
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Integrating Content-based Access Mechanisms
 with Hierarchical File Systems

Burra Gopal
Microsoft Corp

Udi Manber
University of Arizona

Integrating Content-Based Access Mechanisms with

Hierarchical File Systems

Burra Gopal�

Microsoft Corp.

One Microsoft Way

Redmond, WA 98052

burrag@microsoft.com

Udi Manber y

Dept. of Computer Science

University of Arizona

Tucson, AZ 85721

udi@cs.arizona.edu

ABSTRACT

We present a new �le system that combines

name-based and content-based access to �les at

the same time. Our design allows both meth-

ods to be used at any time, thus preserving the

bene�ts of both. Users can create their own

name spaces based on queries, on explicit path

names, or on any combination interleaved ar-

bitrarily. All regular �le operations { such as

adding, deleting, or moving �les { are supported

in the same way, and in addition, query con-

sistency is maintained and adapted to what the

user is manually doing. One can add, remove,

or move results of queries, and in general han-

dle them as if they were regular �les. This cre-

ates interesting new consistency problems, for

which we suggest and implement solutions. Re-

mote �le systems or remote query systems (e.g.,

web search) can be integrated by users into their

own coherent name spaces in a clean way. We

believe that our design can serve as the basis for

the future information-rich �le systems, allow-

ing users better handle on their information.

1 Introduction

One of the most important challenges to cur-
rent operating systems is to provide convenient
access to vast amounts of information. By con-

�Work done while at the University of Arizona.
ySupported in part by DARPA contract N66001-96-

C-8615. New-address: Yahoo! Inc., 3420 Central Ex-

pressway, Santa Clara, CA 95051.

venience, we mean not only the ability to quickly
transfer information from one place to another,
but the ability to �nd the right information and
deal with it. This is arguably a new problem due
to the scale of available information. File sys-
tems that were designed when typical users had
few Magabytes and hundreds of �les to contend
with are getting inadequate when Gigabytes and
hundreds of thousands of �les are the norm.

The way we access �le systems has not changed
much in the last 30 years. Most �le systems are
based on a hierarchical arrangement with access
by explicit path names or browsing (i.e., going
down and up the tree). Hierarchical �le systems
have been successful because they provided ev-
erything we needed. They were extended to net-
work �le systems (trying to keep this transpar-
ent to the users), and widely distributed �le sys-
tems. Numerous added features { such as quick
search for �le names, symbolic links or short-
cuts, and automatic compression and backup,
to name a few { make �le system access even
more convenient.

However, current �le systems are hard pressed
to deal with the vast amount of available in-
formation that is already upon us. Not in the
physical sense { it is still relatively easy to store
and access information. But being able to make
e�ective use of that information is becoming
harder and harder. For example, although a lot
of information is obtained through searches, in-
tegrating this information into a �le system is
still done mostly by hand with little support. We
present in this paper a new method of attacking
this problem. We introduce a new paradigm,

actually a combination of old paradigms, and
report on a successful implementation of a �le
system that follows that paradigm.

Our starting point is the semantic �le system

(SFS) paradigm introduced by Gi�ord et al [7].
Semantic �le systems provide access by queries.
They support the creation of virtual directories,
each pointing to �les that satisfy a query. Vir-
tual sub-directories can be built using pointers
from the parent, making a hierarchy based on
query re�nement. Semantic �le systems allow
users to organize their �les by content and pro-
vide means to do that conveniently. This is
sorely needed, because beyond a certain scale
limit, people cannot remember locations by ex-
plicit path names. After so many years, it is still
amusing to see even experienced UNIX system
administrators spend time trying /usr/lib, or
was it /usr/local/lib, maybe /opt/local/etc/lib,
or /opt/unsupported/lib? There are, of course,
many search tools available, but organizing large
�le systems is still too hard. The web, of course,
has raised this problem to new heights.

So why haven't semantic �le systems caught
on? Clearly, as in any innovation, it takes a
long time for people to change paradigms, espe-
cially if this directly involves everyday's tasks.
It is essential to provide a smooth transition,
which is currently not available. In addition, hi-
erarchical �le systems o�er strong features that
are not supported by semantic �le systems. So
the natural question is \can we combine the two
paradigms?" Can we build a �le system that
will have the bene�ts of both hierarchical and
semantic �le systems, and allow users to choose
among their features at any time?

We want to allow the use of the �le system as a
regular traditional hierarchical �le system with
no need to change anything. The added fea-
tures of a content-based access (CBA) should
be optional under the control of the user. They
can cover the whole �le system, any part of it, or
none at all. They can be discarded and added at
any time. Consequently, we base our design on
a hierarchical �le system and add content-based
access, rather than extend a given content-based
mechanism [12].

The main contribution of this paper is to show

that combining name and content-based access
is possible and that it can be implemented e�-
ciently and reasonably cleanly. Our main goal is
convenient and intuitive integration of informa-
tion, without tying ourselves into any one special
model. We maintain the full power of hierarchi-
cal �le systems, allow users to automatically or
manually modify and re�ne query results, pre-
serve consistency of results even under manual
changes, and provide integrated exible access
to remote �le systems or query systems.

The paper is organized as follows. In section 2
we introduce our new �le system, HAC, which
stands for Hierarchy And Content. We dis-
cuss the major design problems, and suggest so-
lutions and tradeo�s. Section 3 discusses how
HAC connects to remote �le systems and query
systems through our notion of semantic mount

points. Section 4 describes the implementation
of HAC and gives performance measures, and
section 5 discusses related work. A lot more
work is needed to make such a system a main-
stream general-purpose �le system. We believe
that this paper makes a signi�cant step towards
this goal.

