
Page ‹#›

Advanced Programming
Handout 8

Drawing Regions
(SOE Chapter 10)

Pictures

 Drawing Pictures
 Pictures are composed of Regions (which are

composed of shapes)
 Pictures add color and layering
data Picture = Region Color Region
 | Picture `Over` Picture
 | EmptyPic
 deriving Show

Digression on Importing
 We need to use SOEGraphics for drawing things on the screen,

but SOEGraphics has its own Region datatype, leading to a name
clash when we try to import both SOEGraphics and our Region
module.

 We can work around this as follows:

 The effect of these declarations is that all the names from
SOEGraphics except Region can be used in unqualified form, and
we can say G.Region to refer to the one from SOEGraphics.

import SOEGraphics hiding (Region)
import qualified SOEGraphics as G (Region)

Recall the Region Datatype

data Region =
 Shape Shape -- primitive shape
 | Translate Vector Region -- translated region
 | Scale Vector Region -- scaled region
 | Complement Region -- inverse of a region
 | Region `Union` Region -- union of regions
 | Region `Intersect` Region -- intersection of regions
 | Empty

 How do we draw things like the intersection of two regions, or the
complement of a region? These are hard to do efficiently. Fortunately,
the G.Region interface uses lower-level support to do this for us.

G.Region

 The G.Region datatype
interfaces more directly to the
underlying hardware.
It is essentially a two-
dimensional array or “bit-
map”, storing a binary value
for each pixel in the window.

Efficient Bit-Map Operations

 There is efficient low-level support for combining bit-maps using
a variety of operators. For example, for union:

 Making these operations fast requires detailed control over data
layout in memory -- a job for a lower-level language. This part of
the SOEGraphics module is therefore just a “wrapper” for an
external library (probably written in C).

+ =

Page ‹#›

G.Region Interface

createRectangle :: Point -> Point -> IO G.Region
createEllipse :: Point -> Point -> IO G.Region
createPolygon :: [Point] -> IO G.Region

andRegion :: G.Region -> G.Region -> IO G.Region
orRegion :: G.Region -> G.Region -> IO G.Region
xorRegion :: G.Region -> G.Region -> IO G.Region
diffRegion :: G.Region -> G.Region -> IO G.Region
deleteRegion :: G.Region -> IO ()

drawRegion :: G.Region -> Graphic

These functions are defined in the SOEGraphics library module.

Why IO here?
Drawing G.Region

 To render things involving intersections and unions quickly, we
perform these calculations in a G.Region, then turn the G.Region
into a graphic object, and then use the machinery we have seen in
earlier chapters to display the object.

 drawRegionInWindow ::
 Window -> Color -> Region -> IO ()

 drawRegionInWindow w c r =
 drawInWindow w
 (withColor c (drawRegion (regionToGRegion r)))

 To finish this off, we still need to define regionToGRegion.
 But first let’s complete the big picture by writing the (straightforward)

function that uses drawRegionInWindow to draw Pictures.

Drawing Pictures

 Pictures combine multiple regions into one big picture. They provide
a mechanism for placing one sub-picture on top of another.

drawPic :: Window -> Picture -> IO ()

drawPic w (Region c r) = drawRegionInWindow w c r
drawPic w (p1 `Over` p2) = do drawPic w p2
 drawPic w p1
drawPic w EmptyPic = return ()

 Note that p2 is drawn before p1, since we want p1 to appear
“over” p2.

Now back to the code for rendering Regions as G.Regions...

Turning a Region
into a G.Region

Let’s first experiment with a simplified variant of the problem to illustrate
an efficiency issue...

data NewRegion = Rect Side Side instead of G.Region

regToNReg :: Region -> NewRegion
regToNReg (Shape (Rectangle sx sy))
 = Rect sx sy
regToNReg (Scale (x,y) r)
 = regToNReg (scaleReg (x,y) r)
 where scaleReg (x,y) (Shape (Rectangle sx sy))
 = Shape (Rectangle (x*sx) (y*sy))
 scaleReg (x,y) (Scale s r)
 = Scale s (scaleReg (x,y) r)

omitting cases for other
Region constructors

A Problem

 Consider

(Scale (x1,y1)
 (Scale (x2,y2)
 (Scale (x3,y3)
 ... (Shape (Rectangle sx sy))
 ...)))

