
Flexible Diff-ing
In A Collaborative

Christine M. Neuwirth
Ravinder Chandhok
David S. Kaufer
Paul Erion
James Morris
Dale Miller

Carnegie Mellon University
Pittsburgh, PA 15213
prep-project+@ andrew.cmu ,edu

Writing System

ABSTRACT
An important activity in collaborative writing is
communicating about changes to texts,, This paper
reports on a software system, ji’exible cliff, that finds and
reports differences (“cliffs”) between versions of texts. The

system is flexible, allowing users to control several
aspects of its operation including what changes are
reported and how they are shown when they are reported.
We argue that such flexibility is necessary to support
users’ different social and cognitive needs.

KEYWORDS
Text comparison, collaborative writing, flexible
differencing

INTRODUCTION
In the course of a collaboration, co-authc)rs often make
changes to each other’s documents. A principal difficulty
co-authors face is coping with those changes, especially
understanding why the other person made them. For
example, in a study of eight writers’ production of an
insurance company’s two-page annual report. Cross [3]
observed that each writer “omitted, added, highlighted or
modified the text to agree with his or her preconceptions,
with unexplained changes causing “co~lsiderable
frustration” for other writers (p. 193).

This paper describes an approach to communicating about

changes to documents. At the heart of the approach is a

Permission to copy without fee all or part of this material ia
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notioe ie given
that copying is by permission of the Associatic)n for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

a 1992 ACM 0-89791 -543 -71921001010147 ...$1 .50

flexible text differencing system, “j7exible dvf,” that
allows collaborative writers to tailor difference reports to
their various social and cognitive needs. The program is
imbedded in the PREP Editor [13; 14; 2], a writing

environment being developed to study and support
collaborative writing processes. The PREP Editor allows
difference reports to be annotated with such things as
explanations of changes.

ISSUES IN THE DESIGN OF
A FLEXIBLE DIFF-ING SYSTEM
The technical question in the design of a difference finding
program is how to take an original text and a tevision, and
to produce--in a time and space efficient way--an edit script
(or difference report) that describes changes between the
two versions. From a time/space efficiency standpoint,
the “optimal” difference report is in the form of a list that
describes the minimal number of editing changes required
to transform the original text into the revision. This
technical question has received considerable research
attention [7; 10; 11] and is not the focus here. The focus
in this paper is on the following human interface design
questions and our approach to answering them:

o What changes should be reported?
● How should changes that are reported be pinpointed?

* What should the user interface to the change report be
like?

In the course of answering these questions, we argue that,
from a human factors standpoint, an optimal time/space
difference report is not necessarily optimal.

What Changes Should Be Reported?
The most fundamental design question we addressed was
“What changes should be reported?” One might think that
the answer is obvious: “All of them.” This answer,
however, is not unconditionally correct. FJachbar [12]

argues compellingly that reporting all changes is
inappropriate for some tasks, such as comparing the
output of floating point calculations (where roundoff

CSCW 92 Procedngs November 1992

147

errors result in spurious differences) and comparing
program source code (where differences in white space and
comments have no effect on the operation of compiled
code). In response to these task demands, Nachbar’s spijj
(spiffy cliff) provides a flexible diff-ing interface; for
example, a user can instruct spiff to ignore differences
between floating point numbers that are below a user-
settable threshold, a feature that allows users to compare
the outputs of a statistical package running on two
different machines approximately 200 times faster than
when using difl [7] to generate the report.

We identified three aspects of collaborative writing tasks
that require developing a flexible difference finding
algorithm:

● Different roles within a writing group?
s Changes in the needs of collaborative writing groups

over time
. Different types of collabomtive writing groups.

Different roles within a writing group
A writing group is usually composed of different people
fulfilling several different social roles. While a co-author
may not be interested in seeing every change that a trusted
co-author made, he or she may want to check every change
from a less trustworthy editor, For example, Cross [3]
observed that a secretary acting as editor changed “crises
that could not be overcome” to “crises,” because of a

belief that crises, by definition, could not be overcome.

