
Page ‹#›

Advanced Programming
Handout 9

Qualified Types
(SOE Chapter 12)

Motivation
 What should the principal type of (+) be?

 Int -> Int -> Int -- too specific
 a -> a -> a -- too general

 It seems like we need something “in between”, that
restricts “a” to be from the set of all number types, say
Num = {Int, Integer, Float, Double, etc.}.

 The type a -> a -> a
is really shorthand for (a) a -> a -> a

 Qualified types generalize this by qualifying the type
variable, as in (a Num) a -> a -> a,
which in Haskell we write as Num a => a -> a -> a

Type Classes

 “Num” in the previous example is called a type class,
and should not be confused with a type constructor or
a value constructor.

 “Num T” should be read “T is a member of (or an
instance of) the type class Num”.

 Haskell’s type classes are one of its most innovative
features.

 This capability is also called “overloading”, because
one function name is used for potentially very different
purposes.

 There are many pre-defined type classes, but you can
also define your own.

Example: Equality

 Like addition, equality is not defined on all types (how
would we test the equality of two functions, for
example?).

 So the equality operator (==) in Haskell has type
Eq a => a -> a -> Bool. For example:

42 == 42 True
‘a’ == ‘a’ True
‘a’ == 42 << type error! >>

 (types don’t match)
(+1) == (\x->x+1) << type error! >>

 ((->) is not an instance of Eq)
 Note: the type errors occur at compile time!

Equality, cont’d
 Eq is defined by this type class declaration:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

 The last two lines are default methods for the operators
defined to be in this class.

 A type is made an instance of a class by an instance
declaration. For example:

instance Eq Int where
 x == y = intEq x y -- primitive equality for Ints
instance Eq Float where
 x == y = floatEq x y -- primitive equality for Floats

Equality, cont’d

 User-defined data types can also be made instances of Eq. For
example:
 data Tree a = Leaf a | Branch (Tree a) (Tree a)
 instance Eq (Tree a) where
 Leaf a1 == Leaf a2 = a1 == a2
 Branch l1 r1 == Branch l2 r2 = l1==l2 && r1==r2
 _ == _ = False

 But something is strange here: is “a1 == a2” on the right-hand
side correct? How do we know that equality is defined on the
type “a”???

Page ‹#›

Equality, cont’d

 User-defined data types can also be made instances of Eq. For
example:
 data Tree a = Leaf a | Branch (Tree a) (Tree a)
 instance Eq a => Eq (Tree a) where
 Leaf a1 == Leaf a2 = a1 == a2
 Branch l1 r1 == Branch l2 r2 = l1==l2 && r1==r2
 _ == _ = False

 But something is strange here: is “a1 == a2” on the right-hand
side correct? How do we know that equality is defined on the
type “a”???

 Answer: Add a constraint that requires a to be an equality type.

Constraints / Contexts are
Propagated

 Consider this function:
x `elem` [] = False
x `elem` (y:ys) = x==y || x `elem` ys

 Note the use of (==) on the right-hand side of the
second equation. So the principal type for elem is:

elem :: Eq a => a -> [a] -> Bool

 This is inferred automatically by Haskell, but, as
always, it is recommended that you provide your own
type signature for all functions.

Classes for Regions

 Useful slogan:

 For a simple example, recall from Chapter 8:
containsS :: Shape -> Point -> Bool
containsR :: Region -> Point -> Bool

 These are similar ops over different structures. So:
class PC t where

contains :: t -> Point -> Bool
instance PC Shape where

contains = containsS
instance PC Region where

contains = containsR

“polymorphism captures similar structure over different values,
while type classes capture similar operations over different
structures.”

Numeric Classes

 Haskell’s numeric types are embedded in a very rich,
hierarchical set of type classes.

 For example, the Num class is defined by:
class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

 ...where Show is a type class whose main operator is
show :: Show a => a -> String

 See the Numeric Class Hierarchy in the Haskell
Report on the next slide.

Haskell’s Numeric
Class Hierarchy

Coercions
 Note this method in the class Num:

fromInteger :: Num a => Integer -> a
 Also, in the class Integral:

toInteger :: Integral a => a -> Integer

 This explains the definition of intToFloat:
intToFloat :: Int -> Float
intToFloat n = fromInteger (toInteger n)

 These generic coercion functions avoid a quadratic
blowup in the number of coercion functions.

 Also, every integer literal, say “42”, is really shorthand
for “fromInteger 42”, thus allowing that number to be
typed as any member of Num.

Page ‹#›

Derived Instances

 Instances of the following type classes may be
automatically derived:

Eq, Ord, Enum, Bounded, Ix, Read, and Show
 This is done by adding a deriving clause to the data

declaration. For example:
data Tree a = Leaf a | Branch (Tree a) (Tree a)

deriving (Show, Eq)

 This will automatically create an instance for
Show (Tree a) as well as one for Eq (Tree a) that is
precisely equivalent to the one we defined earlier.

Derived vs. User-Defined
 Suppose we define an implementation of

finite sets in terms of lists, like this:
data Set a = Set [a]

insert (Set s) x = Set (x:s)

member (Set s) x = elem x s

union (Set s) (Set t) = Set (s++t)

Derived vs. User-Defined
 We can automatically derive an equality

function just by adding “deriving Eq” to
the declaration.

data Set a = Set [a]
 deriving Eq

insert (Set s) x = Set (x:s)

member (Set s) x = elem x s

union (Set s) (Set t) = Set (s++t)

But is this really what we want??

Derived vs. User-Defined
 No!
 E.g.,

(Set [1,2,3]) == (Set [1,1,2,2,3,3]) False

A Better Way

data Set a = Set [a]

instance Eq a => Eq (Set a) where
 s == t = subset s t && subset t s

subset (Set ss) t = all (member t) ss

Reasoning About Type Classes
 Most type classes implicitly carry a set of laws.
 For example, the Eq class is expected to obey:

(a /= b) = not (a == b)
(a == b) && (b == c) (a == c)

 Similarly, for the Ord class:
a <= a
(a <= b) && (b <= c) (a <= c)
(a <= b) && (b <= a) (a == b)
(a /= b) (a < b) || (b < a)

 These laws capture the properties of an equivalence
class and a total order, respectively.

 Unfortunately, there is nothing in Haskell that enforces
the laws – its up to the programmer!

