
Advanced Programming
Handout 5

Recursive Data Types
(SOE Chapter 7)

Trees
 Trees are important data structures in computer science.
 Trees have interesting properties:

 They are usually finite, but potentially unbounded in size.
 They often contain other types (ints, strings, lists) within.
 They are often polymorphic.
 They may have differing “branching factors”.
 They may have different kinds of leaf and branching nodes.

 Lots of interesting data structures are tree-like:
 lists (linear branching)
 arithmetic expressions (see SOE)
 parse trees (for programming or natural languages)
 etc., etc.

 In a lazy language like Haskell, we can even build infinite trees!

Examples

data List a = Nil
 | MkList a (List a)
data Tree a = Leaf a
 | Branch (Tree a) (Tree a)
data IntegerTree = IntLeaf Integer
 | IntBranch IntegerTree IntegerTree
data SimpleTree = SLeaf
 | SBranch SimpleTree SimpleTree
data InternalTree a = ILeaf
 | IBranch a (InternalTree a)
 (InternalTree a)
data FancyTree a b = FLeaf a
 | FBranch b (FancyTree a b)
 (FancyTree a b)

Note that this type
declaration is recursive:
List is mentioned on its

right-hand side

Match up the Trees

 IntegerTree

 Tree

 SimpleTree

 List

 InternalTree

 FancyTree

‘a’ ‘b’

‘a’

‘b’ ‘c’

2

6 9

‘a’

‘b’

1

2
‘a’

‘b’ ‘c’

Functions on Trees

 Transforming a tree of as into a tree of bs :
mapTree :: (a->b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Branch t1 t2) = Branch (mapTree f t1)
 (mapTree f t2)

 Collecting the items in a tree:
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch t1 t2) = fringe t1 ++ fringe t2

More Functions on Trees

treeSize :: Tree a -> Integer
treeSize (Leaf x) = 1
treeSize (Branch t1 t2) = treeSize t1 + treeSize t2

treeHeight :: Tree a -> Integer
treeHeight (Leaf x) = 0
treeHeight (Branch t1 t2) = 1 + max (treeHeight t1)
 (treeHeight t2)

Capturing a Pattern
of Recursion

Many of our functions on trees have similar structure. Can we apply
the abstraction principle?

Of course we can!

foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a
foldTree combineFn leafFn (Leaf x) =
 leafFn x
foldTree combineFn leafFn (Branch t1 t2) =
 combineFn (foldTree combineFn leafFn t1)
 (foldTree combineFn leafFn t2)

Using foldTree
With foldTree we can redefine the previous

functions like this:
mapTree f = foldTree Branch fun
 where fun x = Leaf (f x)

fringe = foldTree (++) fun
 where fun x = [x]
treeSize = foldTree (+) (const 1)
 where const x y = x
treeHeight = foldTree fun (const 0)
 where const x y = x
 fun x y = 1 + max x y

Partial application again!

Arithmetic Expressons

data Expr = C Float
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr
 | Div Expr Expr

Or, using infix constructor names:
data Expr = C Float
 | Expr :+ Expr
 | Expr :- Expr
 | Expr :* Expr
 | Expr :/ Expr

Infix constructors begin with
a colon (:) , whereas ordinary

constructor functions begin with
an upper-case character.

Example

e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4)

evaluate :: Expr -> Float
evaluate (C x) = x
evaluate (e1 :+ e2) = evaluate e1 + evaluate e2
evaluate (e1 :- e2) = evaluate e1 - evaluate e2
evaluate (e1 :* e2) = evaluate e1 * evaluate e2
evaluate (e1 :/ e2) = evaluate e1 / evaluate e2

Main> evaluate e1
42.0

Chapter 8

A Module of Regions

The Region Data Type

 A region represents an area on the two-dimensional Cartesian plane.
 It is represented by a tree-like data structure.

data Region =
 Shape Shape -- primitive shape
 | Translate Vector Region -- translated region
 | Scale Vector Region -- scaled region
 | Complement Region -- inverse of region
 | Region `Union` Region -- union of regions
 | Region `Intersect` Region -- intersection of regions
 | Empty

type Vector = (Float, Float)

Questions about Regions
 What is the strategy for writing functions over regions?

 Is there a fold-function for regions?
 How many parameters does it have?
 What is its type?

 Can one define infinite regions?

 What does a region mean?

Sets and Characteristic
Functions
 How can we represent an infinite set in Haskell? E.g.:

 the set of all even numbers
 the set of all prime numbers

 We could use an infinite list, but then searching it might take a very long
time! (Membership becomes semi-decidable.)