 If the scaling is n levels deep, how many traversals does
regToNReg perform over the Region tree?

We’ve Seen This Before
 We have encountered this problem before in a different setting.

Recall the naive definition of reverse:
 reverse [] = []
 reverse (x:xs) = (reverse xs) ++ [x]

 How did we solve this? We used an extra accumulating
parameter:
 reverse xs = loop xs []
 where loop [] zs = zs
 loop (x:xs) zs = loop xs (x:zs)

 We can do the same thing for Regions.

where [] ++ zs = zs
 (y:ys) ++ zs = y : (ys ++ zs)

N.b .: A good compiler (like
GHC) reallywill imp lement
this function call as a jump!

Page ‹#›

Accumulating the Scaling Factor

regToNReg2 :: Region -> NewRegion
regToNReg2 r = rToNR (1,1) r
 where rToNR :: (Float,Float) -> Region -> NewRegion
 rToNR (x1,y1) (Shape (Rectangle sx sy))
 = Rect (x1*sx) (y1*sy)
 rToNR (x1,y1) (Scale (x2,y2) r)
 = rToNR (x1*x2,y1*y2) r

 To solve our original problem, repeat this for all the constructors of
Region (not just Shape and Scale) and use G.Region instead of
NewRegion. We also need to handle translation as well as scaling.

Final Version
regToGReg :: Vector -> Vector -> Region -> G.Region
regToGReg loc sca (Shape s)
 = shapeToGRegion loc sca s
regToGReg loc (sx,sy) (Scale (u,v) r)
 = regToGReg loc (sx*u, sy*v) r
regToGReg (lx,ly) (sx,sy) (Translate (u,v) r)
 = regToGReg (lx+u*sx, ly+v*sy) sca r
regToGReg loc sca Empty
 = createRectangle (0,0) (0,0)
regToGReg loc sca (r1 `Union` r2)
 = let gr1 = regToGReg loc sca r1
 gr2 = regToGReg loc sca r2
 in orRegion gr1 gr2

To finish, we need to write similar clauses for Intersect,
Complement etc. and define
 shapeToGRegion :: Vector -> Vector -> Shape -> G.Region

accumulated translation
accumulated scaling A Matter of Style

 While the function on the previous page does the job
correctly, there are several stylistic issues that could
make it more readable and understandable.

 For one thing, the style of defining a function by
patterns becomes cluttered when there are many
parameters (other than the one which has the patterns).

 For another, the pattern of explicitly allocating and
deallocating (bit-map) G.Region’s will be repeated in
cases for intersection and for complement, so we
should abstract it, and give it a name.

Abstracting Out a Common Pattern

primGReg loc sca r1 r2 op
 = let gr1 = regToGReg loc sca r1
 gr2 = regToGReg loc sca r2
 in op gr1 gr2

Definition by cases with a Case
Expression

regToGReg :: Vector -> Vector -> Region -> G.Region
regToGReg (loc@(lx,ly)) (sca@(sx,sy)) shape =
 case shape of
 Shape s -> shapeToGRegion loc sca s
 Translate (u,v) r -> regToGReg (lx+u*sx,ly+u*sy) sca r
 Scale (u,v) r -> regToGReg loc (sx*u, sy*v) r
 Empty -> createRectangle (0,0) (0,0)
 r1 `Union` r2 -> primGReg loc sca r1 r2 orRegion
 r1 `Intersect` r2 -> primGReg loc sca r1 r2 andRegion
 Complement r -> primGReg loc sca winRect r diffRegion

regionToGRegion :: Region -> G.Region
regionToGRegion r = regToGReg (0,0) (1,1) r

