class of
conflict-resolution policies.
We have taken a different approach to specification of

file synchronizers; as advocated by Lippe and van Oost-
erom (1992), we reason not about states but about the op-
erations that are performed at each replica. This paper
makes the following contributions:

• We present an algebra of filesystem operations, together
with algebraic laws that are helpful both for reasoning
about file synchronization and for implementing synchro-
nizers.

• We show that the laws are sound and complete with
respect to a semantic model of file systems.

• We explain conflict detection and resolution in terms of
our algebra, and we show that our technique detects es-
sentially the same conflicts as the state-based technique
of Balasubramaniam and Pierce (1998).

• We identify useful alternatives for conflict resolution, in-
cluding alternatives that enable users to recover from
conflicts by making changes at a single replica.

The paper demonstrates the value of formal approaches to
practical problems. An algebraic approach can simplify the
specification, implementation, and user interface of a file
synchronizer. It may also be possible to extend algebraic
techniques to other synchronization problems, such as mail
folders or PalmOS databases.

2. Formalizing the problem

We consider the synchronization of n replicas of a filesys-
tem F , numbered F1, . . . , Fn. Initially all replicas are iden-
tical: F = F1 = · · · = Fn. At each replica, users and pro-
grams perform operations on the filesystem. We write Si

for the sequence of operations performed at replica i. The
task of the file synchronizer is to compute, for each replica,

175



a sequence S∗i that makes the replicas consistent and ac-
counts for all the operations performed at each replica. If
there are no conflicts, all replicas reach the same new state
Fpost = S∗1 (S1(F1)) = · · · = S∗n(Sn(Fn)), where we take se-
quences of operations to act as functions on the state of a
filesystem.
If order of operations didn’t matter, we could simply com-

pute S = S1∪S2∪· · ·∪Sn and let S
∗
i = S\Si. Because order

does matter, however, we have to do more work. The prob-
lem comes from pairs of commands that don’t commute;
if C1;C2 has a different effect from C2;C1, not all orders
are equivalent. The Introduction contains an example of
such a pair of commands; if C1 writes "Hello, world" and
C2 writes "Hello, Dolly", the last writer wins.
If operations were totally ordered, the problem might still

be fairly simple; we would compute the list of all oper-
ations in the proper order, then arrange for the state of
each replica to be as if that list of operations had been
performed. Operations at an individual replica are totally
ordered, but unfortunately we can’t order operations be-
tween replicas. Even if we could guarantee consistency of
timestamps, we wouldn’t want to use timestamp ordering,
because the agents (users and programs) that perform op-
erations make decisions about what operations to perform
by consulting only the states of their local replicas. Agents
can’t make decisions based on the results of operations per-
formed at remote replicas, even if those actions have already
taken place according to some global clock.
We frame the problem of file synchronization as first find-

ing the set S of all operations that have been performed,
then computing a useful subset of S such that within the
subset, all global orderings that are consistent with the local
orderings have the same effect. Using this subset, we can
compute the sequences of commands S∗i to be applied at
each replica. In more detail, we can synchronize replicas in
three steps:

1. Update detection examines each replica to determine the
sequence of commands Si that have been executed at the
replica.

2. Reconciliation takes as many commands as possible from
the sequences Si and computes the sequences S

∗
i to be

executed at each replica.

3. Conflict resolution takes the leftover, “conflicting” com-
mands and does something with them.

Our approach simplifies reasoning about all three steps, and
in the third step it offers a significant advance over previ-
ous work: reasoning about commands makes it possible to
devise several conflict-resolution strategies.

3. A precise model of £lesystems

We model a hierarchical filesystem in which paths refer to
files and directories. A path is a sequence of names. We use
Greek letters for paths, most commonly π. Following Unix
conventions, we use the / character to separate names in a
path, and we write / for the empty path. We write π ¹ γ
iff π is a prefix of γ, i.e., if γ = π/α for some path α, which
might be empty. We write π ≺ γ if π is a proper prefix of γ,
that is, π ¹ γ and π 6= γ. In filesystem terms, π ≺ γ means
that π is an ancestor directory of γ. If π 6¹ γ and γ 6¹ π,
we say that π and γ are incomparable. It is a fundamental

property of hierarchical file systems that operations taking
place at incomparable paths are independent.

We write parent(π) for the path that immediately pre-
cedes π. That is, if π is not empty, there is a name n such
that π = parent(π)/n. The empty path has no parent.

We model a working filesystem F as a partial function
mapping paths to files and directories. We write F (π) to
refer to the file or directory at path π in filesystem F . For
the contents of a filesystem, we write

F (π) = File(m,x) when path π contains a file with
metadata m and contents x;

F (π) = Dir(m) when path π contains a directory
with metadata m;

F (π) = ⊥ when filesystem F contains
nothing at path π; ⊥ is
pronounced “missing.”

Metadata may include permissions, ownership, modifica-
tion time, etc., but the metadata of a directory explicitly
does not include information about the directory’s children;
that information is encoded in F . We write F (π) = X when
we know F (π) 6= ⊥ but we don’t care if we’re dealing with
a file or a directory.

Our model also includes the broken filesystem, which we
write F = ⊥, pronounced “broken.” The broken filesystem
models the result of an erroneous command, e.g., deleting
a directory with files under it. Broken filesystems don’t oc-
cur in practice, because the operating system prevents users
from breaking the filesystem. It is nevertheless useful to in-
clude the broken filesystem in the model, because it enables
reasoning about errors. E.g., if a sequence of commands
produces the broken filesystem, a program attempting to
execute those commands will fail with an error.

Our model does not include hard or soft links.

We use a trivial lattice ordering of filesystems in which
the broken filesystem is the bottom element. We write
the lattice ordering F1 v F2, pronounced “F1 approxi-
mates F2.” This relation holds whenever F1 = ⊥ or when
F1 and F2 are pointwise equal functions, i.e., F1 6= ⊥ and
F2 6= ⊥ and ∀π.F1(π) = F2(π).

1 The v relation is a partial
order, so two filesystems approximate each other if and only
if they are equal.

To explain changes to working filesystems, we write
F{π 7→ X} for the function that is like F , except it maps
π to X.

F{π 7→ X}(γ) =

{

X, if π = γ

F (γ), otherwise

We write childlessF (π) iff F (π) has no descendants, i.e.,
∀γ : π ≺ γ =⇒ F (γ) = ⊥.

4. An algebra of commands

What commands should we use to model operations on a
filesystem? Because users must understand what a syn-
chronizer is doing, our algebra of commands should be con-
sistent with users’ mental models of the actions they and

1Readers familiar with denotational semantics should note
that our ordering is not the ordering typically used for functions;
in particular, if one working filesystem approximates another,
they are identical.

