Advanced Programming

Handout 4

Introductions

- Me: Benjamin C. Pierce
(known as Benjamin, or, if you prefer, Dr. Pierce, but not Ben or Professor)
- You?

Review

-What are the types of these functions?

$$
\begin{aligned}
& f x=[x] \\
& g x=[x+1] \\
& h[]=0 \\
& h(y: y s)=h \text { ys }+1
\end{aligned}
$$

Review

- How about these?

$$
\begin{aligned}
& \mathrm{f} 1 \mathrm{x} y=[\mathrm{x}]: \text { [y] } \\
& \mathrm{f} 2 \mathrm{x}[]=\mathrm{x} \\
& \mathrm{f} 2 \mathrm{x}(\mathrm{y}: \mathrm{ys})=\mathrm{f} 2 \mathrm{y} \mathrm{ys}
\end{aligned}
$$

f3 [] ys = ys
f3 xs [] = xs
f3 (x:xs) (y:ys) = f3 ys xs

Review

- How about these?

$$
\begin{aligned}
& \text { foo } x y=x(x(x y)) \\
& \text { bar } x y z=x(y z) \\
& \text { baz } x(x 1: x 2: x s)=\left(x 1 x^{\prime} x 2\right): \text { baz } x s \\
& \text { baz } x-[]
\end{aligned}
$$

What does baz do?

Review

- Recall that map is defined as:

```
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
```

-What does this function do?

```
mystery f l = map (map f) l
```


Review

- Recall that foldr is defined as:

$$
\begin{aligned}
& \text { foldr : } \begin{array}{l}
(a->b->b)->b->[a]->b \\
\text { foldr op init }[] \quad \text { init } \\
\text { foldr op init }(x: x s)= \\
x \text { op foldr op init } x s
\end{array} \text { Th }
\end{aligned}
$$

N.b.: This was part of HW 2

- Challenge: Use foldr to define a function maxList :: [Integer] -> Integer that returns the maximum element from its argument.
-Challenge 2: Use foldr to define map

Review

- Recall that the function
zip :: [a] -> [b] -> [(a,b)]
takes a pair of lists and returns a list of pairs of their corresponding elements:

```
zip [1,2,3] [True,True,False]
\(\rightarrow\) [(1,True), (2,True), (3,False)]
```

- What is its definition?

Review

- The function
zipWith :: (a->b->c) -> [a] -> [b] -> [c] generalizes zip:

$$
\begin{aligned}
& \text { zipWith (+) }[1,2,3][4,5,6] \\
& \rightarrow[5,7,9]
\end{aligned}
$$

-What is its definition?

- Can zip be defined in terms of zipWith?
- Can zip be defined in terms of foldr or foldl?

A Quick Footnote

(We're all in this together...)

Clarification

- Handout 3 said:
"When we write ($1,2,3,4$) we really mean ($1,(2,(3,4))$)."
- This is "morally true" but misleading: tuple types in Haskell are n-ary, so
(Integer,Integer,Integer,Integer) and (Integer,(Integer,(Integer,Integer))) are distinct types and expressions like $(1,2,3,4)=(1,(2,(3,4)))$ are not legal.

Infinite Lists

Infinite Lists

- Lists in Haskell need not be finite.

$$
\begin{array}{ll}
\text { E.g.: } \\
\text { list1 }=[1 \ldots] & \\
\text { f } x=x:(f(x+1)) & \\
\text { list2 }=f 1 & \\
\text { list3 }=1: 2: 1 \text { list3 } & --[1,2,3,4,5,6, \ldots] \\
& -[1,2,1,2,1,2, \ldots]
\end{array}
$$

Working with Infinite Lists

- Of course, if we try to perform an operation that requires consuming all of an infinite list (such as finding its length), our program will loop.
- However, a program that only consumes a finite part of an infinite list will work just fine.
take $5[10 \ldots] \rightarrow[10,11,12,13,14]$

Lazy Evaluation

- The feature of Haskell that makes all this work is lazy evaluation.
- Only the portion of a list that is actually needed by other parts of the program will actually be constructed at run time.
- We will discuss the mechanics of lazy evaluation in much more detail later in the course. Today, let's look at a more interesting example of its use...

