CSE399: Advanced Programming

 Handout 3
Polymorphism

The Length Function is Polymorphic

$$
\begin{array}{ll}
\text { length } & ::[a] ~->~ I n t ~ \\
\text { length [] } & =0 \\
\text { length }(x: x s) & =1+\text { length xs }
\end{array}
$$

The "a" in the type of length is a placeholder that can be replaced with any type when length is applied.

```
length [1,2,3] }\quad=>\quad
length ["a","b","c"] = 3
length [[1],[],[2,3]] }=>
```


Polymorphism

Many of Haskell's predefined functions are polymorphic

$$
\begin{array}{lll}
(++) & :: ~[a] ~->~[a] ~->~[a] ~ \\
\text { id } & :: ~ a ~->~ a ~ & \\
\text { head }::[a] ~->~ a ~ & \\
\text { tail } & :: ~[a] ~->~[a] ~ & \\
{[]} & :: ~[a] ~ & \text {-- interesting! }
\end{array}
$$

Quick check: what is the type of tag1?

$$
\operatorname{tag} 1 \mathrm{x}=(1, \mathrm{x})
$$

Polymorphic Data Structures

Polymorphic functions - functions that can operate on any type of data - are often associated with polymorphic data structures - structures that can contain any type of data.

The previous examples involved lists and tuples. In particular, here are the types of the list and tuple constructors:

$$
\begin{aligned}
& (:):: a \rightarrow[a] \text {-> }[a] \\
& (,):: a \rightarrow b->(a, b)
\end{aligned}
$$

Note the way that the tupling operator is identified, which generalizes to (, ,), (, , ,), etc. When we write ($1,2,3,4$), we really mean $(1,(2,(3,4)))$.

We can also define new polymorphic data structures...

A User-Defined Polymorphic Data Structure

The type variable a on the left-hand-side of the = tells Haskell that Maybe is a polymorphic data type:

```
data Maybe a = Nothing | Just a
```

Note the types of the constructors:

$$
\begin{aligned}
& \text { Nothing : : Maybe a } \\
& \text { Just : : a -> Maybe a }
\end{aligned}
$$

Thus:

```
Just 3 :: Maybe Int
Just "x" :: Maybe String
Just (3,True) :: Maybe (Int,Bool)
Just (Just 1) :: Maybe (Maybe Int)
```


Maybe May Be Useful

The most common use of Maybe is with a function that "may" return a useful value, but may also fail.
For example, the division operator div in Haskell will cause a run-time error if its second argument is zero. Thus we may wish to define a safe division function, as follows:

```
safeDivide :: Int -> Int -> Maybe Int
safeDivide x 0 = Nothing
safeDivide x y = Just (x 'div' y)
```


Higher-Order Functions

Abstraction Over Recursive Definitions

Recall from Section 4.:

```
transList
transList [] = []
transList (p:ps) = trans p : transList ps
```

(where trans converts ordinary cartesian coordinates into screen coordinates).
Also, from Chapter 3:

```
putCharList :: [Char] -> [IO ()]
putCharList [] = []
putCharList (c:cs) = putChar c : putCharList cs
```

These definitions are very similar. Indeed, the only thing different about them (besides the variable names) is the function trans vs. the function putChar. We can use the abstraction principle to take advantage of this regularity

Abstraction Yields map

Since trans and putChar are the differing elements, they should be arguments to the abstraction. In other words, we would like to define a function - let's call it map - such that map trans behaves like transList and map putChar behaves like putCharList.
No problem:

```
map f [] = []
map f (x:xs) = f x : map f xs
```

Now it is easy to redefine transList and putCharList in terms of map:

```
transList xs = map trans xs
putCharList cs = map putChar cs
```


map is Polymorphic

The great thing about map is that it is polymorphic. Its most general (or principal) type is:
map :: (a->b) -> [a] -> [b]

Whatever type is instantiated for the type variable a must be the same at both instances of a, and similarly for b. For example, since trans :: Vertex -> Point, we have
map trans :: [Vertex] -> [Point]
and since putChar :: Char -> IO (),
map putChar :: [Char] -> [IO ()]

Digression: Arithmetic Sequences

Haskell provides a convenient special syntax for lists of numbers obeying simple rules:

$$
\left.\begin{array}{ll}
{[1 \ldots .6}
\end{array}\right] \quad \Rightarrow[1,2,3,4,5,6] ~\left[\begin{array}{lll}
{[1,3 \ldots 9]} & \Rightarrow[1,3,5,7,9] \\
{[5,4 \ldots 1]} & \Rightarrow[5,4,3,2,1] \\
{[2.4,2.1 \ldots 0.3]} & \Rightarrow[2.4,2.1,3.8,3.5, \text { etc. }]
\end{array}\right.
$$

Another Example of Map

```
circles :: [Shape]
circles = map circle [2.4, 2.1 .. 0.3]
```

Now let's draw them...