Pattern
renaming

A Region representing
the whole graphics
window

Drawing Pictures
draw :: Picture -> IO ()
draw p = runGraphics (
 do w <- openWindow "Region Test" (xWin,yWin)
 drawPic w p
 spaceClose w
)

Page ‹#›

A Better Definition
($) :: (a->b) -> a -> b
f ($) x = f x

draw :: Picture -> IO ()
draw p = runGraphics $
 do w <- openWindow "Region Test" (xWin,yWin)
 drawPic w p
 spaceClose w

In effect, we’ve introduced a second syntax for
application, with lower precedence than the standard one

Some Sample Regions

r1 = Shape (Rectangle 3 2)
r2 = Shape (Ellipse 1 1.5)
r3 = Shape (RtTriangle 3 2)
r4 = Shape (Polygon [(-2.5,2.5), (-3.0,0),
 (-1.7,-1.0),
 (-1.1,0.2), (-1.5,2.0)])

Sample Pictures
 reg = r3 `Union` -- RtTriangle
 (r1 `Intersect` -- Rectangle
 Complement r2 `Union` -- Ellipse
 r4) -- Polygon

pic1 = Region Cyan reg
Main1 = draw pic1

More Pictures
reg2 = let circle = Shape (Ellipse 0.5 0.5)
 square = Shape (Rectangle 1 1)
 in (Scale (2,2) circle)
 `Union` (Translate (2,1) square)
 `Union` (Translate (-2,0) square)
pic2 = Region Yellow reg2
main2 = draw pic2

Another Picture

pic3 = pic2 `Over` pic1
main3 = draw pic3

Separating Computation From
Action

oneCircle = Shape (Ellipse 1 1)
manyCircles = [Translate (x,0) oneCircle | x <- [0,2..]]
fiveCircles = foldr Union Empty (take 5 manyCircles)
pic4 = Region Magenta
 (Scale (0.25,0.25)
 fiveCircles)
main4 = draw pic4

Page ‹#›

Ordering Pictures

pictToList :: Picture -> [(Color,Region)]

pictToList EmptyPic = []
pictToList (Region c r) = [(c,r)]
pictToList (p1 `Over` p2)
 = pictToList p1 ++ pictToList p2

Lists the Regions in a Picture from top to bottom.
(Note that this is possible because Picture is a datatype

that can be analyzed. Would not work with, e.g., a
characteristic function representation.)

A Suggestive Analogy
pictToList EmptyPic = []
pictToList (Region c r) = [(c,r)]
pictToList (p1 `Over` p2) = pictToList p1 ++ pictToList p2

drawPic w (Region c r) = drawRegionInWindow w c r
drawPic w (p1 `Over` p2) = do drawPic w p2
 drawPic w p1
drawPic w EmptyPic = return ()

We’ll have (much) more
to say about this later...

Pictures that React

 Goal: Find the topmost Region in a Picture that “covers” the
position of the mouse when the left button is clicked.

 Implementation: Search the picture (represented as a list) for the
first Region that contains the mouse position.

 Then (just for fun) re-arrange the list, bringing that one to the top.

 adjust :: [(Color,Region)] -> Vertex ->
 (Maybe(Color,Region), [(Color,Region)])

 adjust [] p = (Nothing, [])
 adjust ((c,r):regs) p =
 if r `containsR` p
 then (Just (c,r), regs)
 else let (hit, rs) = adjust regs p
 in (hit, (c,r) : rs)

selected picture reordered list

Doing it Non-recursively
From the Prelude:
break:: (a -> Bool) -> [a] -> ([a],[a])

For example:
break even [1,3,5,4,7,6,12] ([1,3,5],[4,7,6,12])

So:
adjust2 regs p
 = case (break (\(_,r) -> r `containsR` p) regs)

 of
 (top,hit:rest) -> (Just hit, top++rest)
 (_,[]) -> (Nothing, regs)