Changes in the needs of collaborative writing groups over
time
A writing group’s needs for detecting changes may be
different at different times during the lifetime of a project.
At the beginning of a project, co-authors may be changing
a draft so radically that it would not be useful to see
changes at a detailed level. In those cases, it is less likely
that a co-author would want to detect what was inserted,
but he or she may want to answer the question, “Where
did my ‘good bit’ go?” At later stages of the project, for
example, when responding to reviewer’s comments, it
may be useful to look at each change a co-author made.

Different types of collaborative writing groups
Different groups often need very different ways to detect
changes. For some tasks, writers want to see every last
change that was made from the previous version--for
example, lawyers doing contract work. If, for example,
the reader is a lawyer whose task it is to find all the
changes that may have legat implications, then it certainly
makes sense to report all of them. To illustrate, Figure
la. depicts the original of a legal document; Figure 1b.,
a revised version, and Figure 1.c, a change report with all

changes shown. 1

1Strike-through corresponds to deleted material; underline

corresponds to inserted material. Example based on material

from [15].

But in another type of writing group, writers might
actually be distracted by seeing every last change because
the task might be quite different. If the reader is a co-
author, for example, the tasks might be to read the new
draft for meaning and, at the same time, to build a
representation of the problems that remain in the paper.
Such a reader may not be interested in all the changes,
many of which draw attention to problems in the previous
draft that are no longer of interest because they have been
;olved.
i. Original The Pennsylvania law also establishes a

>. Revised

:. All
:hanges
‘eportecf

time Iimlt- within which injuries or
occupational diseases must be reported
to an employer. Under this provision,
compensation will be paid based on the
date of the injury only if the injury is
reported to your’ employer within 21 days
of its occurrence. After 21 days,
compensation will begin based on when
the report is made. The law bars
compensation for any injury or disease
reported more than 120 days after the
occurrence.

The Pennsylvania law establishes a time
limit within which injuries or work-related
illnesses must be reported to an
employer. In order to receive full
compensation, that is, compensation
based on the date of the injury or the
onset of illness, you must report it to
your employer within 21 days of its
occurrence. If you report it between the
22nd and 120th day, you will receive
partial compensation, that is,
compensation based on the date you file
the claim. If you report it more than 120
days after the injury or onset of illness,
you will receive no compensation.

The Pennsylvania law alse establishes a
time limit within which injuries or
~ work-related
illnesses must be reported to an

employer.
,,

~ In order

~o recewe full c-nsation. that is.
compensation wiU&+ad based on the
date of the injury ~

r the onset of illness. vou
o your employer within 21

days of its occurrence. ~

TI

- If VOU t@DOtl it between the 22nd
and 120th dav. vou will receive r3artial
compensation. that is. compensation
based on the date vou file the claiM_.U

Y9U reoo~ more than 120 days after the
iniurv or onset of illness.

you will receive no comr3ensation.

Figure 1. An example revision and difference report.

148

Instead, the reader may prefer to see only some changes--
for example, sentences or paragraphs that have been
deleted, on the grounds that destruction of “hard won”

sentences or paragraphs is an interesting event (see Figure
2.c). Indeed, adifference report ofallthe changes to the

document might induce such areader to focus on task-
irrelevant information at the expense of building meaning
and a representation of problems remaining (Figure 2.b.).

To understand how a change report might interfere with
the tasks of building meaning and a representation of
remaining problems, it is useful to look at what role
attention plays in the process of reading, Most reading
models assume that attention is required in order to derive
meaning from texts and that the amount of attention

available is limited, so attention must be allocated [15].
When two or more tasks exceed attentional capacity, the

tasks cannot be performed simultaneously and readers
engage in “attention switching,” first allocating attention
to one task, then the other. For example, beginning
readers have difficulty decoding word:s and building
meaning simultaneously, and must often switch attention
from one task to the other; however, attention switching
comes at a cost: It is time consuming, puts a heavy
demand on short-term memory and tends 10 interfere with
recall [8].

a. Original Finally, and somewhat speculatively, we
wondered if more experienced teachers
would use electronic communication
modes differently than less experienced
teachers. New computer technologies
do not, in and of themselves, create
educational improvements; instead, they
create opportunities for improvements.

b. Ail Finally, and somewhat speculatively, we
changes ~~ti’ed the
reported

More experienced teachers WQUM-

lbeir stude nts will use electronic
communication modes 4#&e4y m
than less experienced teachers. W

. .
~A

c. Sentence Finally, and somewhat speculatively, we
level hypothesized the following about
changes individual teachers: More experienced
reported teachers and their students will use

electronic communication modes more
than less experienced teachers. New

. .
~LRt%

Figure 2. All changes reported vs. sentence level
changes.