Shapes III: Perimeters of Shapes (Chapter 6)

The Perimeter of a Shape

s1

- To compute the perimeter we need a function with four equations (1 for each Shape constructor).
- The first three are easy ...

```
perimeter :: Shape -> Float
perimeter (Rectangle s1 s2) = 2*(s1+s2)
perimeter (RtTriangle s1 s2) =
    s1 + s2 + sqrt (s1^2+s2^2)
    perimeter (Polygon pts)
    foldl (+) O (sides pts)
    -- or: sumList (sides pts)
```

- This assumes that we can compute the lengths of the sides of a polygon. This shouldn't be too difficult since we can compute the distance between two points with distBetween.

Recursive Def'n of Sides

```
sides :: [Vertex] -> [Side]
sides [] = []
sides (v:vs) = aux v vs
        where
        aux v1 (v2:vs') = distBetween v1 v2 : aux v2 vs'
        aux vn [] = distBetween vn v : []
        -- i.e. aux vn [] = [distBetween vn v]
```

- But can we do better? Can we remove the direct recursion, as a seasoned functional programmer might?

Visualize What's Happening

- The list of vertices is: vs $=[A, B, C, D, E]$
- We need to compute the distances between the pairs of points (A,B), (B,C), (C,D), (D,E), and (E,A).
- Can we compute these pairs as a list?

$$
[(A, B),(B, C),(C, D),(D, E),(E, A)]
$$

- Yes, by "zipping" the two lists:
[$A, B, C, D, E]$ and $[B, C, D, E, A]$ as follows:
zip vs (tail vs ++ [head vs])

New Version of sides

This leads to:

```
sides :: [Vertex] -> [Side]
sides vs = zipWith distBetween
    vs
    (tail vs ++ [head vs])
```


Perimeter of an Ellipse

There is one remaining case: the ellipse. The perimeter of an ellipse is given by the summation of an infinite series. For an ellipse with radii r_{1} and r_{2} :

$$
p=2 \pi r_{1}\left(1-\Sigma s_{i}\right)
$$

where $s_{1}=1 / 4 e^{2}$

$$
\begin{aligned}
& s_{i}=\frac{s_{i-1}(2 i-1)(2 i-3) e^{2}}{4 i^{2}} \quad \text { for } i>=1 \\
& e=\operatorname{sqrt}\left(r_{1}^{2}-r_{2}^{2}\right) / r_{1}
\end{aligned}
$$

Given s_{i}, it is easy to compute s_{i+1}.

Computing the Series

nextEl: : Float -> Float -> Float -> Float nextEl e s i $=s^{*}(2 * i-1) *(2 * i-3) *\left(e^{\wedge} 2\right) /(4 * i \wedge 2)$

Now we want to compute $\left[s_{1}, s_{2}, s_{3}, \ldots\right]$. To fix e, let's define:
aux s i = nextEl e s i

$$
\left.s_{i+1}=s_{i}(2 i-1)(2 i-3) e^{2}\right) \frac{4 i^{2}}{}
$$

So, we would like to compute:
]

Can we capture this pattern?

Scanl (scan from the left)

- Yes, using the predefined function scanl:

```
scanl :: (a -> b -> b) -> b -> [a] -> [b]
scanl f seed [] = seed : []
scanl f seed (x:xs) = seed : scanl f newseed xs
where newseed = f x seed
```

- For example:

$$
\begin{aligned}
& \underset{\rightarrow}{\operatorname{scanl}}(+) 0[1,2,3] \\
& \begin{array}{lll}
1 & =(+) & 0 \\
3 & 1 \\
=(+) & 1 & 2
\end{array}
\end{aligned}
$$

- Using scanl, the result we want is: scanl aux s1 [2 ..]

Sample Series Values

Putting it all Together

perimeter (Ellipse r1 r2)
| r1 > r2 = ellipsePerim r1 r2
| otherwise = ellipsePerim r2 r1
where ellipsePerim r1 r2

$$
\begin{aligned}
=\text { let } e & =\operatorname{sqrt}\left(r 1^{\wedge} 2-r 2^{\wedge} 2\right) / r 1 \\
s= & \text { scanl aux (0.25*} \left.e^{\wedge} 2\right) \\
& (\operatorname{map} \text { intToFloat [2..]) }
\end{aligned}
$$

aux s i = nextEl e s i
test $\mathrm{x}=\mathrm{x}>$ epsilon
sSum $=$ foldl (+) 0 (takeWhile test s)
in 2*r1*pi*(1 - sSum)