176



their agents perform on the filesystem. Users might imag-
ine performing operations like these:

create(π,X) Create file or directory X at π.

remove(π) Remove the file or directory that was at π.

rename(π, n) Change the “base name” of a file or
directory to n, while leaving it in the
same place in the hierarchy.

move(π, π′) Move π to π′, also moving all
descendants.

derive(π) Change an existing file or directory, in a
way that could be reproduced
mechanically. Because the result can be
reproduced, the operation need not say
what the final state is. An obvious
example is compiling a source to produce
a binary.

edit(π,X) Change an existing file or directory,
leaving it in state X, in a way that can’t
be reproduced mechanically.

The distinction between edit and derive is useful because
a user may wish to specify a behavior like “don’t synchro-
nize derived files.” We distinguish create from edit because
although both operations have the same postcondition (file
with new metadata and contents), they have different pre-
conditions, so the distinction may help detect errors. Ac-
cordingly, we specify that to create an existing file, or to
edit a nonexistent file, leaves the filesystem broken.
These high-level operations may be a good model for

users, but they are not so good for deriving synchroniza-
tion algorithms. We simplify.

• Conceptually at least, move can subsume rename, as it
does in the Unix system (but not in early versions of
DOS).

• Derive can’t be distinguished from edit without knowl-
edge about how files are derived. To avoid synchronizing
derived files, we would be better off with a more gen-
eral mechanism for making files “invisible to the syn-
chronizer.” We therefore drop derive.

• Finally, although it is not clear a priori, the move oper-
ation makes it more difficult to reason about synchro-
nization. The crux of the problem is that the move
operation affects two different locations in the filesys-
tem, whereas the other operations affect only one. Ac-
cordingly, we replace move(π, π′) with the sequence
remove(π); create(π′). The Unison synchronizer does the
same. (A move can also be difficult to detect, but that
is not sufficient reason to omit it from the algebra.)

Figure 1 shows how these operations change the contents
of a filesystem at path π. Using fewer operations simplifies
synchronization but complicates a synchronizer’s user in-
terface. Section 6 explains how to recover a high-level view
for interacting with users.

Precise de£nitions of the commands

We define the effect of each command as a function from
filesystems to filesystems. Any command applied to a bro-
ken filesystem produces a broken filesystem. In the lan-
guage of denotational semantics, every command is strict
in the filesystem. Operationally, once a filesystem is bro-
ken, there is no way to fix it. Figure 2 gives the effects
of commands on working filesystems. The command break

PSfrag replacements

⊥

remove

create

X Y

⊥

remove(π)

remove(π)

create(π, Y )

edit(π, Y )
edit(π, Y )

Figure 1: State-transition diagram for a path π

is not one we expect to use during synchronization, but it
helps us reason about errors. In particular, by showing that
a sequence of commands is not equivalent to break , we can
show those commands can be executed without error on at
least one filesystem.
We are interested only in filesystems that satisfy the tree

property : every parent must be a directory. Formally, if
π ≺ γ and F (γ) 6= ⊥ then F (π) = Dir(m) for some m.
The commands in Figure 2 maintain the tree property as
an invariant.
The commands have another property that simplifies rea-

soning. Each command mentions at most one path π, and
if a command is applied to a working filesystem, either it
breaks the filesystem or it changes the filesystem only at π.

Algebraic laws

Our synchronization algorithm relies on proofs that differ-
ent sequences of operations can have the same effects. We
could construct such proofs by using the precise definitions
of the commands in Figure 2, but it is much easier to reason
using algebraic laws than to reason directly about mathe-
matical functions. This section presents the major tech-
nical contribution of this paper: algebraic laws that form
part of a sound and complete proof system for reasoning
about sequences of commands. This proof system appears
in Table 1; in addition to algebraic laws, which enable us
to rewrite pairs of commands, the proof system includes in-
ference rules for substitution and transitivity, which enable
us to extend the rewriting to larger sequences.
We write commands in a sequence separated by semi-

colons. These sequences stand for functions from filesys-
tems to filesystems, as described by this equation:

(C1;C2)(F ) = C2(C1(F )).

We write S for a sequence of commands, and we write skip
for the empty sequence of commands, i.e., the identity func-
tion on filesystems.
Although we want to reason about equivalence, the cen-

tral relation of our algebra is not equivalence but approx-
imation. To understand why, consider a sequence of two
commands: one that creates a file, and a second that re-
moves it. You might think this sequence is equivalent to
skip:

create(π,X); remove(π)
?
≡ skip.

Look again; the initial create operation is not safe on all
file systems. If π is already present, or if π’s parent is not
a directory, create(π, S) breaks the filesystem. The correct
relation between these two sequences is this:

create(π,X); remove(π) v skip.

177



create(π,X)F =

{

F{π 7→ X}, iff F 6= ⊥ ∧ F (π) = ⊥ ∧ F (parent(π)) = Dir(· · ·)

⊥, otherwise

edit(π,Dir(m))F =

{

F{π 7→ Dir(m)}, iff F 6= ⊥ ∧ F (π) 6= ⊥

⊥, otherwise

edit(π,File(m,x))F =

{

F{π 7→ File(m,x)}, iff F 6= ⊥ ∧ F (π) 6= ⊥ ∧ childlessF (π)

⊥, otherwise

remove(π)F =

{

F{π 7→ ⊥}, iff F 6= ⊥ ∧ F (π) 6= ⊥ ∧ childlessF (π)

⊥, otherwise

break F = ⊥

Figure 2: Filesystem operations and their semantics

We pronounce S1 v S2 as “S1 approximates S2,” or some-
times “S2 is at least as good as S1.” The intended in-
terpretation is that we can use S2 in place of S1 without
breaking more filesystems and without changing working
outcomes. Frequently of course, two sequences are com-
pletely equivalent; we write S1 ≡ S2 as an abbreviation for
S1 v S2 ∧ S2 v S1. Most of the laws in Table 1 do in fact
use equivalence; laws using approximation are marked with
the v symbol.

We have organized Table 1 to show that we have con-
sidered all possible pairs of operations. There are 7 pairs
involving break . These pairs lead to laws 37–43, which are
consistent with Figure 2; once a filesystem is broken, no
operation can fix it, and we know nothing about what hap-
pened before it broke.

There are 9 pairs of operations not involving break . Each
such operation mentions exactly one path, and when we
have a pair of paths π1 and π2, there are four cases to be
considered depending on the values of π1 ¹ π2 and π2 ¹ π1:

π1 ¹ π2 π2 ¹ π1 How we write π1, π2

T T π, π

T F π, π/π′

F T π/π′, π

F F π, ϕ

These combinations account for 36 pairs of operations and
paths, and for the laws numbered 1–36. Laws 3–6 are fur-
ther split into D and F forms to account for the difference
in semantics between directories and files. For example,
law 5D says that making π a directory commutes with re-
moving a descendant of π, but law 5F says that making
π a file and then removing a descendant always causes an
error.2 We summarize the proof system as follows:

• Laws 1–2 and 3D–6D say what operations involving a
directory and its descendant commute.