2 The Design of the HAC

File System

2.1 A Running Example

To describe the design of HAC we will use one
running example. Suppose that the user is work-
ing on a project involving the use of �ngerprints
(as one of the authors had). Information about
the project may be found in email with its par-
ticipants, in notes, articles, source code �les, etc.
Typically each of these will be stored in a dif-
ferent place, possibly on a di�erent computer
(e.g, a laptop or a network �le server). The
user may also have relevant information from
previous projects or from other sources which
the user may not even remember. Furthermore,
important information can be obtained through
a search of remote facilities. HAC allows to com-
bine all relevant material in one semantic direc-
tory; let's call it �ngerprint. We'll see how to

build it, maintain it, and use it later on.

2.2 Queries, Query-Results and

Semantic Directories

Current and suggested �le systems that provide
query support treat the \name space" associated
with the query-based access to �les as logically
di�erent from the name space associated with
path name-based access. This makes it very dif-
�cult (if not impossible) to o�er both forms of
naming within the same system. For example,
it is not possible to create new �les within the
virtual directories of SFS [7], and it is not possi-
ble to combine views of Nebula with directories
in the \underlying" �le system [5]. The Multi-

structured Naming system [12] comes close. It
allows users to specify certain relationships be-
tween queries (or \labels") so that users can or-
ganize queries and their results in a hierarchy.
(Unlike SFS, if two queries in this system are
related to each other in a hierarchy, their query-
results do not necessarily have to be related in
any way.) However, they still do not have the
freedom to group �les of their choice together
within a label: they must also think of a query
that matches the contents of exactly these �les
(and no others), and associate the query with
this label.

Our approach to this problem is radically dif-
ferent: instead of starting with a query-based
naming system and imposing a hierarchy or
other relationships on queries, we start with a
hierarchical naming system and extend it to sup-
port query (content) based naming. We show
that this approach has many advantages: it
gives users a lot of exibility and power, and
at the same time it makes the system easy and
intuitive to use.

The �rst step is to map queries and their re-
sults onto �le system abstractions. For obvious
reasons, we decided to map queries into directo-
ries in the HAC �le system. We call such direc-
tories semantic directories. When users create
a new semantic directory, they specify both its
path name and its query. HAC then creates a
new directory, associates it with the query, and
contacts the CBA mechanism to evaluate the

query. In the new directory, HAC automatically
creates new symbolic links to all �les that sat-
isfy the query. These symbolic links can co-exist
with other information in the semantic directory,
including other symbolic links or other regular
�les. The symbolic links can also point to �les in
other semantic directories in the �le system, or
even to remote �le systems. HAC also provides a
mechanism by which the user can easily extract
the results of the query from these �les. Seman-
tic directories provide the abstraction and utility
of virtual directories, but in HAC they are also
regular hierarchical directories for all purposes.
Users can add �les to them, modify them, run
applications from them, and so on.

HAC allows both ordinary syntactic directories
to co-exist in the same �le system. Directories
(whether semantic or syntactic) can be accessed
by specifying path names, and they can con-
tain �les, sub-directories, symbolic links, etc., as
usual. Semantic directories contain additional
information that helps HAC to maintain them
and keep them consistent with whatever the user
is doing. The consistency problem is a new non-
trivial problem that we discuss next.

2.3 Scope of Queries and Scope

Consistency

In HAC, every query { and its corresponding
semantic directory { has a scope which is the
set of �les over which the query is evaluated. A
query does not return symbolic links to �les that
are outside its scope even if those �les match the
query. The scope of a query depends on the par-
ent of the corresponding semantic directory. If
..../parent/child is a path such that both par-
ent and child are semantic directories, then the
scope of child is de�ned to be the existing set of
symbolic links in parent. This set of symbolic
links is also called the scope "provided" by par-
ent. The scope provided by the root of a HAC
�le system is de�ned to be all the �les in that
�le system. A change in the scope provided by
parent, for example, will also change the scope
of child. In this case, we say that child depends

on parent. Note that all directories in the �le
system directly or indirectly depend on the root.

By these de�nitions, the scope provided by a
newly created child semantic directory is always
a re�nement of the scope provided by its parent
[5, 7]. When a user creates a new semantic sub-
directory, HAC guarantees that the new set of
symbolic links in that directory is always a sub-
set of the set of the existing symbolic links in its
parent. In other words, HAC treats the sets of
symbolic links in di�erent semantic directories
as separate entities whose contents depend on
how these directories are related to each other
hierarchically. Hence, semantic directories allow
users to organize both �les and results of queries
in a hierarchical fashion.

Semantic directories also allow users to tune
the results of queries according to their personal
tastes. HAC interprets the existing set of sym-
bolic links in a semantic directory as its exist-
ing (\current") query result. Since each query-
result is a separate entity, users can modify the
result of any query by (i) deleting some irrel-
evant links returned by the query, (ii) creat-
ing new links to �les that have related infor-
mation, but were missed by the query, or (iii)
adding regular �les to that directory. In our
�ngerprint example, users may want to add a
set of C programs implementing �ngerprints,
email messages from a certain user or about a
certain topic, and/or image �les to the �nger-
print semantic directory, even though these �les
do not match �ngerprint's query. They may
also decide that news stories about a certain
crime should be removed from �ngerprint even
though they do match the query. They can do
that by making the query more complex (e.g.,
"�ngerprint AND NOT murder"), but often it
is easier to remove a few �les manually. Users
can also build email semantic directories, allow-
ing a message to be in more than one directory
(e.g., by sender, receipient, topic, and/or a com-
bination).