Based on our initial experience with difference reports,2 it
is our hypothesis that reading for meaning, building a
representation of remaining problems and detecting
differences are tasks that require attention-switching for
many readers. Indeed, the report of a change seems to

invite the reader to focus on the change.3 But an
“invitation” can distract the reader from more appropriate
tasks. Lesser and Erman [9] define “distraction” as the
degree to which an agent’s focus can be shifted. Positive
distraction shifts an agent to tasks that are more useful;
negative distraction shifts the agent to tasks that are
redundant or diversionary. The dismaction in a difference
report might be negative, leading the reader to switch
tasks and focus on the changes to the detriment of
constructing the gist of the new material. Moreover, a
reader with limited metacognitive capacity may fail to
detect distraction or may recover from the problem only

after considerable misspent time.4

This framework allows us to give a general answer to the
question, “What changes should be reported?” In general,
only those changes should be reported that will reduce
negative distraction and increase positive distraction.
Since this depends, as we have argued, on the reader and
the task, a differencing program for collaborative writing
needs to be flexible, to allow readers to specify what
changes to ignore.

Like spiff [12], flexible d~f achieves flexibility by
allowing users to specify whether to ignore changes in
whitespace (spaces, tabs, and newlines) or to treat it as
any other non-alphanumeric character (i.e., to parse each
whitespace character into its own token). In both systems
the goal is to avoid the introduction of spurious and
semantically meaningless entries in the difference report.
For numerical values, spiff goes one step further and
allows numerical differences within a threshold “epsilon”
to be ignored. For text values, however, there is a

question of how to measure differences. TO address this
issue, we have extended the spiff paradigm to text by
introducing a heuristic for measuring differences. The user
can instruct the program to ignore differences that are
smaller than a specified grain size, with the choices for
grain size being word, phrase, sentence, or paragraph.

2Users have been members of the PREP Editor project group,

their collaborators, and first-year students in a selected

section of a college writing course.

3 This observation is consistent with the work of Gibson

who observes that events--such as the notification of a
change--have “affordances,” that is, they demand or invite

certain behaviors.

4 With time and practice, frequent readers of change reports

may become skilled at “decoding” them and be able to process
them at the same time as reading for meaning and

representing remaining problems; however, such a
development is not inevitable. For example, it is generally
not possible for proofreaders to become so skilled at finding
errors that they are able to build meaning at the same time as

they proofread (cf. [6]).

149

Differences are measured by the following heuristic:
differences between two units are ignored if some
percentage of their parts are equal. Setting the value to
anything except 100% places the burden of difference

detection on the reader.5 For example, a co-author
interested in not losing any ’’hard won” sentences might

specify a grain size of a sentence, and a 70% change
threshold (Figure 2.c). While we have not had any
experience with lawyers usingfle.xible difl, the appropriate
setting for examining revisions of contracts might be
100% (Figure l.c.). To complement our notion of
“change threshold,” we are experimenting with notations
for showing relative amounts of differences in the
interface. In other words, if some of the actual differences

are suppressed from the report via the change threshold,
the interface might still (through change bars, color or
shading) indicate that there are changes to be explored.
Paramount to the effectiveness of such a visual notation is
its unobtrusiveness--it must not draw undue attention to

the suppressed changes, or it will subvert the purpose of
the change threshold completely.