• Laws 7–15 say that operations involving incomparable
paths commute.

• Laws 16–29 and 3F–5F say that operations which violate
preconditions break the filesystem.

2Either π originally had no descendants, in which case trying
to remove one is an error, or it did have descendants, in which
case turning it into a file (as opposed to a directory) is an error.

• Laws 30–34 say when an operation can be combined with
a previous operation.

• Pairs 35, 36, and 6F, to which no laws apply, show sig-
nificant constraints on non-breaking sequences: parents
must be created before children; children must be re-
moved before parents; and children must be removed
before a directory can be made into a file.

• Laws 37–43 say that any sequence containing break is
equivalent to break .

• The non-pair laws say that any sequence is at least as
good as break and any sequence is at least as good as
itself.

• The inference rules say we can apply the laws within
longer sequences, repeatedly if needed.

Every pair law except law 3D can be used as a rewrite rule
from left to right.

Soundness and completeness

The proof system in Table 1 is sound and complete. Infor-
mally, soundness says that any conclusion we draw using
the proof system is safe, and completeness says that any
conclusion we draw using the underlying semantics can also
(nearly) be drawn using the proof system.
Formally the soundness result is this:

S1 v S2 =⇒ ∀F.S1F v S2F.

The proof is straightforward, if a bit tedious, by induction
on the proofs of judgments of the form S1 v S2. We used
automatic techniques to check the soundness of the alge-
braic laws.
Because of the possibility of commands that break the

filesystem, our completeness result is not exactly what you
might expect. We write S1 ‖ S2 (pronounced “S1 and S2

have a common upper bound”) iff ∃S : S1 v S ∧ S2 v S. In
other words, S1 ‖ S2 iff there is some sequence that is at
least as good as both of them. In situations where neither
S1 nor S2 breaks the file system, S1, S2, and the upper
bound all have the same effect. Our completeness result
shows that if the effect of S1 approximates the effect of
S2 on every possible filesystem, the two sequences have a
common upper bound:

(∀F.S1F v S2F ) =⇒ S1 ‖ S2.

178



Commuting or approximating pairs

1. edit(π,X); edit(π/π′, Y ) ≡ edit(π/π′, Y ); edit(π,X)

2. edit(π/π′, Y ); edit(π,X) ≡ edit(π,X); edit(π/π′, Y )

3Dv. edit(π,Dir(m)); create(π/π′, Y ) w

create(π/π′, Y ); edit(π,Dir(m))
4Dv. create(π/π′, Y ); edit(π,Dir(m)) v

edit(π,Dir(m)); create(π/π′, Y )

5D. edit(π,Dir(m)); remove(π/π′) ≡

remove(π/π′); edit(π,Dir(m))

6D. remove(π/π′); edit(π,Dir(m)) ≡

edit(π,Dir(m)); remove(π/π′)

7. edit(π,X); edit(ϕ, Y ) ≡ edit(ϕ, Y ); edit(π,X)

8. edit(π,X); create(ϕ, Y ) ≡ create(ϕ, Y ); edit(π,X)

9. edit(π,X); remove(ϕ) ≡ remove(ϕ); edit(π,X)

10. create(ϕ, Y ); edit(π,X) ≡ edit(π,X); create(ϕ, Y )

11. create(π,X); create(ϕ, Y ) ≡ create(ϕ, Y ); create(π,X)

12. create(π,X); remove(ϕ) ≡ remove(ϕ); create(π,X)

13. remove(ϕ); edit(π,X) ≡ edit(π,X); remove(ϕ)

14. remove(ϕ); create(π,X) ≡ create(π,X); remove(ϕ)

15. remove(π); remove(ϕ) ≡ remove(ϕ); remove(π)

Incorrect pairs

3F. edit(π,File(m,x)); create(π/π′, Y ) ≡ break

4F. create(π/π′, Y ); edit(π,File(m,x)) ≡ break

5F. edit(π,File(m,x)); remove(π/π′) ≡ break

16. edit(π,X); create(π, Y ) ≡ break

17. edit(π/π′, X); create(π, Y ) ≡ break

18. edit(π/π′, X); remove(π) ≡ break

19. create(π,X); edit(π/π′, Y ) ≡ break

20. create(π,X); create(π, Y ) ≡ break

21. create(π/π′, X); create(π, Y ) ≡ break

22. create(π,X); remove(π/π′) ≡ break

23. create(π/π′, X); remove(π) ≡ break

24. remove(π); edit(π,X) ≡ break

25. remove(π); edit(π/π′, X) ≡ break

26. remove(π); create(π/π′, X) ≡ break

27. remove(π/π′); create(π,X) ≡ break

28. remove(π); remove(π) ≡ break

29. remove(π); remove(π/π′) ≡ break

Simplifying laws

30v. edit(π,X); edit(π, Y ) v edit(π, Y )

31. edit(π,X); remove(π) ≡ remove(π)

32. create(π,X); edit(π, Y ) ≡ create(π, Y )

33v. create(π,X); remove(π) v skip

34v. remove(π); create(π,X) v edit(π,X)

Break is idempotent

37. break ; edit(π,X) ≡ break

38. break ; create(π,X) ≡ break

39. break ; remove(π) ≡ break

40. edit(π,X); break ≡ break

41. create(π,X); break ≡ break

42. remove(π); break ≡ break

43. break ; break ≡ break

Remaining pairs

6F. remove(π/π′); edit(π,File(m,x))
35. create(π,X); create(π/π′, Y )
36. remove(π/π′); remove(π)

Non-pair laws

Bottom. break v S for any S
Reflexivity. S v S for any S

S1 v S2 S2 v S3

S1 v S3

(Transitivity)
S1 v S2

S;S1;S′ v S;S2;S′
(Substitution)

N.B. Paths π and ϕ are always incomparable. Where we write π/π′, π′ is always nonempty.

Table 1: Proof system for the filesystem algebra

The implication is this: if there are two sequences of com-
mands that have the same effect on every filesystem, we can
find a third sequence that’s at least as good as either of the
first two—and therefore has the same effect on whatever
filesystems don’t break. We sketch the proof here; details
will be relegated to an accompanying technical report.

We divide the proof into two cases. Suppose first that
∀F.S1F = ⊥, that is, S1 breaks all filesystems. By identi-
fying the shortest prefix of S1 that has this property, and
by reasoning about the last operation in that prefix, we
can show S1 ≡ break , and break v S2 holds for any S2, so
S1 v S2 and S2 is the common upper bound.