No query system is perfect, and currently most
are not even close. HAC gives users more power
to customize and adjust. It allows users to re-
�ne queries by using either the query language or
the �le system directly. Both methods are valid
and being able to apply both at any time makes
HAC very powerful and intuitive. But there's a
major problem with this freedom. Since HAC

allows users to edit the results of queries, it is
now possible for them to create a hierarchy of
semantic directories that makes sense to them
intuitively, but still violates the scope restric-
tions discussed earlier. We call this the Scope

Consistency Problem.

As far as we know, no existing �le system has
addressed the scope consistency problem. The
Semantic File System [7] and Nebula [5] do not
allow users to modify results of queries without
modifying the query or the �les in the �le sys-
tem. Prospero [9] allows users complete free-
dom to de�ne and manipulate queries (or \�l-
ters") and their results, but does not talk about
enforcing any kind of consistency when results
of queries are arranged in a hierarchy (or a
graph). Search systems like Harvest [4] and var-
ious WWW search engines are geared to bring
search results to users, but not to organize re-
sults in any meaningful way.

Our approach to this problem in one of the
main contributions of this paper. We now de-
scribe our solution in detail and show that it
gives rise to a powerful new paradigm. To begin
with, we classify symbolic links in a semantic
directory in three ways (this distinction, for the
most part, is hidden from users):

Permanent symbolic links: links that were
explicitly added by the user to the direc-
tory.

Transient symbolic links: links that were
obtained by evaluating a query.

Prohibited symbolic links: links
(whether transient or permanent) that were
once present in the directory but at some
point were explicitly deleted from it by the
user. HAC will ensure that these links will
not be implicitly added later without a di-
rect action by the user.

Given a semantic directory sd, which is not the
root of a HAC �le system, we de�ne the scope

restriction on the set of symbolic links in sd as
the following invariant:

1. The set of transient symbolic links in sd is

always a subset of the scope provided by its

parent parent, and

2. sd should have transient symbolic links to

all the �les in the scope provided by parent

that satisfy sd's query, except for links that

are explicitly prohibited in sd.

Changes to sd's scope can lead to a breakup
of these invariants, a situation we call scope-
inconsistency. This can happen, for example,
whenever

1. a user modi�es the set of symbolic links in
sd's parent parent,

2. a user moves sd toa di�erent part of the �le
system,

3. there is a change in the scope of parent, or

4. a user changes the query of sd after he/she
creates it. (HAC allows users to access and
modify the query associated with a seman-
tic directory.)

A major part of HAC is an algorithm to main-
tain scope consistency, which is briey described
below. First, HAC uses the CBA mechanism
to re-evaluate sd's query on all the �les in its
current scope. Then, from this result, HAC dis-
cards the links that occur in sd's set of perma-
nent and prohibited symbolic links. The links
that remain are the new transient symbolic links
of sd. Note that HAC does not add a prohibited
symbolic link to the above result even if that link
points to a �le that is in sd's scope and matches
its query. Similarly, HAC does not delete a per-
manent symbolic link from sd even if that link
points to a �le that is no longer in sd's scope or
does not match its query. Also note that HAC
re-computes only the set of transient symbolic
links of sd | HAC does not change the set of
permanent or prohibited symbolic links associ-
ated with sd 1. When the algorithmmodi�es the
set of transient symbolic links in sd, it changes

1HAC has special API routines to directly modify

the set of permanent and prohibited symbolic links in

semantic directories. Sophisticated users can use these

routines to control the behavior of the scope consistency

algorithm.

the scope provided by sd. Hence, the algorithm
will also re-evaluate the queries of all the di-
rectories which directly or indirectly depend on
sd. These are the descendents of sd and are
present in the sub-tree rooted at sd. Any top-
down traversal of this sub-tree (e.g., a breadth-
�rst search) gives us the order in which we must
re-evaluate the queries.

We decided to de�ne the set of transient sym-
bolic links in sd to be a re�nement of the scope
provided by its parent parent. We rejected the
idea of de�ning this set to be, say, the union
of the transient symbolic links in sd and the
scope provided by all its children. (In this case,
sd will depend on its children, not the other
way round.) If we use this de�nition, users can
never add a symbolic link sl to a child of sd
such that sl does not automatically belong to
the scope provided by sd. In other words, we
cannot take care of the possibility that some in-
formation cannot be classi�ed in a strict hier-
archical fashion. This is unacceptable. We also
rejected the idea of de�ning the set of transient
symbolic links in sd to be the union of the tran-
sient symbolic links in sd and all its children,
since in that case, changes to the set of tran-
sient links in a child semantic directory can ef-
fect the set of transient links in a parent. This
is counter-intuitive since in hierarchical �le sys-
tems, changes to the contents of a subdirectory
do not e�ect the contents of its parent in any
way.

To conclude: we allow users to edit and �ne-
tune the results of queries without modifying the
query since we feel that the query of a semantic
directory is not as important as the set of sym-
bolic links in it. The query is just a quick �rst
step to obtain more or less the information users
are looking for. On the other hand, the set of
symbolic links in a semantic directory may be
the result of many (possibly time-consuming)
browsing and editing steps. Hence, HAC does
not modify this set unless it is explicitly asked
to do so. Moreover, with this design, HAC is
responsible only for the transient symbolic links
in the �le system, while users are responsible for
all the permanent and prohibited symbolic links.
HAC gives advice and help | users decide how
to organize their �le system.