Another aspect of the question “What changes should be
reported?” concerns the type of events that should be
reported. In particular, a “move” can be defined as a
deletion followed by an insertion of the same material
elsewhere. Our initial experience with difference reports,
however, suggests that readers appreciate a move being

sigualled explicitly, because it reduces their search task.
We developed a simple technique that searches for
insertions and deletions of identical text and remaps them

to a move operation, The user can control a parameter,
“minimum length for a move,” in units of the current
grain size, that controls the minimum length of an
insertion/deletion before it is interpreted as a move, on the
grounds that multiple occurrences of short strings such as
“the” and so forth should not be interpreted as moves.
Based on our initial experience, it appears to be useful to
allow larger units of text, such as sentences and phrases,
to be treated as moves even though they have some
changes within them, but this is not yet implemented.

How Should Changes That Are Reported Be
Pinpointed?
Our experience with differencing tools for texts suggests
that several factors--the number, density, and complexity
of changes--should condition how changes in a text are
pinpointed. Above a certain threshold of change intensity,
writers seem to prefer a report that shows the entire region
of text as changed rather than one that pinpoints each
change piecemeal. To illustrate, Figure 3a. depicts an

original text and Figure 3.b., a revision. Figure 3.c, is a
change report with the changes pinpointed at the word
level; Figure 3.d. pinpoints the changes by concatenating
replacements that are closer together than a user-controlled
number of words away. Notice that the change report in

51t is important to note that this is not to say that a co-author
might not notice a change below the sentence level; simply

that the change report would not point it out.

Figure 3.d. is no longer strictly accurate: The word
“brown” is reported as having been deleted and inserted,
even though it was constant across the two versions. Yet
many readers prefer the second version, reporting that it
increases the readability.

In response to this observation, j7exible cliff defines
several parameters that allow users to control how changes
are pinpointed. The first parameter is “coarseness” of
pinpointing: character, word, phrase, sentence, or
paragraph. For example, if the user sets the coarseness
parameter for how the change should be pinpointed to the
sentence level (and the grain size parameter for what
changes are to be reported to the word level), then an
insertion of a word in a sentence will be reported, but it
will be reported as the whole sentence having been deleted
and inserted.

a. Original h was cold. The quick brown fox jumps
text over the lazy dog. Her bowl is over there,

by the car.

b. Revised It was morning. It was cold. The slow
text brown dog jumps over the lazy cat. Her

bowl is over there, by the truck.

c. Fine It was mornina. It was cold. The qukk
pinpointing ~ brownk @ jumps over the lazy

% Q. Her bowl is over there, by the
C.a4’~.

d. Medium It wa s mornina. It was cold. The q.u.kk
pinpointing ~ ~jumps over the

lazy &g d. Her bowl is over there, by
the car w.

e. Coarse It was morning. It was cold. The+ukk
pinpointing

SIOW brown d~s over the -
Her bowl is over there. bv the ear truck.

Figure 3. Pinpointing changes.

In addition to grain size. the user can control how
precisely replacements (insertion/deletion pairs) are
pinpointed. Three parameters are defined: “maximum
distance to look for commonalities,” “maximum percent
of differences,” and “maximum distance to concatenate.”
The first two parameters control the recursive top-down

application of the differencing process which is applied,
for example, at the phrase level before it is applied at the
word level: If two phrases are very different in length
(“maximum distance to look for commonalities”) and have
a great many differences (“maximum percent of

differences’’),6 a replacement is reported at the phrase

6The number of differences is computed by the first phase of

the differencing algorithm. Our experiences are that the first
phase of the algorithm (which yields the number of changes
but not their exact values) generally executes in less than

one-half the time required for a complete comparison.

150

level on the grounds that it is less worthwhile to examine
them for commonalities, many of which may be cryptic
and fortuitous (e.g., they may contain ftmction wordsin
common such as “the,” “of,” etc.); otherwise the
differencing algorithm is continued and thle replacements
arepinpointed more exactly. Figure 3.e. depicts achange
report that results when theparameters are set so that the
algorithm does not recurse to the word level for the
phrases “The quick brown fox jumps over the lazy dog”

and “The slow brown dog jumps over the k~zy cat.”