In the interesting case, ∃F.S1F 6= ⊥, and S1F v S2F
gives S1F = S2F 6= ⊥. We define minimal sequences
by considering the sets ℘S = {S′|S v S′}, and we let
Smin be any sequence in ℘S of minimal length. The
set ℘S is not empty because it contains S. We show that
S1

minF = S2
minF 6= ⊥ and that break does not appear in

either sequence. The proof of completeness has three steps.

1. Because there is a filesystem that S1
min and S2

min do not
break, no law mentioning break applies. Because they are
of minimal length, no simplifying law applies. We con-
clude that in a minimal sequence, no path is mentioned

more than once.

2. The sequences S1
min and S2

min must contain exactly the
same set of commands. The key insight is that a com-
mand mentioning path π either breaks the filesystem or
changes it only at π.

3. By applying commutative laws, we can rewrite S1
min and

S2
min into a canonical sequence S. We use the follow-

ing canonical ordering, which first orders commands by
classes and then by pathname within class.

(a) Commands of the form edit(π,Dir(m)), in any order
determined by π.

(b) Commands of the form create(π,X), in preorder.

(c) Commands of the form remove(π), in postorder.

(d) Commands of the form edit(π,File(m,x)), in any or-
der determined by π.

To rewrite sequences into this form, we may apply
law 4D, so the strongest result we can get is S1 v S w S2,
not equivalence. The canonical sequence S may be bet-
ter than S1 and S2, that is, it may be correct on more
filesystems, but whenever S1 or S2 works, S works and
has exactly the same effect.

179



5. Using the algebra

We have applied our algebra to the three steps of file syn-
chronization: update detection, reconciliation, and conflict
resolution.

Update detection

Typical filesystems don’t keep logs of the operations that
were performed on a filesystem; instead, we have to look at
two states of a filesystem, Fi and F ′i , and find a minimal
sequence of operations Si such that F

′
i = Si(Fi). We can

do so by visiting all the non-⊥ paths in each filesystem. As
shown in Figure 1, by comparing Fi(π) with F

′
i (π), we can

decide whether a create, remove, or edit has taken place.
We could conceivably infer an edit operation for each path
that is populated in both filesystems; this strategy corre-
sponds to the “trivial update detector” mentioned by Bal-
asubramaniam and Pierce (1998). But this strategy makes
the cost of synchronization proportional to the size of the
filesystem, not the size of what has changed. To do better,
we need to know which paths have identical values in both
filesystems; no edit operations are needed for such paths.
Unfortunately, in typical use Fi represents the state of

the filesystem at the last synchronization, F ′i represents
the current state, and we may wish not to keep a copy
of Fi available indefinitely.

3 Even if we keep a copy, com-
paring contents of files may be expensive. Accordingly,
file synchronizers typically keep a snapshot of Fi, which
is a copy of Fi that includes directory structure and meta-
data but omits the contents of files. That is, the snapshot
saves File(m,⊥) instead of File(m,x). An alternative is to
save File(m,h(x)), where h is a fingerprinting hash func-
tion (Broder 1993). The assumption is that in practice,
we can avoid examining most contents because no opera-
tion changes the contents of a file without also changing
its metadata. The details of exactly what metadata might
change are subtle; for example, because Unix filesystems
can rename files without changing their modification times,
looking at modification time alone can miss updates. Look-
ing at both modification time and inode number suffices;
Section 3 of Balasubramaniam and Pierce (1998) has de-
tails.
Once we have decided on the create, remove, and edit

operations that are needed, we can put these operations
into canonical order. Our completeness theorem tells us
that the canonical sequence is at least as good as what
actually happened.

Reconciliation

Balasubramaniam and Pierce (1998) characterizes the re-
quirements on a synchronizer using two slogans: (1) prop-
agate all non-conflicting operations and (2) if operations
conflict, do nothing. The value of our approach is that it
enables choices about what to do at a conflict; our second
slogan is therefore (2) save conflicting operations for later
resolution.
We define conflicting operations using the minimal se-

quences found by the update detector. Consider two com-
mands Ci(π) ∈ Si and Cj(γ) ∈ Sj , where i 6= j, and

3Some operating systems, such as Plan 9, use write-once op-
tical disks to make it cheap to reconstruct the state of a past
filesystem (Thompson 1995), but such facilities are not common.

Si and Sj are minimal sequences such that Fi = Si(F ) and
Fj = Sj(F ). We say Ci(π) and Cj(γ) are conflicting com-
mands iff Cj /∈ Si and Ci /∈ Sj and one of the following
holds:

• Ci(π);Cj(γ) 6 ‖ Cj(γ);Ci(π), i.e., the commands do not
commute.

• Ci(π);Cj(γ) ≡ break or Cj(γ);Ci(π) ≡ break, i.e., the
commands break every filesystem.

When C1 and C2 conflict, we write C1 ® C2.
The reconciler takes the sequences S1, . . . , Sn that are

computed to have been performed at each replica. It com-
putes sequences S∗1, . . . , S

∗
n that make the filesystems as

close as possible. The idea of the algorithm is that a com-
mand C ∈ Si should be propagated to replica j (included
in S∗j ) iff three criteria are met:

• C /∈ Sj , i.e., C has not already been performed at
replica j

• no commands at replicas other than i conflict with C

• no commands at replicas other than i conflict with com-
mands that must precede C

A command C ′ must precede command C iff they appear
in the same sequence Si, C

′ precedes C in Si, and they do
not commute (C ′;C 6 ‖ C;C ′).
Here is an example that shows why we consider conflicts

on commands that must precede C. Suppose that in the
original filesystem F (π) = File(mx, x) and that we got two
replicas by performing these commands:

F1 = (edit(π,Dir(m)); create(π/n,File(mw, w)))F

F2 = edit(π,File(mz, z))F.

Commands edit(π,Dir(m)) and edit(π,File(mz, z)) do
not commute, so they conflict. Therefore we cannot
apply command edit(π,Dir(m)) to replica 2. Because
edit(π,Dir(m)) must precede create(π/n,File(mw, w)), we
cannot propagate the command create(π/n,File(mw, w))
either.
Given our three criteria, the reconciliation algorithm

must be equivalent to the following:

for i ∈ 1..n do

make S∗i empty
for i ∈ 1..n do

for j ∈ 1..n do

for every command C ∈ Si do

if C should be propagated to replica j then

append C to S∗j

The algorithm is easily modified to compute the sets of
conflicting commands S®i as well as the sequences S

∗
i .