2.4 Data Consistency

Users can create, remove, rename (move), or
modify any data in the �le system at will. There
is therefore a possibility that the set of transient
symbolic links in a semantic directory sd may
not represent the current result of evaluating its
query. This gives rise to a data-inconsistency

problem. Data inconsistencies manifest them-
selves in the following ways: (i) A query result
can contain an invalid link to a �le that no longer
exists, has been renamed, or has been modi�ed
so that it no longer satis�es the query, (ii) A
query result may not contain a link to a new or
modi�ed �le when it actually should. For exam-
ple, new email that match the �ngerprint query
should be added to that semantic directory, and
at the same time if a certain matching �le has
been moved to an area outside the scope of the
query (e.g., it was deemed old and moved to
archive), it should be removed from the seman-
tic directory.

Though HAC removes scope-inconsistencies
from the �le system as soon as possible, HAC
does not remove data-inconsistencies instantly.
We could have adopted such a policy, similar to
databases, but we believe that �le systems typ-
ically do not require it, and the extra cost (de-
termining when �les have changed, re-indexing
�les automatically, etc.) will not warrant it. At
present, HAC invokes the CBA mechanism to
reindex the �le system periodically (say, once a
day or once an hour), determined by the user.
At reindexing time, all scope and data consis-
tencies are settled. HAC also allows users to
initiate reindexing at any time, and for any part
of the �le system. So, for example, users can
decide to update certain semantic directories as
soon as new mail comes in, but not when an ap-
plication modi�es some �les in the �le system.
In future, we plan to explore more sophisticated
mechanisms to enforce data consistency in �le
systems.

2.5 Using Existing Results in New

Queries

In addition to dependencies based on the hierar-
chy, HAC allow users to de�ne arbitrary depen-
dencies by adding directories names to queries.
This gives users the power to combine query-
language expressions (searching) with edited
query results (browsing) in a very powerful way
by specifying path names of existing directories
(syntactic or semantic) as part of their queries.
If the query of a semantic directory new con-
tains the name of another semantic directory
old, then we say that new depends on old, or
new refers to old. Notice that dependencies
are transitive. That is, if old depends on an-

cient, then new depends on ancient. When
the CBA mechanism evaluates such a query, it
can use HAC's API to determine which parts of
the query contain path names of directories, and
which parts contain search expressions. When
it encounters the path name of a directory, it
can use HAC's API to obtain the existing query-
result (set of \pointers" to �les) stored in that
directory. Then, the CBA mechanism can oper-
ate on this set of pointers exactly as if it is the
result of evaluating a search expression. In this
way, users can easily augment the search capa-
bilities of the CBA mechanism with their ability
to customize information to their tastes.

One complication that arises here is that path-
names can change when users rename directo-
ries. In the above example, if old is renamed as
old0, new's query is inconsistent since it refers
to the old path name old. To solve this problem,
HACmaintains a globalmapping of unique iden-
ti�ers to directory path-names, and stores only
the identifers in actual queries. So, instead of
updating the queries of all directories like new
that depend on old, HAC simply updates the
global map when old is renamed as old0.

When directory names are parts of queries,
scope consistency becomes harder and trickier.
For example, we must re-evaluate new's query
whenever the scope provided by old changes,
even if new is not in the subtree rooted at old.
We start with the de�nition of the dependency

graph { it is the directed graph of dependencies
between semantic directories. We do not allow

cycles to exist in this graph for obvious reasons.
Updating the query-results cannot be done in an
arbitrary order. We must use the order obtained
from a topological sort of the dependency graph.
There is always a valid topological sort since this
is a Directed Acyclic Graph (DAG). The root
of a HAC �le system always occurs �rst in this
order since all directories depend on it and the
root does not depend on any other directory (the
root does not have a query associated with it).
Also note that there is no need for HAC to ex-
plicitly restrict the query result of a child di-
rectory to the scope provided by its parent. If
users want this behavior, all they need to do is
modify the query of the child directory to be:
\<old query> AND <path-name of parent>"
| HAC takes care of everything else. In fact,
underneath the covers, this is exactly how we im-
plement parent-child dependencies in the strict
hierarchical scope consistency algorithm above.
HAC gives users the freedom to chose whether
they want strict hierarchical dependencies, DAG
based dependencies, or both, interleaved arbi-
trarily.

Since we allow explicit scope consistency def-
initions along with implicit hierarchical scope
consistency, one may argue that there is no need
for the latter; we could leave it up to the user
to specify the parent of a directory in its query.
However, we feel that query-re�nement based on
path names is important for two reasons. First,
tree-based classi�cation of information is intu-
itive, and is su�cient for many real world sce-
narios. And second, most users may �nd tree-
based classi�cation simpler to understand be-
cause they do not have to worry about two struc-
tures | one based on path-names and one based
on the dependency graph | at the same time.

3 Accessing Remote File

and Query Systems

Another major bene�t of HAC is its ability to
cleanly access other HAC �le systems, and other
CBA mechanisms (possibly remote). In this sec-
tion, we shall use name space to denote either
a traditional �le system (which provides path

name-based access), a CBA mechanism, or a
HAC �le system. Connecting di�erent �le sys-
tems across a distributed system can be done
with mount points [9, 10]. Mount points de�ne
new name spaces within which path names can
be resolved. They allow di�erent �le systems to
share certain directories so that they can access
each other. HAC supports such mount points,
which we call syntactic mount points. But we
want to do more. We want to connect "seman-
tically" so that we can evaluate queries against
di�erent name spaces, even if these name spaces
do not allow us to organize information hier-
archically (e.g., commercial search engines on
the web). We want to allow users to use data
from anywhere, create semantic directories any-
where, and in general treat the remote �le sys-
tems and CBA mechanisms as if they were lo-
cal. To achieve such rich, transparent connec-
tion, we must "decouple" the part of HAC that
provides path name based access from the part
that provides content based access, so that both
can be used independently of each other. This
is close to impossible to do if we restrict our-
selves to syntactic mount points. We therefore
introduced semantic mount points in HAC.