The third pammeter, “maximum distance to concatenate,”
controls a bottom-up concatenation process. As the list
of differences (or edit script) is being built by the
differencing process, it is examined for replacements that
occur within the range of “maximum distance to
concatenate” on the grounds that concatenating
replacements that are adjacent or relatively close together
increases the readability of the report, Figure 3.d. depicts
a change report that results when the “maximum distance
to concatenate” parameter is set so that “quick .S!SDYbrown

fox L@” (cf. Figure 3.c.) is concatenated to “qtkk%wn

fox- slow brown dog.” Depending on hc~w the user sets

the parameters controlling the top-down and bottom-up
processes, they will produce identical or different results
for any given example.

Incidentally, the parameters described in this section allow
users to trade-off accuracy of pinpointing changes and
execution speed because the speed of the differencing
algorithm is proportional to the number of input tokens
and to the number of differences between the two versions.
Thus. users have an additional motivation to select
parameters that are appropriate to their cognitive and
social needs. In particular, users are motivated to initially
generate an initial coarse description of changes (which is
faster) and then to look selectively at the details of
particular changes (which is more accurate). Our
implementation actually uses heuristics like this to
improve overall performance.

What Should The User Interface To The Change
Report Be Like?
We have implemented an interface forflexitde difl in the
PREP Editor, a writing environment that supports side-
by-side columns of text, with horizontal alignment that
enables “at-a-glance” viewing of large numbers of

annotations and related texts, The comparison interface
produces its report in a new column, with the differences
linked to the original column for easy, side-by-side
evaluation. To illustrate, Figure 4 depicts four columns:
an original draft, its revision, the comparison report and
an evaluation column. The evaluation column in Figure
4 consists of annotations to the comparison report that a
co-author produced in order to explain some of the changes
or to solicit advice about them.

This interface has two important features. The first is
horizontal alignment of the changes to the point of
difference in the text. There is evidence that readers

accustomed to horizontal writing read faster in the
horizontal direction than in the vertical (cl [17], p. 137).

Thus, side-by-side, horizontal alignment of the changes to
original and revised documents is consonant with what we
know about the cognitive processing demands of the task

of seeing what changed, The following excerpt from a
“think-aloud protocol of a reviewer looking at an author’s
original text, the reviewer’s comments on that text, the
author’s revised text, and a change report is typical of
those we have observed when changes are aligned
horizontally and illustrates that users are able to
understand changes quickly

...the object-oriented developers encountered fewer
of the c/assic and costly surprises. So he didn’t
actually change anything really here. Well all right--he
changed a little, but it wasn’t exactly what I wanted

him to do.7

Because the comparison exactly links the changes to the
source text, it is possible to provide a mechanism to
accept or reject each change easily (as in InterNote [1]),
though we have not yet implemented this.

The second important feature of the interface is the ability
of users to annotate changes with explanations of the
change or questions to co-authors. Our group’s experience
with this feature suggests that reviewers will annotate
changes selectively in order to draw their co-authors’
attention to changes they want to discuss or explain.
Likewise, a co-author can ask a reviewer to explain a
change. Our hypothesis is that the ability to annotate

changes will greatly alleviate writers’ frustrations with
unexplained changes that Cross [3] observed.

The column layout just described requires a significant
amount of screen real estate. In order to be usable with
smaller screens, PREP provides flexibility in the
comparison interface by allowing the user to display the
text with the changes interspersed between the unchanged
text (a common format used in commercial differencing
tools). In this format, users can also annotate the
changes.

Besides the interface to the change report, there is an
interface to the parameters (described above) that control
how the differencing process operates. While the
parameters we have described allow enormous flexibility
in our comparison tool, we also recognize that most users
will not care to change the defaults. We chose the default
values after testing the algorithm against widely varying
input texts, including texts jointly written among
ourselves in PREP (this paper was co-authored in PREP).

7 In a “think-aloud” protocol, subjects are asked to think-
aloud--to say whatever it is they are thinking--and are video-

taped or audio-taped. In the transcription italics indicate that
the subject is reading, and each “-” indicates a pause of 1

second duration. The author and reviewer, who were subjects

in an experiment evaluating aspects of the PREP Editor, were
working on an actual paper intended for publication.