6. Implementation

A prototype

To verify that our algorithms can be implemented and that
they work as we expect, we have written a prototype im-
plementation. The program is about 700 lines of Perl, of
which 300 lines are blank or comments. The program han-
dles only two replicas, and it does not modify the filesystem;
it simply computes the sequences S∗1 and S

∗
2 . Because it is

a prototype, the program does not use a snapshot of the

180



filesystem; instead we give it a complete copy of the origi-
nal. The prototype also takes a simplified view of metadata;
for example, the metadata for a directory is reduced to a
single bit, which tells whether the program has permission
to write the directory.
We have also started integrating our synchronization al-

gorithm into the Unison synchronizer.

Enlarging the algebra as seen by users

We began with a rich collection of filesystem operations,
then discovered it was easier to develop a useful algebra and
a correct synchronization algorithm if we kept the number
of operations small. Because “big” operations can make
things clearer to the users, however, we recommend that a
synchronizer introduce subtree and move operations—after
computing the reconciling sequences S∗i and the conflicting
operations S®i .

Collapsing ordered operations

In a minimal sequence, the only ordering constraints are
those imposed by laws 3D, 21, and 29, as well as the pairs
6F, 35, and 36. Informally, parents must be created before
children, and children must be removed before parents. We
can eliminate ordering constraints by collapsing create and
remove operations into operations on their parents. The
collapsed operations might be called create subtree, remove
subtree, and edit into subtree. The “collapsed form” of a
minimal sequence is convenient because it enables us to for-
get about order, treating the sequence as a set. It should
be helpful in a user interface, because the collapsed opera-
tions seen by the user can be performed in any order. Not
only are the subtree operations easier to understand, but
if operations must be approved by users, as in the Unison
synchronizer, the collapsed forms make it impossible for a
user to approve an inconsistent set of operations (e.g., ap-
proving the creation of a file without also approving the
creation of its parent directory).

Explicit move

We recommend that a user interface use move, defined by
move(π, π′) = remove(π); create(π′, X), where X is the
contents of the original filesystem at π. A move subtree
operation may also be useful. Because the algebraic laws
governing move are complex, we recommend that move be
introduced only after reconciliation, to describe either ac-
tions to be taken or conflicting commands. Using move has
three benefits.

1. Performance. If an agent at one replica has moved a file
from π to π′, the instructions for performing the same
action at other replicas need mention only the paths
π and π′. If we treat the move operation as a deletion
and creation, the instructions sent to other replicas must
include the full contents of the file.

There are other solutions to this performance prob-
lem. In particular, if the synchronizer retains a “finger-
print” that uniquely identifies the contents of each file
(Broder 1993), then one can build a transport layer that
avoids sending the contents of any file whose contents
are already available at another replica. But to realize
the performance improvement, the synchronizer must be
careful to send the create operation before the remove

operation, lest contents that were available be discarded
before they are needed. This ordering may conflict with
orderings used in the user interface, e.g., lexicographic
ordering by pathname, or ordering by type of operations
at the convenience of the user.

2. Retention of metadata. We wish to be able to synchro-
nize replicas that reside under different operating sys-
tems, such as Windows, Unix, and MacOS. Because
each operating system has different metadata, it is in
general impossible to preserve metadata when sending
instructions between replicas under different operating
systems. But there is an important special case, namely,
a user running disconnected at F1 wishes to restructure a
directory whose contents contain metadata representable
only at F2. If our algebra includes a move operation, we
can propagate renaming operations from F1 to F2 with-
out losing metadata that makes sense only at F2. If
we do not have move, but must rely on create, we send
back to F2 the results of a “best effort” to represent F2’s
metadata on F1, and we are likely to lose metadata like
Windows access-control lists. A formal characterization
of “best effort” would be worthwhile, but the problem is
beyond the scope of this paper.

3. Usability. The most important reason to keep move is
to reduce the cognitive burden on users. The Unison
synchronizer, for example, first decides on a set of trans-
actions, then asks its users to approve them.4 If a user
is asked to approve a move operation, the user knows—
from purely local information—that the contents of the
renamed file will not be lost. But if the move is split into
separate create and remove operations, these operations
may be widely separated in the list of transactions; and
a user wanting to be sure the remove is safe must inspect
the entire list.

A move command also eliminates the possibility of an
error in which a user approves the remove but not the
corresponding create, resulting in loss of contents at one
replica.

It may surprise you that if a user moves a subtree, we
introduce many remove/create pairs, let them all partici-
pate in reconciliation, then combine them intomove subtree.
We considered includingmove operations in the algebra and
handling them during reconciliation, but we believe the sim-
plicity of our current technique outweighs the possible loss
of efficiency. For today’s Unix and Windows filesystems,
the question is moot; the filesystems don’t log move oper-
ations, and the only way to tell that a subtree has been
moved is to reconstruct the move from individual remove
and create operations.

Alternatives for resolving con¤icts

After computing the reconciling sequences S∗i , a synchro-
nizer should apply those sequences to the replicas (possibly

4Unison’s transactions do not resemble the operations advo-
cated in this paper. Instead, Unison offers three choices: make F1

like F2, make F2 like F1, or do nothing. Interestingly, Unison’s
update-detection algorithm uses the operations in this paper (re-
move, create, edit , and skip), and it suggests a transaction based
on what operation was performed at each replica. To help the
user make a decision, Unison presents these operations in a sim-
plified form. This form does not distinguish create from edit ,
and it collapses subtree operations as described above.

181



subject to a user’s approval). But what should a synchro-
nizer do with conflicting commands S®i ? The freedom to
decide this question is a significant advantage of our ap-
proach. We make the following assumptions, which are
consistent with Balasubramaniam and Pierce (1998):

• If there are no conflicts, the replicas are identical after
synchronization.

• Even in the presence of conflicts, the synchronizer pre-
serves the knowledge of what changes were made by
users. (The sequences S®i represent this knowledge.)

• If conflicts occur, a human being must intervene to put
the filesystem (one or more replicas) into a desirable
state. We call this intervention repairing the filesystem.

We have identified three kinds of alternatives for dispos-
ing of conflicting commands. We characterize them by look-
ing at what kinds of repair mechanisms they enable.

• Discard conflicting commands. Under this alternative,
repairs require simultaneous access to all replicas, since
the knowledge of conflicting changes made by users is
preserved only at the replicas at which the changes were
made. This alternative is forced by the state-based spec-
ification of Balasubramaniam and Pierce (1998).

• Propagate information about conflicting commands to all
replicas. If the synchronizer somehow records, at every
replica, all the sequences {S®i }, it becomes possible to
perform disconnected repairs. By this we mean that no
matter what the state of any replica, the following sce-
nario is possible:

1. A synchronization is initiated (by human or other
agency), and the synchronizer runs without human in-
tervention.

2. The replicas are disconnected.

3. A human being repairs a single replica, leaving the
other replicas unchanged. This repair would use the
information recorded about {S®i }. Getting access to
this information might require a special user interface.