3.1 Semantic Mount Points

Let Remote be a remote �le or query sys-
tem. A semantic mount point s.Remote in a
HAC �le system Local connects queries within
Local to results from Remote. Speci�cally,
if the scope of a query within Local includes
s.Remote, then it imports all the results asked
within Remote with whatever query mecha-
nism is used there. s.Remote provides an inter-
face for content-based access to �les in Remote.
The power of a semantic mount point lies in the
fact that the semantic directories created in it
belong to the user's personal HAC �le system,
even though the symbolic links in these direc-
tories point to other (possibly remote) �le sys-
tems. This allows users to create their own per-
sonal content-based classi�cation of remote in-
formation. Furthermore, users can create physi-
cal �les, semantic and syntactic directories, sym-
bolic links, etc., as usual within semantic mount
points. For instance, the physical �les within

a semantic mount point are indexed by HAC,
and they can match queries of semantic direc-
tories created outside the subtree rooted at the
mount point. This level of integration of name
and content based access gives users a tremen-
dous amount of power { they can extract exactly
what they want and organize it in exactly the
way they like. Previous semantic �le systems,
such as SFS or Nebula, do not allow such rich
integration of query results and physical �les, se-
mantic directories and mount points like HAC.

3.2 Multiple Semantic Mount

Points

Just as it is possible to mount more than one �le
system on a syntactic mount point [10], it is also
possible to mount more than one name space
on a semantic mount point. HAC treats each
such name space as an independent entity. The
scope of queries asked within a multiple seman-
tic mount point is simply a union of the scope
provided by each mounted name space. Queries
are evaluated independently in each name space
and their results are treated as disjoint sets of
symbolic links. The only restriction is that all
name spaces mounted on a multiple semantic
mount point must be accessible via the same
query language. (Currently, HAC does not deal
with overlapping name spaces or data, i.e., it
does not resolve cases where two symbolic links
might actually point to the same remote �le, or
to similar �les.)

For example, suppose that we want to cover
Remote and Local at the same time. All we
need to do is create another semantic mount
point s.Local as a multiple semantic mount
point! There is no problem of cyclic reference
here, because s.Local is just an interface to a
CBA mechanism; it does not provide CBA on
its own.

Syntactic and semantic mount points can be
combined in various ways to share information
by both name and content. Getting back to
our �ngerprint example, we may have access
to a digital library with scienti�c articles. We
can add a semantic mount point associated with
a query for "�ngerprint" (or a more complex

query), thus ensuring that our knowledge of the
subject is up to date (at least with the library).
There will probably be other sources as well, and
we may need to form di�erent queries depend-
ing on the source. We may want to have syntac-
tic mount points to all these sources and search
there manually once in a while, but in addition
HAC allows a user to build remote semantic di-
rectories for each source (or one for all of them),
and have a better access to and better integra-
tion with this information. For example, one can
"remove" certain results of no interest, add com-
ments, add results from other places, etc. Other
users (e.g., coworkers on the same project) can
use syntactic mount points to browse through
one user's personal classi�cation (instead of do-
ing the searches themselves) and retrieve rele-
vant information. It is also possible to collect
the names, queries and query-results of many
semantic directories of many users in a central
database that itself can be indexed and searched.
Users can browse and search this database and
�nd others who have similar tastes as they have.
This may help them �nd what they are looking
for even more quickly. Finally, users can add
their favorite books, articles, memoirs, short-
cuts to other information, etc., to their personal
HAC �le systems, index and search them, and
export their �le systems as mini-digital libraries
to others. To conclude: semantic mount points
give us a powerful new way to access the seman-
tic aspect of information. They can be combined
with syntactic mount points to yield a rich set
of primitives for sharing information in a dis-
tributed system.

4 Implementation and Per-

formance

We implemented HAC on top of a UNIX �le sys-
tem (SunOS) using Glimpse as the default CBA
mechanism [8]. Our prototype contains about
25,000 lines of C code. It was implemented as a
dynamically linked library (DLL) which can be
accessed by all user-level applications. No kernel
modi�cations were used. This made the design
easier to experiment with, easier to port, and
easier to convince people to use it. The obvious

disadvantage is a penalty in performance com-
pared to a native UNIX �le system, but as we
will show, it is a small penalty. We start with a
brief overview of the implementation.

HAC allows users to de�ne their own personal
name spaces (i.e., a personal �le system). HAC
uses this name space to resolve the users' path
names and evaluate their queries. This name
space exists within a directory in the UNIX �le
system. HAC intercepts all �le system calls that
access this directory or its contents, and provides
a transparent interface to all applications. Well-
known �le system commands, such as cd, ls,

mkdir, mv, rm, etc., can be used to access and
manipulate objects in the �le system in the usual
way. HAC also provides additional commands
that manipulate queries and semantic directo-
ries. These are for the most part intuitive exten-
sions of regular �le system commands. For ex-
ample, smkdir creates a semantic directory, smv
modi�es the query of a directory and sreadln

retrieves it, scat accepts a symbolic link in a se-
mantic directory and returns the information in
the corresponding �le that matches the query of
the directory, smount de�nes new syntactic and
semantic mount points, and ssync re-evaluates
the queries of all the directories that directly or
indirectly depend on a given directory.

HAC interacts with UNIX using a well de�ned
API which assumes very little about the native
�le system | HAC can be used even on \at"
�le systems and �le systems that do not support
symbolic links. HAC interacts with Glimpse us-
ing another simple, well de�ned API. We believe
that this API is general enough to integrate any
CBA mechanism into HAC. Since HAC is a user-
level �le system, it does not contain any security
and access-control features of its own: it borrows
them from the underlying operating system.