151

Original I
Revision Comparison

@m

Way to decrease One way to decrease I ~One way “signs/-to

coordination difficulty coordination difficulty ... -noise” -

is to communicate less is to communicate less
- in effect, lowering the is this an

distracting distracting
“signal-to-noise” ratio understood

information and more information and more phrase?

relevant information. relevant information -

in effect, lowering the

“signal-to-noise”

ratio.

The approach is The approach to 1 to comparison 1 I don’t 1

incorporated in the comparison is want to

“work in preparation” incorporated in the
a writing environment a word position

(PREP) Editor, a word pro cessor
“work in prepwation” PREP as a

processor being (PREP) Editor, a
..

word

developed to study and writing environment processor.

to support being developed to

collaborative writing study and to support

processes. collaborative writing

‘igure 4. Actual PREP Editor column interface showing f/exib/e cliff Note that the current
implementation of PREP shows insertions as italic text, and deletions as !.mderline d text.

It is essential to note that we do not claim to have
discovered the mappings between our heuristics, the
parameter settings and output that is optimal for a reader
trying to make sense of a report of differences across
versions of text. We only claim to have created a tool
where these settings and their effect on interpretability can
be systematically explored. How the heuristics should be
applied (and perhaps the proper defaults based on different
task scenarios) is something we regard as important future
research.

Currently, comparisons are generated only upon request
from the user. We plan to experiment with heuristics for
automatically generating comparison reports, depending
on role relationships among writers. For example, if the
annotated draft is from a co-author, then display changes
upon request; if from a reviewer, then display all changes
automatically. Apart from generating the comparison
before returning the revision (which we. as co-authors,
currently sometimes do), the revision’s author has little
control over how the compwison might be done. As this
information might lead to a more productive exchange, we
plan to experiment with adding “comparison settings”
information to revisions that would serve as hints from
the co-author to anyone who would generate a difference
report. For example, as a teacher, I might wish to
hide/suppress character level changes (e.g., spelling
corrections) so that my student’s attention would be
directed towards the more meaningful, higher-level
changes.

OPERATION
Initially, flexible d~f does a lexical analysis of the input
streams based on the settings the user has specified.

During this tokenizing process, any white space is
distin&ished and usualiy ~gnored. The resultant Streams
are then fed into the differencing process for generation of
the edit script. Note that even this simple abstraction of
separating the actual characters of the input stream from
the sequence comparison gives the engine considerable
flexibility in terms of genemting reports based on different

grain sizes8.

The Differencing Process
‘f’he differencing algorithm is modelled after the Myers
[11] O(ND) longest common subsequence/shortest edit
script algorithm.

Inflexible cliff, the basic Myers algorithm is applied with
a hierarchical decomposition strategy that exploits the
grain size (character, word, phrase, sentence, paragraph) of
comparison reports. For the sake of illustration, assume

that the user has set the grain size to the word level (the
default setting). The hierarchical application of the Myers
algorithm can be described by the following psuedo-code:

I. Compare text-A and text-B at the phrase level.
2. For all string replacements in the edit script Do

If the original has little in common with its replacement
Then report the whole string as changed
Else compute & report cliffs for the two strings at the
word level.

After building a list of differences at a higher level (Step
1), severaf factors are examined to determine whether to

81n our implementation, a tokenizer is a subclass of a generic

“tokenizer” C++ class, so adding different tokenizers is an
easy task--ones for sound and graphics would be possible.

152

cliff recursively the corresponding strings iit the next level
(Step 2). The decision as to whether strings have “a lot”

or “a little” in common are controlled by the parameters
“maximum distance to look for commonalities” and
“maximum percent of differences” described above.

Finally, concatenations of the edit script, controlled by the
parameter “maximum distance to concatenate,” are done as
the edit script is produced. This concatenation reduces co-
located edit operations to one larger operation.

Performance
The Myers algorithm performs especially well when

differences are small (i.e., sequences are simikw) and is
consequently fast in an application in which users adjust
grain size to fit the stage in the writing prc)cess.

RELATED RESEARCH
Several researchers have argued recently that computer-
support for cooperative work requires flexibility, that is,
the ability to tailor the behavior of collaborative systems
both to differences between groups and to differences
among group members [4; 5]. We are especially indebted
to Dewan and Choudhary’s [4] work on flexible coupling.
Their thoughts about the collaborative negotiation that
might occur and parameters for such negotiation have
influenced our entire approach.