Putting it all Together
loop :: Window -> [(Color,Region)] -> IO ()
loop w regs =
 do clearWindow w
 sequence [drawRegionInWindow w c r |

 (c,r) <- reverse regs]
 (x,y) <- getLBP w
 case (adjust regs (pixelToInch (x - xWin2),
 pixelToInch (yWin2 - y))) of
 (Nothing, _) -> closeWindow w
 (Just hit, newRegs) -> loop w (hit : newRegs)

draw2 :: Picture -> IO ()
draw2 pic = runGraphics $
 do w <- openWindow "Picture demo" (xWin,yWin)
 loop w (pictToList pic)

Try it Out

p1,p2,p3,p4 :: Picture
p1 = Region Magenta r1
p2 = Region Cyan r2
p3 = Region Green r3
p4 = Region Yellow r4

pic :: Picture
pic = foldl Over EmptyPic [p1,p2,p3,p4]
main = draw2 pic

Page ‹#›

A Matter of Style, 3
loop2 w regs
 = do clearWindow w
 sequence [drawRegionInWindow w c r |
 (c,r) <- reverse regs]
 (x,y) <- getLBP w
 let aux (_,r) = r `containsR`
 (pixelToInch (x-xWin2),
 pixelToInch (yWin2-y))
 case (break aux regs) of
 (_,[]) -> closeWindow w
 (top,hit:bot) -> loop w (hit : (top++bot))

draw3 pic = runGraphics $
 do w <- openWindow "Picture demo" (xWin,yWin)
 loop2 w (pictToList pic)

Extra slides...
Implementing
ShapeToGRegion

shapeToGRegion
 :: Vector -> Vector -> Shape -> IO G.Region
shapeToGRegion (lx,ly) (sx,sy) (Rectangle s1 s2)
 = createRectangle (trans(-s1/2,-s2/2)) (trans (s1/2,s2/2))
 where trans (x,y) = (xWin2 + inchToPixel (lx+x*sx),
 yWin2 - inchToPixel (ly+y*sy))

(
xWin2,
 yWin2)

(xWin,
 yWin)

s1

s2s1/
2

S2/2

The Ellipse Case
shapeToGRegion (lx,ly) (sx,sy) (Ellipse r1 r2)
 = createEllipse (trans (-r1,-r2)) (trans (r1, r2))
 where trans (x,y) =
 (xWin2 + inchToPixel (lx+x*sx),
 yWin2 - inchToPixel (ly+y*sy))

r1
r2

Polygon and RtTriangle

shapeToGRegion (lx,ly) (sx,sy) (Polygon pts)
 = createPolygon (map trans pts)
 where trans (x,y) =
 (xWin2 + inchToPixel (lx+x*sx),
 yWin2 - inchToPixel (ly+y*sy))

shapeToGRegion (lx,ly) (sx,sy) (RtTriangle s1 s2)
 = createPolygon (map trans [(0,0),(s1,0),(0,s2)])
 where trans (x,y) =

 (xWin2 + inchToPixel (lx+x*sx),
 yWin2 - inchToPixel (ly+y*sy))

A Matter of Style, 2

 shapeToGRegion has the same problems as regToGReg
 The extra parameters obscure the pattern matching.
 There is a repeated pattern; we should give it a name.

shapeToGRegion (lx,ly) (sx,sy) s = case s of
 Rectangle s1 s2 -> createRectangle (trans (-s1/2,-s2/2))
 (trans (s1/2, s2/2))
 Ellipse r1 r2 -> createEllipse (trans (-r1,-r2))
 (trans (r1, r2))
 Polygon pts -> createPolygon (map trans pts)
 RtTriangle s1 s2 -> createPolygon
 (map trans [(0,0),(s1,0),(0,s2)])
 where trans (x,y) = (xWin2 + inchToPixel (lx+x*sx),
 yWin2 - inchToPixel (ly+y*sy))

