
Advanced Programming

Handout 4

Introductions

 Me: Benjamin C. Pierce
 (known as Benjamin, or, if you prefer, Dr.

Pierce, but not Ben or Professor)

 You?

Review

 What are the types of these functions?
f x = [x]

g x = [x+1]

h [] = 0
h (y:ys) = h ys + 1

Review

 How about these?
f1 x y = [x] : [y]

f2 x [] = x
f2 x (y:ys) = f2 y ys

f3 [] ys = ys
f3 xs [] = xs
f3 (x:xs) (y:ys) = f3 ys xs

Review

 How about these?
foo x y = x (x (x y))

bar x y z = x (y z)

baz x (x1:x2:xs) = (x1 `x` x2) : baz xs
baz x _ = []

What does baz do?

Review

 Recall that map is defined as:
map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

What does this function do?
mystery f l = map (map f) l

Review

Challenge 2: Use foldr to define map

 Recall that foldr is defined as:
foldr :: (a->b->b) -> b -> [a] -> b

foldr op init [] = init
foldr op init (x:xs) =
 x `op` foldr op init xs

 Challenge: Use foldr to define a function
maxList :: [Integer] -> Integer that returns the
maximum element from its argument.

N.b.: This was part of HW 2

Review

 Recall that the function
zip :: [a] -> [b] -> [(a,b)]

 takes a pair of lists and returns a list of
pairs of their corresponding elements:
zip [1,2,3] [True,True,False]
 [(1,True), (2,True), (3,False)]

 What is its definition?

 The function
zipWith :: (a->b->c) -> [a] -> [b] -> [c]

 generalizes zip:
zipWith (+) [1,2,3] [4,5,6]
 [5,7,9]

 What is its definition?

Review

 Can zip be defined in terms of zipWith?

 Can zip be defined in terms of foldr or foldl?

A Quick Footnote

(We’re all in this together...)

Clarification

 Handout 3 said:
“When we write (1,2,3,4) we really mean
(1,(2,(3,4))).”

 This is “morally true” but misleading: tuple
types in Haskell are n-ary, so
(Integer,Integer,Integer,Integer) and
(Integer,(Integer,(Integer,Integer))) are
distinct types and expressions like
(1,2,3,4)==(1,(2,(3,4))) are not legal.

Infinite Lists

Infinite Lists

 Lists in Haskell need not be finite.
E.g.:
list1 = [1..] -- [1,2,3,4,5,6,...]

f x = x:(f(x+1))
list2 = f 1 -- [1,2,3,4,5,6,...]

list3 = 1:2:list3 -- [1,2,1,2,1,2,...]

Working with Infinite Lists

 Of course, if we try to perform an
operation that requires consuming all
of an infinite list (such as finding its
length), our program will loop.

 However, a program that only
consumes a finite part of an infinite
list will work just fine.
take 5 [10..] [10,11,12,13,14]

Lazy Evaluation

 The feature of Haskell that makes all this
work is lazy evaluation.

 Only the portion of a list that is actually
needed by other parts of the program will
actually be constructed at run time.

 We will discuss the mechanics of lazy
evaluation in much more detail later in the
course. Today, let’s look at a more
interesting example of its use...

Shapes III: Perimeters of Shapes
(Chapter 6)

 To compute the perimeter we need a function with
 four equations (1 for each Shape constructor).

 The first three are easy …
 perimeter :: Shape -> Float
 perimeter (Rectangle s1 s2) = 2*(s1+s2)
 perimeter (RtTriangle s1 s2) =
 s1 + s2 + sqrt (s1^2+s2^2)
 perimeter (Polygon pts) =
 foldl (+) 0 (sides pts)

-- or: sumList (sides pts)
 This assumes that we can compute the lengths of the sides of a

polygon. This shouldn’t be too difficult since we can compute the
distance between two points with distBetween.

The Perimeter of a Shape
s1

s2

s1

s2

Recursive Def’n of Sides

 sides :: [Vertex] -> [Side]
 sides [] = []
 sides (v:vs) = aux v vs
 where
 aux v1 (v2:vs’) = distBetween v1 v2 : aux v2 vs’
 aux vn [] = distBetween vn v : []
 -- i.e. aux vn [] = [distBetween vn v]

 But can we do better? Can we remove the direct recursion, as a
seasoned functional programmer might?

Visualize What’s Happening

 The list of vertices is: vs = [A,B,C,D,E]
 We need to compute the distances between the pairs of

points (A,B), (B,C), (C,D), (D,E), and (E,A).
 Can we compute these pairs as a list?

 [(A,B),(B,C),(C,D),(D,E),(E,A)]
 Yes, by “zipping” the two lists:

 [A,B,C,D,E] and [B,C,D,E,A]
as follows:
 zip vs (tail vs ++ [head vs])

A

B

C

DE

New Version of sides

This leads to:

sides :: [Vertex] -> [Side]
sides vs = zipWith distBetween
 vs
 (tail vs ++ [head vs])

There is one remaining case: the ellipse. The
perimeter of an ellipse is given by the summation
of an infinite series. For an ellipse with radii r1and r2:

 p = 2πr1(1 - Σ si)
where s1 = 1/4 e2

 si = si-1 (2i-1)(2i-3) e2 for i >= 1
 4i2
 e = sqrt (r1

2 – r2
2) / r1

Given si, it is easy to compute si+1.

Perimeter of an Ellipse

Computing the Series

nextEl:: Float -> Float -> Float -> Float
nextEl e s i = s*(2*i-1)*(2*i-3)*(e^2) / (4*i^2)

Now we want to compute [s1,s2,s3, …].
To fix e, let’s define:
 aux s i = nextEl e s i

So, we would like to compute:
[s1, s2 = aux s1 2, s3 = aux s2 3 = aux (aux s1 2) 3, s4 = aux s3 4 = aux (aux (aux s1 2) 3) 4, ...
]

si+1 = si (2i-1)(2i-3) e2

 4i2

Can we capture
this pattern?

Scanl (scan from the left)

 Yes, using the predefined function scanl:
scanl :: (a -> b -> b) -> b -> [a] -> [b]
scanl f seed [] = seed : []
scanl f seed (x:xs) = seed : scanl f newseed xs
 where newseed = f x seed

 For example:
 scanl (+) 0 [1,2,3]
 [0,
 1 = (+) 0 1,
 3 = (+) 1 2,
 6 = (+) 3 3]
 [0, 1, 3, 6]

 Using scanl, the result we want is:
scanl aux s1 [2 ..]

r2 = 1.5

r1 = 2.1
[s1 = 0.122449,
 s2 = 0.0112453,
 s3 = 0.00229496,
 s4 = 0.000614721,
 s5 = 0.000189685,
 ...]

Note how quickly
the values in the
series get smaller ...

Sample Series Values

Putting it all Together

perimeter (Ellipse r1 r2)
 | r1 > r2 = ellipsePerim r1 r2
 | otherwise = ellipsePerim r2 r1
 where ellipsePerim r1 r2
 = let e = sqrt (r1^2 - r2^2) / r1
 s = scanl aux (0.25*e^2)
 (map intToFloat [2..])
 aux s i = nextEl e s i
 test x = x > epsilon
 sSum = foldl (+) 0 (takeWhile test s)
 in 2*r1*pi*(1 - sSum)