The technical problem of efficient and optimal change
detection has been explored in detail by other resemchers,
most notably UNIXTM cliff [7] and Miller and Myers [10;
11]. We have not tried to improve on the efficiency and
compactness of differencing algorithms themselves, but
instead on the readability of the report. Our
implementation based on their techniques is able to
process realistically sized texts, from 10 [o 40 pages and
up to 15,000 words, in a user-perceived “reasonable”
amount of time.

The notion of flexible diff-ing in spiff [12] is closest to
our research in its application of domain knowledge to
reduce spurious difference reporting. Our work extends

this idea by defining parameters we argue are appropriate
to the domain of collaborative writing. Some of the

settings for the parameters allow users to trade accuracy
for efficiency. Others allow for tradeoffs between
correctness of the difference report versus cognitive
distraction due to unimportant information.

Surprisingly, little work has been done on how best to
display difference reports to user. Existing tools pay little
attention to the presentation of the comparison
information. In the case of cliff, the output is simply a
list of the changed lines with an indication of whether the
particular line was replaced, inserted, or deleted (Figure
5.b). Likewise, editors that include “change bars” indicate
which lines have changed and do not report the actual site
of the revisions (Figure 5a). Note that while “cliff” gives
information such as which lines were inserted, deleted, or
changed, the change bar interface does not show that

detail. With change bars, the location of the change is
less precisely pinpointed and the type of change is not

specified. Commercial word processors and comparison
tools produce output based on word-level differences, such
as shown in Figure 3.c. None of these interfaces support
commenting on change reports in order to explain
changes.

FUTURE WORK AND CONCLUSIONS

The notion of flexible differencing is clearly related to
versioning and concurrency control, As techniques for
dealing with inconsistencies improve, there may be less
need for strict concurrency control, since users could
resolve conflicts that have arisen more easily. We have
plans to explore the application of j7exible cliff in this
context.

I 1 It was morning, *** 1,6 ****
It was cold. It was cold.

I

The slow brown dog !The quick brown

jumps over the lazy !fox jumps over the

cat, her bowl is !Iazy dog, her bowl

over there, by the is over there, by

~ truck. !the care

---1,7 ----
+It was morning.
It was cold.
!The .SIOWbrown dog

!jumps over the
!Iazy cat, her bowl
is over there, by
~the truck.

a. Change bars b. “cliff” output
/“/~d/@/e$achanged hne

“+” /ndmafes an inserted/me

Figure 5. Typical difference reports in existing systems.

Our approach can be improved in many ways. It will
probably be useful to exploit semantic information such
as a knowledge of function words (e.g., “and,” “the” “of’
etc.). Likewise, it might be useful to exploit the
semantic and pragmatic knowledge of users themselves.
For example, a facility might be useful that would allow a
co-author to select a region of text to draw to his or her
co-author’s attention in a change report, regardless of grain
size or change threshold, Also, full support of
collaborative writing groups may require supporting
difference finding and reporting for objects other than text.
Our observations of a group of physicists working
collaboratively on a paper suggest that we may need to
explore diff-ing pictures.

While we have designedfle.xible dijfspecifically for PREP
and the context of collaborative writing, many aspects of
it apply to any collaboration system.

In collaborative writing systems of the future, users will
want to automatically recover changes that they made
themselves at an earlier time or that are the result of work

153

by another writer. In such a world, good comparison
reports of versions will be essential. We have argued a

good comparison report depends not only on a tool’s
efficiency in detecting change but also on the tool’s
ability to be tailored to different contextual assumptions
of change and to a user’s cognitive capacity to process
information about change in various social contexts. In
this paper, we have reported some progress toward the
development of such a tool that, we have argued, will
support a wide variety of tasks and texts. It remains to be
seen which parameters make the biggest difference to
which editing contexts. That determination awaits future
empirical work. Such a tool, however, allows for a
systematic study that varies number, density and
complexity of change and could help us discover more
about how each factor affects the task definition processes
and goals of collaborative writers.