4. The replicas are reconnected, a second synchronization
(“resynchronization”) is initiated, and it runs without
human intervention.

5. The two replicas are identical.

• Transform conflicting commands so they no longer
conflict, and apply the transformed commands at each
replica. This alternative is a special case of the previous
one, in which the synchronizer takes the information
about conflicting commands and somehow encodes that
information in the filesystem, e.g., by changing the
pathnames used in the conflicting commands. Ideally,
after synchronization, all replicas would be identical.
Users could then diagnose conflicts and repair the
filesystem running disconnected, at any replica, using
only ordinary commands.

Encoding conflicts in the file system may be confusing,
but making all replicas identical has compensating ad-
vantages.

– A user can determine the states of all replicas by ex-
amining a single replica.

– A user need not remember what conflicts occurred at
the most recent synchronization, because those con-
flicts manifest themselves as contents of the file sys-
tem.

– Once a single replica has reached a desirable state,
work can proceed at that replica even without resyn-
chronization.

We believe that a file synchronizer intended to support mo-
bile computing should support disconnected repairs. It is
an open question whether it is better to support such re-
pairs using a special user interface or to encode information
about conflicts in the filesystem (leaving all replicas identi-
cal after synchronization).

Metadata and modi£cation times

Users have a right to expect that a synchronizer will propa-
gate a file’s metadata as well as its contents. Most metadata
can be propagated without difficulty, but because clocks
at different replicas may show different times, propagating
modification times can cause problems. Here are some re-
quirements on timestamps:

1. If the synchronizer thinks two replicas of a file are identi-
cal, those replicas should bear identical timestamps. This
requirement ensures that the files are treated as identical
by other synchronization tools, by Make, by find, etc.

2. When copying files from one replica to another, synchro-
nization should not change the relative order of the times-
tamps. This requirement preserves the correct behavior
of Make. An early version of Unison used the time of syn-
chronization as the modification time, sometimes leading
Make to treat obsolete files as up to date.

3. Timestamps at a single replica should be such that, if a
user waits for one time unit to pass, then modifies or
creates a file, that file will bear a modification time that
is greater than the modification time of any other file at
that replica. This requirement is essential for Make to
function correctly. If it is violated (e.g., because the sys-
tem clock gets out of whack) the problem can be difficult
to diagnose.

4. The outcome of a synchronization should depend only
on the state of the two file systems being synchronized,
not on the time at which the synchronization takes place.
Synchronization itself should not be seen as an operation
on the filesystem, only as a way of propagating existing
operations.

Requirements 2 and 3 are satisfied if this more general con-
dition holds: If a user performs creation and modification
operations at both replicas, and if these operations are to-
tally ordered, then after the synchronizer runs, the times-
tamps on synchronized files respect this total order. “Totally
ordered” means not only ordered in real time, but ordered
up to the ability of the local system to distinguish the ac-
tions. If a user changes two files 10 milliseconds apart, and
time stamps have a granularity of one second, these two
actions are not totally ordered.
The local clock provides an adequate total ordering for

events at one replica, no matter what rate it runs at, pro-
vided it runs forward. The awful truth is that there is
no way to tell when events at different replicas should be
totally ordered, even when users take care to order them.
As noted in Section 2, even if there is a global clock, we
can’t rely on it, because we can’t know post hoc whether
operations ordered in time were so ordered intentionally or
accidentally.

182



If there is no consistent global clock, as is typically the
case, the problems get worse; in the presence of clock skew,
the conditions above cannot all be satisfied simultaneously.
For example, if replica F1 is running an hour ahead of
replica F2, then changes to files modified within the last
hour cannot be propagated to F2 without either giving them
different time stamps or violating the total ordering. We
believe it is better to give them different time stamps.5 If
the time skew is small, it may be even better to freeze syn-
chronization for a few seconds, allowing the clock at F2 to
catch up with the latest modification time at F1. A for-
mal study of synchronization in the presence of clock skew
might yield more convincing recommendations.

Many of these problems would be solved if the filesystem
used vector clocks (Fidge 1988; Mattern 1989) to create
timestamps for modification times. Unfortunately, such a
plan would require sweeping changes in both operating sys-
tems and program-development tools. For example, using
a vector clock, a derived file could be not only out of date
or up to date, but “concurrent” with respect to a source
file. Make would have to be modified to deal such new
relationships.

7. Related work

Merging

File synchronization is closely related to the problem of
merging unrelated changes to an object. This problem has
been studied extensively in the context of software config-
uration management (Conradi and Westfechtel 1998, §5.5),
in which the objects may be single files, programs, parse
trees, databases, etc.; in file synchronization, the filesystem
is the “object” to which changes have been made.

Our approach is closest to that of Lippe and van Oos-
terom (1992), which advocates reasoning about sequences
of operations, not just initial and final states. The setting
is general and abstract; the CAMERA tools work with ar-
bitrary state and operations, exploiting only commutative
laws. The paper describes algorithms for finding and resolv-
ing conflicts efficiently, even in cases where it is expensive
to compare two operations and determine if they commute.
It identifies three kinds of conflict-resolution policies: drop
conflicting commands, impose an ordering on conflicting
commands, and edit the merged sequence of commands in
an arbitrary way.

Kermarrec et al. (2001) describes IceCube, another gen-
eral tool. Unlike CAMERA, IceCube does not use com-
mutative laws to determine permissible orderings of com-
mands; instead, it uses ordering constraints, which deter-
mine when one operation may follow another in a merged
sequence. The ordering constraints that apply to a pair of
operations may depend on the state of the replica to which
the operations are applied. There are no conflicting com-
mands, and there is no conflict resolution as such; instead
IceCube searches for a global ordering of operations that
satisfies all constraints. To reduce the size of the search
space, IceCube uses special “static” constraints, which are
independent of the states of the replicas; the absence of such

5Even in this case, a synchronizer might well have to wait
one tick at F2 for every file synchronized, in order to respect the
total order without creating any files “newer than now.”

a constraint may be considered a sort of tentative commu-
tative law. The performance of and results produced by
IceCube are very sensitive to the choices of constraints and
the division into static and dynamic constraints.
Among special-purpose tools, the one most relevant to

file synchronization appears to be the IPSEN merge tool
(Westfechtel 1991), an operation-based tool in which the
objects to be merged are abstract-syntax trees and the op-
erations are tree-editing operations. No laws are given; in-
stead, Westfechtel presents a merging algorithm. The paper
includes an informal description of an extension that can de-
tect and correct conflicts that involve bindings of identifiers.
It is not clear whether this tool could be adapted to work on
filesystems, but the question is interesting because the ex-
tension might provide some hints about resolving conflicts
in filesystems that include hard and soft links.

Although file synchronization is an instance of the general
merging problem, it has two distinguishing characteristics:

• It is very cheap to compare two operations to see if they
commute.