We ran several experiments to determine the
overhead to extended �le system operations
compared with regular �le systems and/or reg-
ular glimpse queries. In the �rst experiment,
we measured the overhead when we used HAC
as a syntactic �le system like UNIX and ran
the Andrew Benchmark [11] on both systems.
The Andrew Benchmark has been used as a
standard to evaluate the performance of many

new �le systems. The benchmark has 5 phases:
(i)Makedir: constructs a destination directory
hierarchy that is identical to the source direc-
tory hierarchy, (ii)Copy: copies each �le in the
source hierarchy to the destination hierarchy,
(iii)Scan: recursively traverses the whole des-
tination hierarchy and examines the status of
every �le in the hierarchy without reading the
actual data in the �les, (iv)Read: reads every
byte of every �le in the destination hierarchy,
and (v)Make: compiles and links the �les in
the destination hierarchy. The results for HAC
are shown in tables 1 and 2 below:

From table 1, we see that phases 1 and 2
have the maximum overhead. This is because
in phase 1, when HAC creates a new directory,
it also creates and initializes (to \empty") the
data structures that store its query, its query-
result, and its set of permanent and prohibited
symbolic links. HAC keeps track of the name
of this directory in a global map so that it can
track changes to the structure of the �le sys-
tem. Finally, HAC creates a new (empty) node
for the directory in the dependency graph. (All
of these are stored in the disk and require ex-
tra I/O operations.) In phase 2, when HAC
creates a new �le, it also initializes the open
�le-descriptor and the attribute-cache for that
�le. (This is stored in UNIX shared memory

so that di�erent processes can access it.) This
helps to speed up Scan and Read operations on
that �le. Phases 3 and 4 have a medium over-
head. In phase 3, HAC accesses the attribute-
cache to retrieve the appropriate status infor-
mation, and in phase 4, HAC accesses and up-
dates the per-process �le-descriptor table to im-
plement the read-operation. Phase 5 has the
least overhead since it is computationally in-
tensive. On the whole, HAC is about 46 %
slower than UNIX. From table 2 HAC is only
slightly slower than the Jade [10] and Pseudo
[13] �le systems (both of which are user-level
�le systems like HAC). We also calculated the
space overhead to store HAC's data structures
(the extra information needed for each directory
mentioned above, along with a �xed amount of
book-keeping information). In the example we
used, HAC required 222 KB while UNIX needs
210 KB. This is about 5 % more. The average
amount of shared memory needed per process

File System Makedir Copy Scan Read Make Total
UNIX 2s 5s 5s 8s 19s 39s
HAC 4s 9s 8s 14s 22s 57s

Table 1: Results of Andrew Benchmark

File System % Slowdown
Jade FS 36
Pseudo FS 33-41
HAC FS 46

Table 2: Comparison with other File Systems

(including the attribute cache and the descriptor
table) is about 16KB. Both these overheads are
negligible. We believe that HAC's performance
is quite reasonable since unlike the other two
�le systems, HAC must also create and main-
tain data-structures that provide content-based
access to �les.

In the second experiment, we �rst used
Glimpse to index a database consisting of over
17000 �les that occupy about 150 MB. We ran
the indexing mechanism directly over UNIX to
get an estimate of the time Glimpse takes to in-
dex the database and the space needed to store
the index. We then indexed a di�erent copy of
the same database by using the HAC �le system
library instead. The results are shown in table
3. We see that HAC has a 27 % time overhead
and a 15 % space overhead: we believe that both
of these are reasonable.

In the second part of this experiment, we
used the smkdir command in HAC to create
a semantic directory with a query Q. We also
ran Glimpse through UNIX to search the above
database for the same query. We chose three
kinds of queries: (i) those that matched very few
�les, (ii) those that matched a lot of �les, and
(iii) those that matched an intermediate num-
ber of �les. (We believe that queries of type (i)
and (iii) are the most realistic | and the most
useful.) The results are shown in Table 4.

For queries that matched very few �les,
Glimpse running on UNIX is more than 4 times
as fast as HAC. This is because to interact with
the CBA mechanism in HAC, we must create a
semantic directory. We do not incur this over-

head when we run Glimpse on UNIX to search
�les. While this may seem like a large overhead,
in absolute terms it is very small. The overhead
of creating a semantic directory reduces as the
number of �les that match the query increases.
For queries that match an intermediate number
of �les, the overhead is about 15 %. For queries
that match a lot of �les, the overhead is only 2
%.

Regarding the space overhead, note that we
need to store, with each semantic directory, the
list of �les matching the query. Instead of stor-
ing actual �le names, which could add quite a
bit of space, we use a compact representation of
the list of all �le names. This is part of HAC's
API for the CBA mechanism. We currently use
bitmaps since it is simple to implement and has
speed advantages for Glimpse. The extra space
we need per semantic directory is therefore N/8
Bytes, where N is the number of indexed �les.
This comes out to be about 2 KB in this ex-
periment. We plan to improve this in future by
using better sparse-set representations, so that
it is possible to index a very large number of
�les.

5 Related Work

The �rst hierarchical �le system to provide both
name and content based access to �les was the
MIT Semantic File System (SFS) [7]. SFS in-
troduced the concept of a virtual directory. The
name of a virtual directory in SFS is a query,
and the contents are symbolic links to �les that

No. of �les 17154
Size of �les 149 Megabytes
Size of UNIX index 10 Megabytes
Size of HAC index 11.5 Megabytes
Time taken in UNIX 25 min
Time taken in HAC 31 min 48 sec

Table 3: Results of Indexing

No. of �les that matched 1 6556 98
Time taken in UNIX .45 sec 4 min 23 sec 7 sec
Time taken in HAC 2 sec 4 min 28 sec 8 sec

Table 4: Results of Searching

satisfy it. SFS assumes that queries are boolean
AND combinations of \attribute-value" pairs,
where an \attribute" is a typed �eld in the �le
system (e.g., \author:", \date:", etc.) and the
\value" is a value this �eld can have (e.g., \John
Doe", \3/12/97"). SFS always interprets the /
path name separator between virtual directories
as a conjunction operation. This feature can be
used for query re�nement.