ACKNOWLEDGEMENTS
The work reported here have been supported by the
National Science Foundation (grant number IRI-8902891)
and by a grant from External Research at Apple
Computer, Inc. Special acknowledgement is due to Paul
Erion who was chiefly responsible for our implementation
of the diff-ing. Thanks to David Banks for consultation
on parameters for string similarity measures and to Davida
Charney for comments on an earlier draft of this paper.

REFERENCES
1.

2.

3.

4.

5.

Catlin, T., Bush, P., and Yankelovich, N.
InterNote: Extending a hypermedia framework to
support annotative collaboration. In Hypertext 89
Proceedings (Pittsburgh, PA, Nov. 5-9). ACM,
N. Y., 1989, pp. 365-378.

Cavalier, T., Chandhok, R., Morris, J., Kaufer, D.,
and Neuwirth, C.M. A visual design for
collaborative work: Columns for commenting and
annotation. In Proceedings of the Twenty-fourth
Hawaii International Conference on $yste?n

Sciences (HICSS-24) (Kalua Kona, Hawaii, Jan.
8-11), J,F. Nunamaker, Jr., Ed. IEEE Press,
Washington, D. C., 1991, pp. 729-738.

Cross, G. A. A I%khtinian exploration of factors
affecting the collaborative writing of an executive
letter of an annual report. Research in the Teaching
of English 24, 2 (May, 1990), 173-203.

Dewan, P., and Choudhary, R. Flexible user
interface coupling in a collaborative system. In
Proceedings of the CHI’91 Conference (New
Orleans, April 27-May 2). ACM, N.Y., 1991, pp.
41-49.

Greenberg, S. Personalizable groupware:
Accommodating individual roles and group
differences. In Proceedings of the Second European
Conference on Computer-Supported Cooperative
Work (Amsterdam, The Netherlands, Sep. 25-27),

6.

7.

8.

9.

10,

11.

12.

13.

14.

15.

17.

L. Bannon, M. Robinson, and K. Schmidt, Eds.
Computer Sciences Company, Slough, UK, 1991,
pp. 17-31.

Haber, R. N., and Schindler, R.M. Error in
proofreading: Evidence of syntactic control of letter
processing? Journal of Experimental Psychology:
Human Perception and Pe~ormance 7, (1981), 573-
579.

Hunt, J.W., and McIlroy, M.D. An Algorithm for
Differential File Comparison, Bell Laboratories,
N.J., Computing Science Technical Report No.41,
1975.

Kahneman, D. Attention and Effort. Prentice-Hall,
Englewood Cliffs, N.J., 1973.

Lesser, V.R., and Erman, L.D. Distributed
interpretation: A model and experiment. IEEE
Transactions on Computers C-2912 (Dec., 1980),
1144-1163.

Miller, W., and Myers, E.W. A file comparison
program. Software-Practice and Experience 15, 11
(1985), 1025-1040.

Myers, E.W. An O(ND) difference algorithm and
its variations. Algorithmic 1 (1986), 251-266.

Nachbar, D. Spiff--A Program for Making
Controlled Approximate Comparisons of Files. In
Proceedings of the Summer 1988 USENIX

Conference (San Francisco, CA, June 21-24).
USENIX Association, Berkeley, CA, 1988, pp. 73-
84.

Neuwirth, C.M., and Kaufer, D.S. The role of
external representations in the writing process:
Implications for the design of hypertext-based

writing tools. In Hypertext ‘ 89 Proceedings
(Pittsburgh, PA, Nov. 5-8), ACM, N, Y,, 1989,
pp. 319-342.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R,,
Morris, J.H. Issues in the design of computer
support for co-authoring and commenting. In
Proceedings of CSCW’90 Conference on

Collaborative Work (Los Angeles, CA, Oct. 7-10).
ACM. N,Y,,1990, Pll 183-195

Samuels, S.J,, and Kamil, M.L. Models of the
reading process. In Handbook of Reading Research,
D. P. Pearson, Ed. Longman Inc., N. Y., 1984,
pp. 185-224.

Taylor, I., and TayIor, M. M. The Psychology of
Reading. Academic Press, N.Y., 1983.

154