• Synchronizers must work with the current states of the
replicas. A synchronizer cannot edit a log, then replay
that log from scratch. The “drop conflicts” or “impose
an order” strategies (Lippe and van Oosterom 1992) are
therefore impossible.

Lippe and van Oosterom (1992) mentions that some op-
erations may be “redundant,” and that eliminating such op-
erations may speed reconciliation and reduce conflicts. Our
simplifying laws may be seen as a formal way of removing
redundant operations. The particular laws we use enable us
to put sequences of operations into canonical form, which
greatly simplifies reconciliation. It is unclear to what extent
these ideas might apply to a more general tool.

Con¤ict detection

We had expected our definition of conflicts, which uses con-
flicting commands, to be equivalent to Unison’s definition
(Balasubramaniam and Pierce 1998). Our definition is ac-
tually slightly stronger. That is, if our definition says there
is a conflict, Unison’s definition also detects a conflict, but
there are cases in which Unison’s definition detects a con-
flict that our definition handles without conflict. These
cases turn out to be uninteresting, however.
Unison detects conflicts using dirty sets. Using our no-

tation, an update detector applied to original filesystem F
and replica Fi produces a set dirty i, which must satisfy two
properties:

• π /∈ dirty i =⇒ Fi(π) = F (π), i.e., clean files haven’t
changed

• π/π′ ∈ dirty i =⇒ π ∈ dirty i, i.e., if a path is dirty its
parent is dirty

A dirty set is a safe estimate of paths where changes have
been made; a good update detector computes the smallest
possible dirty set. There is a dirty-set conflict at path π
iff π ∈ dirty i ∩ dirtyj and Fi(π) 6= Fj(π) and either Fi(π)
or Fj(π) is a file. (The specification in Balasubramaniam
and Pierce ignores directory metadata, so all directories
are considered identical. Unison’s implementation does not
ignore directory metadata.)

183



An example shows it is possible to have a dirty-set con-
flict without having conflicting commands. Let the original
filesystem and the two replicas be given by these equations:

F = {/ 7→ Dir(m), /d 7→ Dir(m), /d/f 7→ File(mx, x)}

F1 = (remove(/d/f); remove(/d))F

F2 = (remove(/d/f))F.

The least dirty sets must be

dirty1 = {/, /d, /d/f}

dirty2 = {/, /d, /d/f}

N.B. /d ∈ dirty1 because replica 1 changed at /d, but /d ∈
dirty2 because /d/f ∈ dirty2 and parents of dirty paths are
dirty. We have a dirty-set conflict at /d because it is dirty
in both replicas and F1(/d) is not a directory.
Our algebra finds no conflict. S1 = remove(/d/f);

remove(/d) and S2 = remove(/d/f), so there are no
conflicting commands. In practice, we can safely apply
remove(/d) to replica 2, so we believe this example should
be considered non-conflicting.
In the other direction, whenever there are conflicting

commands, there is a dirty-set conflict. For consistency
with Balasubramaniam and Pierce, we assume that all di-
rectories have the same metadata and write simply Dir for
directories. We assume we have unbroken filesystems F ,
F1, and F2; the minimal sequences Si and Sj ; and the dirty
sets dirty i and dirtyj from the update detectors. Finally, we
assume that the minimal sequences do not contain unneces-
sary commands of the form edit(π,Dir). That is, because
all directories have the same metadata, if F (π) = Dir then
the command edit(π,Dir) must not appear in S1 or S2.
If two commands conflict, one path must precede the

other, since otherwise the commands would commute.
Without loss of generality, we number the replicas to choose
C1(π) ∈ S1 and C2(π/π̂) ∈ S2, where π̂ may be empty, such
that C1(π)®C2(π/π̂). We prove there is a dirty-set conflict
at path π.
Because each sequence Si is of minimal length, we know

that F1(π) 6= F (π) and F2(π/π̂) 6= F (π/π̂). Therefore
π ∈ dirty1 and π/π̂ ∈ dirty2. Because dirty sets are closed
under the parent relation, π/π̂ ∈ dirty2 means π ∈ dirty2.
What we have left to show is that F1(π) 6= F2(π), and in
particular either F1(π) or F2(π) is not a directory.
Suppose that F1(π) = F2(π) = Dir. Because S1 is

minimal, C1(π) is the only command in S1 that mentions
path π, and so F1(π) = (C1(π)F )(π) = Dir. We conclude
that Ci(π) must be either create(π,Dir) or edit(π,Dir). In
either case we can be sure that F (π) 6= Dir because other-
wise edit(π,Dir) could be removed from S1, contradicting
our assumptions. By assumption, F2(π) = Dir, so there
must be a command in S2 that mentions π; call it C

′
2(π).

By similar reasoning C ′2(π) must be either create(π,Dir)
or edit(π,Dir), and since the replicas have the same ini-
tial and final states at π, in fact C1(π) = C ′2(π). But this
forces C1(π) ∈ S2, which contradicts the assumption that
C1(π)® C2(π/π̂). Therefore F1(π) and F2(π) cannot both
be directories.
Similar reasoning shows that F1(π) 6= F2(π), and there-

fore we have a dirty-set conflict at π.

Other synchronizers

Space limitations preclude a thorough discussion of other
synchronizers here. Commercial file synchronizers include

Microsoft’s Briefcase (Schwartz 1996; Microsoft 1998) and
Leader Technologies’ PowerMerge. Puma Technologies’ In-
telliSync solves a related problem: synchronizing various
kinds of database files used in handheld and other com-
puters (Puma a; Puma b). In addition to the Unison
synchronizer (Balasubramaniam and Pierce 1998), there
is an experimental synchronizer developed by the Ru-
mor project (Reiher et al. 1996). Balasubramaniam and
Pierce (1998) discusses some of these synchronizers, as well
as connections to research in distributed file systems and
databases. There is also the more recent Reconcile syn-
chronizer (Howard 1999).
The synchronizers listed above synchronize all replicas at

once, propagating operations from every replica to every
other. Cox and Josephson (2001) describes Tra, a synchro-
nizer that can defer some propagations to later synchroniza-
tions, or even indefinitely. It works by using a variation on
vector clocks to identify conflicts and to determine what
operations should be propagated.