SFS has many other novel features: (i) it
caches the contents of di�erent virtual directo-
ries to save query processing costs, (ii) it has spe-
cial transducer programs that extract attributes
and values from �les in the �le system to help
with the indexing process (it also allows users
to de�ne their own transducers if necessary),
and (iii) it has mechanisms to keep queries and
their results consistent when there are changes
to the �les in the physical �le system. How-
ever, SFS has some disadvantages. First, it as-
sumes that queries are always conjunctions of
attribute-value pairs, which makes it di�cult to
integrate arbitrary CBA mechanisms into the
SFS. Second, virtual directories do not reside in
the physical �le system. Hence, users must use
virtual directories to organize results of queries,
but use real directories in the underlying �le sys-
tem to organize �les. Third, SFS does not allow
users to customize the results of queries accord-
ing to their tastes without modifying queries or
�les in the �le system. And �nally, SFS does not
provide a mechanism by which users can share
their content-based classi�cation of information
with each other.

Other �le systems follow in the footsteps
of SFS. The Nebula File System [5] also as-
sumes that �les can be viewed as collections of
attribute-value tuples. Queries in Nebula, how-
ever, can be arbitrary search expressions, not
just boolean ANDs as in SFS. Nebula replaces
the traditional idea of a �xed directory hierarchy
by dynamic views of this hierarchy that can clas-
sify �les in the underlying �le system. A view is
similar to a virtual directory: it has a query asso-
ciated with it and contains pointers to �les that
satisfy the query. However, every view also has
a \scope" which is de�ned to be a set of views.
When Nebula evaluates the query of a view, it
searches only those �les which are referred to by
the views in its scope. Nebula allows users to
organize views in a DAG instead of a tree like
SFS. Users can also alter the structure of this
DAG by changing the scopes of views without
changing their queries. This allows users to cus-
tomize the contents of their views. Nebula has
means to keep the contents of views consistent
when there are changes to the data in the �le
system. It also allows users to share their views
with each other. Though Nebula has many ad-
vantages, note that views are not a part of the
underlying physical �le system and cannot be
used to organize data. Also note that Nebula
does not allow users to group pointers to ar-
bitrary �les together and put them in a view:
the �les must satisfy the query associated with
the view. Hence, users cannot modify results
of queries to customize them according to their
tastes.

Another example is the Multistructured nam-
ing system [12]. It tries to blend hierarchical
or graph structured naming (e.g., the UNIX �le
system) with at attribute or set based naming
(e.g., SFS). It attempts to combine the \sense of
place" present in graph-based naming with the
ability of set-based naming to retrieve �les us-
ing any combination of information about them.
In this system, every query has a label, which is
simply an alias for the query. Users can then
impose \ancestor-descendent" (and other) rela-
tionships on labels, and selectively loosen these
relationships, so that users can name �les by
specifying (i) either path names that contain la-
bels, or (ii) a list of queries the �les satisfy, or
both, in arbitrary order. Multistructured nam-
ing allows users to access each others' personal
name spaces and share information. Note, how-
ever, that it is not possible to group arbitrary
�les together and assign them a label. Like views
in Nebula, a label must always have a query as-
sociated with it and can refer to only those �les
that satisfy this query. Hence, labels are not as
powerful as directories in a regular �le system.
An important limitation of the above systems
is that they do not provide a way to decouple
name based access from content based access.
This makes it di�cult for a user to gather infor-
mation from di�erent CBA mechanisms (with
possibly di�erent query languages), and create
a personal classi�cation of this information us-
ing a single �le system.

The Prospero �le system [9] uses another ap-
proach: it allows each user to create his/her own
personal graph-structured name space (called a
virtual �le system) that can refer to �les in one
or more existing graph-structured physical �le
systems. Users can also access the name spaces
of other users. In both virtual and physical �le
systems, \nodes" are directories and contain �les
or pointers to other (virtual or physical) �les,
while \links" are used to connect nodes with
each other. The novelty of Prospero is that users
can associate �lters with links in their virtual �le
systems. A Filter is an arbitrary program that
can alter users' perception of the contents of the
directory (node) the link points to (this is called
the target directory of that link). The input of
the �lter is the target directory and the �les and
links it contains, while the output is a set of links

that point to new directories whose contents are
derived from the contents of the target directory.
This output is called a view of the target direc-
tory. Note that since a �lter is an arbitrary pro-
gram, it can access not only its input, but other
virtual and physical directories as well. Prospero
also allows users to compose the �lter associated
with one link with the �lter associated with an-
other link, so that they can specify the view of
the directory pointed to by the �rst link as a
function of the view of the directory pointed to
by the second link. Users can execute �lters and
derive views that classify information according
to their personal tastes. Prospero's �lters, there-
fore, are powerful tools for information retrieval.
Their only drawback is that �lters must be writ-
ten and executed by the user. Prospero does
not ensure that the views of target directories
are up-to-date when there are changes to (i) the
contents of these directories, (ii) the �lters asso-
ciated with links to these directories, or (iii) the
�lters of other links that are composed with the
�lters mentioned in (ii). That is, Prospero does
not o�er consistency guarantees of any kind |
users must execute the appropriate �lters at the
appropriate time to ensure consistency.

