Advanced Programming Handout 7

More About Higher-Order Functions
(SOE Chapter 9)

Currying

Recall the function: simple $n a b=n *(a+b)$
Note that:

```
simple n a b is really
(((simple n) a) b) in fully parenthesized notation
simple :: Float -> Float -> Float -> Float
simple n :: Float -> Float -> Float
(simple n) a :: Float -> Float
((simple n) a) b :: Float
```

Therefore:
multSumByFive $a \mathrm{~b}=$ simple 5 a b is the same as
multSumByFive $=$ simple 5

Use of Currying

```
listSum, listProd :: [Integer] -> Integer
listSum xs = foldr (+) 0 xs
listProd xs = foldr (*) 1 xs
        |
listSum
    = foldr (+) 0
listProd
    = foldr (*) 1
```

and, or : : [Bool] -> Bool
and $x s=$ foldr (\&\&) True xs
or $x s=$ foldr (||) False xs
\|
and \quad foldr (\&\&) True
or $\quad=$ foldr (||) False

Be Careful Though ...

Consider:
$f \mathrm{x}=\mathrm{g}(\mathrm{x}+2) \mathrm{y} \mathrm{x}$
This is not the same as:
$f=g(x+2) y$
because the remaining occurrence of x becomes unbound. (Or, in fact, it might be bound by some outer definition!)

In general:
$f x=e x$
is the same as
$\mathrm{f}=\mathrm{e}$
only if \mathbf{x} does not appear free in \mathbf{e}.

Simplify Definitions

Recall:

```
reverse xs = foldl revOp [] xs
    where revOp acc x = x : acc
```

In the prelude we have: flip $f \mathbf{x} y=f y \mathbf{x}$.
(what is its type?) Thus:
revOp acc $\mathrm{x}=\mathrm{flip}(:)$ acc x
or even better:

```
revOp = flip (:)
```

And thus:

```
reverse xs = foldl (flip (:)) [] xs
```

or even better:

```
reverse = foldl (flip (:)) []
```


Anonymous Functions

- So far, all of our functions have been defined using an equation, such as the function succ defined by:

```
succ x = x+1
```

- This raises the question: Is it possible to define a value that behaves just like succ, but has no name? Much in the same way that 3.14159 is a value that behaves like pi?
- The answer is yes, and it is written $\backslash \mathrm{x}->\mathrm{x}+1$. Indeed, we could rewrite the previous definition of succ as:

$$
\text { succ }=\backslash x->x+1
$$

Sections

- Sections are like currying for infix operators. For example:

$$
\begin{aligned}
& (+5)=\backslash x->x+5 \\
& (4-)=\backslash y->4-y
\end{aligned}
$$

So in fact succ is just (+1) !

- Note the section notation is consistent with the fact that $(+)$, for example, is equivalent to $\backslash x->\backslash y->x+y$.
- Although convenient, however, sections are less expressive than anonymous functions. For example, it's hard to represent \x -> ($\mathrm{x}+1$)/2 as a section.
- You can also pattern match using an anonymous function, as in $\backslash(x: x s)->x$, which is the head function.

Function Composition

- Very often we would like to combine the effect of one function with that of another. Function composition accomplishes this for us, and is simply defined as the infix operator (.):

$$
(f \cdot g) x=f(g x)
$$

- So $f . g$ is the same as $\backslash x$-> $f(g x)$.
- Function composition can be used to simplify some of the previous definitions:

```
totalSquareArea sides
    = sumList (map squareArea sides)
    = (sumList . map squareArea) sides
```

Combining this with currying simplification yields:

```
totalSquareArea = sumList . map squareArea
```