 The characteristic function for a set containing elements of type z is a
function of type z -> Bool that indicates whether or not a given element
is in the set. Since that information completely characterizes a set, we can
use it to represent a set:
 type Set a = a -> Bool

 For example:
 even :: Set Integer -- i.e., Integer -> Bool
 even x = (x `mod` 2) == 0

Combining Sets

 If sets are represented by characteristic functions, then how do
we represent the:
 union of two sets?
 intersection of two sets?
 complement of a set?

 In-class exercise – define the following Haskell functions:

 union s1 s2 =
 intersect s1 s2 =
 complement s =

 We will use these later to define similar operations on regions.

Semantics of Regions

The “meaning” (or “denotation”) of a region can be
expressed as its characteristic function -- i.e.,

 a region denotes the set of points contained within it.

Characteristic Functions for
Regions

 We define the meaning of regions by a function:
 containsR :: Region -> Coordinate -> Bool
 type Coordinate = (Float, Float)

 Note that containsR r :: Coordinate -> Bool, which is a
characteristic function. So containsR “gives meaning to” regions.

 Another way to see this:
 containsR :: Region -> Set Coordinate

 We can define containsR recursively, using pattern matching over the
structure of a Region.

 Since the base cases of the recursion are primitive shapes, we also need a
function that gives meaning to primitive shapes; we will call this function
containsS.

Rectangle

Rectangle s1 s2 `containsS` (x,y)
= let t1 = s1/2
 t2 = s2/2
 in -t1<=x && x<=t1 && -t2<=y && y<=t2

s1

s2t
1

t2

Ellipse
Ellipse r1 r2 `containsS` (x,y)
 = (x/r1)^2 + (y/r2)^2 <= 1

r1
r2

The Left Side of a Line

a = (ax,ay)

b = (bx,by)
For a ray directed from point a
to point b, a point p is to the left of
the ray (facing from a to b) when:

isLeftOf :: Coordinate -> Ray -> Bool
(px,py) `isLeftOf` ((ax,ay),(bx,by))
 = let (s,t) = (px-ax, py-ay)
 (u,v) = (px-bx, py-by)
 in s*v >= t*u
type Ray = (Coordinate, Coordinate)

p = (px,py)

Polygon

A point p is contained within
a (convex) polygon if it is to
the left of every side, when
they are followed in counter-
clockwise order.

p

Polygon pts `containsS` p
 = let shiftpts = tail pts ++ [head pts]
 leftOfList = map isLeftOfp (zip pts shiftpts)
 isLeftOfp p' = isLeftOf p p'
 in and leftOfList

Right Triangle
RtTriangle s1 s2 `containsS` p

 = Polygon [(0,0),(s1,0),(0,s2)] `containsS` p

s1(0,0)

(0,s2)

(s1,0)

s2

Putting it all Together
containsS :: Shape -> Vertex -> Bool
Rectangle s1 s2 `containsS` (x,y)
 = let t1 = s1/2; t2 = s2/2
 in -t1<=x && x<=t1 && -t2<=y && y<=t2
Ellipse r1 r2 `containsS` (x,y)
 = (x/r1)^2 + (y/r2)^2 <= 1
Polygon pts `containsS` p
 = let shiftpts = tail pts ++ [head pts]
 leftOfList = map isLeftOfp (zip pts shiftpts)
 isLeftOfp p' = isLeftOf p p'
 in and leftOfList
RtTriangle s1 s2 `containsS` p
 = Polygon [(0,0),(s1,0),(0,s2)] `containsS` p

Defining containsR
 containsR :: Region -> Vertex -> Bool
 Shape s `containsR` p = s `containsS` p
 Translate (u,v) r `containsR` (x,y)
 = r `containsR` (x-u,y-v)
 Scale (u,v) r `containsR` (x,y)
 = r `containsR` (x/u,y/v)
 Complement r `containsR` p
 = not (r `containsR` p)
 r1 `Union` r2 `containsR` p
 = r1 `containsR` p || r2 `containsR` p
 r1 `Intersect` r2 `containsR` p
 = r1 `containsR` p && r2 `containsR` p
 Empty `containsR` p = False

Applying the Semantics
Having defined the meanings of regions, what can we use them for?

 In Chapter 10, we will use the containsR function to test whether a
mouse click falls within a region.

 We can also use the interpretation of regions as characteristic functions
to reason about abstract properties of regions. E.g., we can show (by
calculation) that Union is commutative, in the sense that:

for any regions r1 and r2 and any vertex p ,
 (r1 `Union` r2) `containsR` p
 (r2 `Union` r1) `containsR` p
(and vice versa)

 This is very cool: Instead of having a separate “program logic” for
reasoning about properties of programs, we can prove many interesting
properties directly by calculation on Haskell program texts.

Unfortunately, we will not have time to pursue this topic further in
this class.