8. Discussion

Balasubramaniam and Pierce (1998) specifies a file synchro-
nizer by presenting preconditions and postconditions for the
states of two filesystems before and after synchronization.
Although these conditions completely determine a synchro-
nization algorithm, we hope to have convinced you that
other postconditions might be equally desirable, or possi-
bly even more desirable. By reasoning about an algebra of
operations instead of states, we have shown that there can
be a family of specifications for file synchronizers, each of
which could be considered correct. Different members of the
family might offer different tradeoffs in their treatments of
conflicting commands. Our algebraic approach illuminates
the design space.
Because there are many different ways to formulate

filesystem operations, we have taken care to give not only
algebraic laws, but also an underlying model, and to show
that the laws form a sound and complete proof system for
that model. Although this style of specification is more
elaborate than simply appealing directly to the algebra and
its laws, it helps deal with a central problem of formal spec-
ification: ensuring the specification accurately describes the
intended behavior. An implementor or a user can look at
Figure 2 and say, “yes, that is a filesystem and its oper-
ations.” It is much more difficult to say whether Table 1
describes a filesystem.
Our algebra is carefully crafted so we can take any two

states of a file system and construct a canonical, minimal
sequence of operations that connects the states. For exam-
ple, our edit operation uses the final contents of a file, not
the delta, and our algebra lacks a move operation. It is not
clear whether an equally useful algebra can be crafted to
solve other kinds of reconciliation problems.
We hope our techniques may apply to other algebras. For

example, mail systems such as MH use filesystems to hold
electronic mail. Directories represent mail folders, and files
represent messages. File names represent message num-
bers. The message numbers themselves are not important.
More precisely, although message numbers at an individ-
ual replica should not be changed gratuitously, it might be
acceptable to have different message numbers at different
replicas, and it might be acceptable if message numbers

184



changed as a result of synchronization.

The mail-folder algebra corresponds not to filesystem op-
erations but to mail-handling commands: rmm, which re-
moves a message; refile, which moves a message between
folders; and inc, which accepts delivery of new messages.
Such commands assign message numbers and maintain in-
ternal invariants, e.g., the integrity of .mh sequences. One
may also see a rare edit operation, e.g., to patch botched
headers, to reformat unreadable content created by Mi-
crosoft products, etc. A critical difference in the mail alge-
bra is that messages should be identified not by pathname
but by contents. For messages that conform to RFC 822,
the value of the Message-Id field can stand in for the con-
tents. Our synchronization algorithm and proof techniques
may nevertheless apply to this new algebra.

Existing synchronizers are either ill-specified (many of
the commercial tools) or inflexible (Balasubramaniam and
Pierce 1998). An algebraic approach seems to offer a nat-
ural and understandable path to specification and imple-
mentation of a file synchronizer, but the real potential ad-
vantages lie in two areas.

• Whereas an approach based on states leads to a single
conflict-resolution policy, our algebraic approach sup-
ports several alternatives, including alternatives that
support disconnected repairs.

• An algebraic approach may be useful for other synchro-
nization problems, such as synchronizing mail folders,
PalmOS databases, or other kinds of files with internal
structure.

In the long run, it may even be possible to build a syn-
chronizer that is parameterized by an algebra, an update
detector, and a conflict resolver. Perhaps one could extend
such a synchronizer without having to prove the whole thing
correct; instead, one could limit one’s effort to proving the
soundness of the algebraic laws and of the update detector.

Acknowledgments

We thank Benjamin Pierce for comments on this paper,
and also for many stimulating discussions of file synchro-
nization, especially during ICFP’99. We thank Tony Hoare
for suggesting we focus on the refinement ordering. We
thank Marc Shapiro for suggestions and encouragement.
We thank the anonymous referees for their suggestions, es-
pecially about the literature on software configuration man-
agement. This work was supported by NSF grant CCR-
0096069 and by the Research Science Institute, which is
sponsored by the Center for Excellence in Education.

References

Balasubramaniam, Sundar and Benjamin C. Pierce.
1998 (October). What is a file synchronizer? In
Proceedings of the 4th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Network-
ing (MOBICOM-98), pages 98–108, New York. See
the Unison home page at http://www.cis.upenn.edu/
~bcpierce/unison.

Broder, Andrei. 1993. Some applications of Rabin’s finger-
printing method. In Capocelli, R., A. De Santis, and
U. Vaccaro, editors, Sequences II: Methods in Com-
munications, Security, and Computer Science, pages
143–152. Springer-Verlag.

Conradi, Reidar and Bernhard Westfechtel. 1998 (June).
Version models for software configuration manage-
ment. ACM Computing Surveys, 30(2):232–282.

Cox, Russ and William Josephson. 2001 (January). Com-
munication timestamps for file system synchronization.
Technical Report 01-01, Computer Science, Harvard
University.

Fidge, Colin J. 1988 (February). Timestamps in message-
passing systems that preserve the partial ordering.
Australian Computer Science Communications, 10(1).

Howard, John H. 1999. Reconcile user’s guide. Technical
Report TR99-14, Mitsubishi Electronics Research Lab.

Kermarrec, Anne-Marie, Antony Rowstron, Marc Shapiro,
and Peter Druschel. 2001. The IceCube approach to
the reconciliation of divergent replicas. In Twentieth
ACM Symposium on Principles of Distributed Comput-
ing (PODC 2001).

Lippe, Ernst and Norbert van Oosterom. 1992 (Decem-
ber). Operation-Based Merging. Proceedings of the
Fifth ACM SIGSOFT Symposium on Software Devel-
opment Environments, in SIGSOFT Software Engi-
neering Notes, 17(5):78–87.

Mattern, Friedemann. 1989. Virtual time and global states
of distributed systems. In Cosnard, Michel, Yves
Robert, Patrice Quinton, and Michel Raynal, editors,
Parallel and Distributed Algorithms, pages 215–226.
Amsterdam: Elsevier Science Publishers B. V. (North
Holland).

Microsoft. 1998. Microsoft Windows 95: Vision for mobile
computing. http://www.microsoft.com/windows95/

info/w95mobile.htm.

Puma. Designing effective synchronization solutions: A
White Paper on Synchronization from Puma Technol-
ogy. http://www.pumatech.com/syncwp.html.

. A white paper on DSXtm Technology – Data
Synchronization Extensions from Puma Technology.
http://www.pumatech.com/dsxwp.html.

Reiher, P., J. Popek, M. Gunter, J. Salomone, and D. Rat-
ner. 1996 (June). Peer-to-peer reconciliation based
replication for mobile computers. In European Con-
ference on Object Oriented Programming ’96 Second
Workshop on Mobility and Replication.

Schwartz, Stu. 1996 (May). The Briefcase—in brief. Win-
dows 95 Professional. http://www.cobb.com/w9p/

9605/w9p9651.htm.

Thompson, Ken. 1995. The Plan 9 file server. In Plan 9:
The Documents, pages 313–320. Murray Hill, New Jer-
sey: Computing Sciences Research Center, AT&T Bell
Laboratories.

Westfechtel, Bernhard. 1991. Structure-oriented merging
of revisions of software documents. In Feiler, Peter H.,
editor, Proceedings of the 3rd International Workshop
on Software Configuration Management, pages 68–79.

185