The Synopsis File System ([2], [3]) provides a
secure access mechanism to retrieve and manip-
ulate large amounts of data within a wide-area
�le system. It hides the heterogeneity of data
behind a logical interface to information based
on typed synopses. Each synopsis is an object

that encapsulates information about a single �le
in the form of attributes indexed for fast search
and retrieval. The extensible type system al-
lows users to de�ne methods on each synopsis
for customized display, access and manipulation
of the synopsis content and the associated �le.
Since a synopsis is an object, its attributes and
methods can also be inherited (composed) from
other those of other synopses. A collection of
synopses can be combined into a digest, that
provides topic-based searches. Synopses and di-
gests together can make content based access
over very large heterogenous �le systems more
meaningful. Together, they can form the basis
for locating and organizing information.

Like Nebula, the Synopsis File System intro-
duces new abstractions to encapsulate informa-

tion based on content. And like Prospero, it
allows users to de�ne how they want to organize
and manipulate this information. However, it
does not de�ne how a user's hierarchical organi-
zation of information is kept consistent when the
structure of the hierarchy changes (e.g., what
happens if you interchange child and parent syn-
opses in the synopsis hierarchy). That is, consis-
tency criteria are speci�c to each synopsis object
{ not to the Synopsis File System as a whole.
HAC, on the other hand, de�nes and enforces a
"global" consistency criteria based on the hierar-
chy, and fully integrates path-name and content-
based access in a �le system. Though their basic
approaches are di�erent, we believe that HAC
and the Synopsis File System can be used in
conjunction to yield a very powerful tool for in-
formation retrieval.

There are several other systems that address
related issues [9, 4, 6]. In general, systems that
are very exible and powerful like Prospero do
not have a consistency model, and systems that
are intuitive and simple like the SFS o�er con-
sistency guarantees but are not as powerful and
do not allow users to organize the information
retrieved by name and content using the same
�le system. We believe that the HAC �le system
meets both these needs.

6 Conclusions

We have shown in this paper that it is possi-
ble, with reasonable overhead, to combine name-
based and content-based access to �les at the
same time, while preserving the main bene�ts of
both methods. We identi�ed several scope and
consistency problems, suggested solutions, and
described an implementation. This is obviously
not the last word on this topic. More work needs
to be done to convince people to add a major
paradigm to their daily arsenal of tools. A ma-
jor missing piece is usability testing, which we
have not performed to date. Only when a work-
ing version is widely distributed and used can
we determine how bene�cial is this approach.

The implementation described in the paper
was geared towards personal �le systems, and

as is it is not scalable to very large �le systems
(e.g., Internet wide). This is true for many exist-
ing �le systems. In particular, our decision not
to modify anything at the kernel level (so the
system will be easier to distribute) adds quite a
bit to the overhead. Implementing our ideas in
the context of a large scale Intranet, for example,
will be a major next step. We believe it is pos-
sible and very desirable. The current situation
of server-based search facilities and user-based
�le systems with almost no connection between
them can be and should be improved.

References

[1] T. Berners-Lee, R. Calliau, and B. Poller-
mann. World-wide web: The information
universe. Electronic Networking: Research,
Applications, and Policy, 2:52{58, Spring
1992.

[2] M. Bowman and R. John, "The Synopsis
File System: FromFiles to File Objects," In
Workshop on Distributed Object and Mobile

Code, Boston, MA, June, 1996.

[3] Mic Bowman, "Managing Diversity in
Wide-Area File Systems". Second IEEE

Metadata Conference, Silver Spring, Mary-
land. September 1997.

[4] M. Bowman, P. Danzig, D. Hardy, U. Man-
ber, and M. Schwartz, The Harvest infor-
mation discovery and access system, Com-

puter Networks and ISDN Systems, 28

(1995), pp. 119-125.

[5] M. Bowman, Chanda Dharap, Mrinal
Baruah, B. Camargo, and Sunil Potti, A
�le system for information management,
In Proc. Conf. on Intelligent Information

Management Systems, Washington, DC,
June 1994.

[6] D. Cutting, D. Karger, and O. Pedersen.
Constant Interaction-time Scatter/Gather
Browsing of Very Large Document Collec-
tions. In Proc. 16th Annual ACM SIGIR

Conf. on Research and Development in In-

formation Retrieval, pages 126{134, 1993.

[7] D. Gi�ord, P. Jouvelot, M. Sheldon, and
Jr J. O'Toole. Semantic �le systems. In
Proc. 13th ACM Symposium on Operating

Systems Principles, Paci�c Grove, CA (Oc-
tober 1991), pp. 16-25.

[8] U. Manber and S. Wu. Glimpse: A tool
to search through entire �le systems. In
Usenix Winter 1994 Technical Conference,
San Francisco (January 1994), pp. 23-32.

[9] B. Neumann. The Prospero �le system: A
global �le system based on the virtual sys-
tem model. In Proc. Usenix Workshop on

File Systems, May 1992.

[10] H. Rao and L. Peterson. Accessing �les
in an internet: The Jade �le system.
IEEE Transactions on Software Engineer-

ing, 19(6):613{624, June 1993.

[11] M. Satyanarayanan Scalable, secure, and
highly available distributed �le access.
IEEE Computer, 23(5):9-21, May 1990.

[12] S. Sechrest and M. McClennen. Blend-
ing hierarchical and attribute-based �le
naming. In Proc. 12th Intl. Conf. on

Distributed Computer Systems, Yokohama,
Japan, June 1992.

[13] B. Welch and J. Ousterhout. Pseudo-
File-Systems. Technical Report UCB/CSD
89/499, University of California, Berkeley,
CA 1989.