Digression: zipping

Another useful higher-order function:

$$
\begin{aligned}
\operatorname{zip}::[a]->[b] & ->[(a, b)] \\
\text { zip }(a: a s)(b: b s) & =(a, b): \text { zip as } b s \\
& =[]
\end{aligned}
$$

For example:

$$
\begin{aligned}
& \text { zip }[1,2,3] \text { [True,False,False] } \\
\Rightarrow & {[(1, \text { True }),(2, \text { False }),(3, \text { False })] }
\end{aligned}
$$

Quick check: What does zip [1..3] [1..5] yield?

Coloring Our Circles

$$
\begin{gathered}
\text { colCircles : : [(Color,Shape)] } \\
\text { colCircles = zip [Red,Blue,Green, } \\
\text { Cyan,Red,Magenta, } \\
\text { Yellow,White] } \\
\text { circles }
\end{gathered}
$$

Drawing Colored Shapes

```
drawShapes :: Window -> [(Color,Shape)] -> IO ()
drawShapes w css =
    sequence_ (map aux css)
    where aux (c,s) =
        drawInWindow w
        (withColor c
            (shapeToGraphic s))
```

Recall from Chapter 3 that sequence_ takes a list of IO() actions and returns an IO() action that performs all the actions in the list in sequence.

The Main Action

$$
\begin{aligned}
& \mathrm{g}=\text { do } \mathrm{w}<- \text { openWindow "Bulls eye" }(600,600) \\
& \text { drawShapes w colCircles } \\
& \mathrm{k}<- \text { getKey w } \\
& \text { closeWindow w } \\
& \text { main }= \text { runGraphics } \mathrm{g}
\end{aligned}
$$

The Result

When to Define Higher-Order Functions

Recognizing repeating patterns is the key, as we did for map. As another example, consider:

```
listSum [] = 0
listSum (x:xs) = x + listSum xs
listProd [] = 1
listProd (x:xs) = x * listProd xs
```

Note the similarities. Also note the differences (0 vs. 1 and + vs. *): it is these that will become parameters to the abstracted function.

Abstracting out the differences (op and init) leaves this common part:

```
fold op init [] = init
fold op init (x:xs) = x 'op' fold op init xs
```

We recover listSum and listProd by instantiating fold with the appropriate parameters:

```
listSum xs = fold (+) 0 xs
listProd xs = fold (*) 1 xs
```

Note that fold is polymorphic:
fold :: (a -> b -> b) -> b -> [a] -> b

Two Folds Are Better Than One

The fold function is predefined in Haskell, but it is actually called foldr, because it "folds from the right." That is:

$$
\begin{aligned}
& \text { foldr op init (x1 : x2 : ... : xn : []) } \\
\Rightarrow & \text { x1 'op' (x2 'op' (... (xn 'op' init)...)) }
\end{aligned}
$$

There is another predefined function foldl that "folds from the left":

$$
\begin{aligned}
& \text { foldl op init (x1 : x2 : ... : xn : []) } \\
\Rightarrow & (\ldots \text { ((init 'op' x1) 'op' x2)...) 'op' xn }
\end{aligned}
$$

Two Folds Are Better Than One

Why two folds? Because sometimes using one can be more efficient than the other. For example:

$$
\begin{aligned}
& \text { foldr (++) [] }[\mathrm{x}, \mathrm{y}, \mathrm{z}] \Rightarrow \mathrm{x}++(\mathrm{y}++\mathrm{z}) \\
& \text { foldl (++) [] }[\mathrm{x}, \mathrm{y}, \mathrm{z}] \Rightarrow(\mathrm{x}++\mathrm{y})++\mathrm{z}
\end{aligned}
$$

The former is considerably more efficient than the latter (as discussed in the book); but this is not always the case sometimes foldl is more efficient than foldr. Choose wisely!

Another Application of Fold

We have seen the function sequence_, which takes a list of actions of type IO() and produces a single action of type IO().
We can define sequence_ in terms of >> and foldl as follows:

```
sequence_ :: [IO ()] -> IO ()
sequence_ acts = foldl (>>) (return ()) acts
```


Reversing a List

Obvious but inefficient (why?):

```
reverse [] = []
reverse (x::xs) = reverse xs ++ [x]
```

Much better (why?):

```
reverse xs = rev [] xs
    where rev acc [] = acc
    rev acc (x:xs) = rev (x:acc) xs
```

This looks a lot like foldl. Indeed, we can redefine reverse as:

```
reverse xs = foldl revOp [] xs
    where revOp a b = b : a
```

