
CSE399: Advanced Programming

Handout 22



The Lambda Calculus



The Lambda-Calculus

• A model of computation with functions invited by Alonzo
Church and his co-workers in the 1930s. (I.e.,
pre-ENIAC!)

• Formally equivalent in power to Turing machines, Post
Correspondence Problem, etc.

• The e. coli of programming language and compiler
research

• Foundation of many real-world programming languages,
including Haskell, OCaml, SML, Scheme, Lisp, ...



The Pure Lambda-Calculus

The expressions of the pure lambda-calculus are...

x variable
\x -> t abstraction
t1 t2 application



The Pure Lambda-Calculus

The expressions of the pure lambda-calculus are...

x variable
\x -> t abstraction
t1 t2 application

... and that’s all! No let-bindings, recursion, numbers,
booleans, conditionals, pattern matching, etc., etc.



The Pure Lambda-Calculus

The expressions of the pure lambda-calculus are...

x variable
\x -> t abstraction
t1 t2 application

... and that’s all! No let-bindings, recursion, numbers,
booleans, conditionals, pattern matching, etc., etc.

In this language, everything is a function.

• Variables always denote functions

• Functions always take other functions as parameters

• The result of a function is always a function



Encoding Let-Bindings

What’s interesting about the lambda-calculus is that, even
after we have thrown away all these useful features, we still
have an extremely rich and powerful language.

One way to see this is to show how the features that we’ve
removed can be simulated using just functions.

Simple example: Instead of

let x = s in t

we can write

(\x -> t) s,

which has the same effect.



Encoding Let-Bindings

What’s interesting about the lambda-calculus is that, even
after we have thrown away all these useful features, we still
have an extremely rich and powerful language.

One way to see this is to show how the features that we’ve
removed can be simulated using just functions.

Simple example: Instead of

let x = s in t

we can write

(\x -> t) s,

which has the same effect.

I.e., we can regard let as “just syntactic sugar” for a certain
idiom involving function abstraction and application.



Formalities

We’ll see many more of these encodings in the rest of the
lecture.

But first, let’s pause to clarify precisely how computation in
the lambda-calculus works.



Formalities: Scoping

The abstraction term \x -> t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the
abstraction.

Occurrences of x that are not within the scope of an
abstraction binding x are said to be free.

\x -> \y -> x y z

\x -> (\y. z y) y



Formalities: Substitution

We write [x 7→ s]t for the substitution of the term s for free
occurrences of the variable x in the term t.

[x 7→ (\y -> y)] (\z -> z y x)

[x 7→ (\y -> y)] (\z -> z (\x -> x z) x)



Formalities: Reduction

A primitive step of computation (known as beta-reduction or
just reduction) involves substituting an argument for the
bound variable in an adjacent abstraction:

(\x -> t) s −→ [x 7→ s] t



Formalities: Reduction

A primitive step of computation (known as beta-reduction or
just reduction) involves substituting an argument for the
bound variable in an adjacent abstraction:

(\x -> t) s −→ [x 7→ s] t

Write −→
∗ for the reflexive, transitive closure of the

reduction relation—that is, s −→
∗ t if there is a sequence of

zero or more single-step reductions leading from s to t.



Encoding Booleans

true = \t -> \f -> t

false = \t -> \f -> f

It is easy to calculate that, for any arguments a and b,

true m n −→
∗m

false m n −→
∗n

So, instead of if b then m else n we can simply write b m n.



Computing with Booleans

not = \b -> b false true

That is, not is a function that, given a boolean value v,
returns false if v is true and true if v is false.



Encoding Pairs

pair = \f -> \s -> \b -> b f s

fst = \p -> p true

snd = \p -> p false

That is, pair v w is a function that, when applied to a
boolean value b, applies b to v and w.

By the definition of booleans, this application yields v if b is
true and w if b is false, so the first and second projection
functions fst and snd can be implemented simply by
supplying the appropriate boolean as an argument to the
pair itself.



Encoding Numbers

Idea: represent the number n by a function that “repeats
some action n times.”

c0 = \s -> \z -> z

c1 = \s -> \z -> s z

c2 = \s -> \z -> s (s z)

c3 = \s -> \z -> s (s (s z))

That is, each number n is represented by a term cn that
takes two arguments, s and z (for “successor” and “zero”),
and applies s, n times, to z.



Computing with Numbers

-- Successor

succ = \n ->

\s -> \z -> s (n s z)

-- Addition

plus = \m -> \n ->

\s -> \z -> m s (n s z)

-- Multiplication

times = \m -> \n ->

m (plus n) c0

-- Zero test

iszero = \m ->

m (\x -> false) true



Computing with Numbers

-- Successor

succ = \n ->

\s -> \z -> s (n s z)

-- Addition

plus = \m -> \n ->

\s -> \z -> m s (n s z)

-- Multiplication

times = \m -> \n ->

m (plus n) c0

-- Zero test

iszero = \m ->

m (\x -> false) true

What about predecessor???



Predecessor

zz = pair c0 c0

ss = \p -> pair (snd p) (succ (snd p))

pred = \m -> fst (m ss zz)



Normal Forms

A normal form is a term that cannot take any reduction
steps.

E.g.,

\x -> \y -> x



Normal Forms

A normal form is a term that cannot take any reduction
steps.

E.g.,

\x -> \y -> x

A normalizable term is one that will eventually reach a
normal form after some finite number of reduction steps.

E.g.

not true

pred c1000



Normal Forms

A normal form is a term that cannot take any reduction
steps.

E.g.,

\x -> \y -> x

A normalizable term is one that will eventually reach a
normal form after some finite number of reduction steps.

E.g.

not true

pred c1000

Question: Is every lambda-term normalizable?



Divergence

Answer: No!

omega = (\x -> x x) (\x -> x x)

Note that omega evaluates in one step to itself!

So evaluation of omega never reaches a normal form: it
diverges.



Divergence

Answer: No!

omega = (\x -> x x) (\x -> x x)

Note that omega evaluates in one step to itself!

So evaluation of omega never reaches a normal form: it
diverges.

(N.b.: this example and the ones following cannot be typed in
Haskell.)



Divergence

Answer: No!

omega = (\x -> x x) (\x -> x x)

Note that omega evaluates in one step to itself!

So evaluation of omega never reaches a normal form: it
diverges.

(N.b.: this example and the ones following cannot be typed in
Haskell.)

Being able to write a divergent computation does not seem
especially useful in itself. However, there are variants of
omega that are very useful...



Recursion

The “fixed-point combinator”:

fix = \f -> (\x -> f (x x)) (\x -> f (x x))



Recursion

The “fixed-point combinator”:

fix = \f -> (\x -> f (x x)) (\x -> f (x x))

Here the “pattern of divergence” becomes more interesting.
Let f be some lambda-term. Then:

fix f

−→

(\x -> f (x x)) (\x -> f (x x))

−→

f ((\x -> f (x x)) (\x -> f (x x)))

−→

f (f ((\x -> f (x x)) (\x -> f (x x))))

−→

f (f (f ((\x -> f (x x)) (\x -> f (x x)))))

−→

· · ·



Recursion

More concisely:

fix f −→ f (fix f)



Recursion

factf = \fct ->

\n ->

(iszero n)

c1

(times n (fct (pred n)))

fact = fix factf



Recursion

fact c3

--> factf (fix factf) c3

--> (\n -> (iszero n) c1 (times n (fix factf (pred n)))) c3

--> (iszero c3) c1 (times n (fix factf (pred c3)))

--> times c3 (fix factf (pred c3))

--> times c3 (factf (fix factf) (pred c3))

--> times c3

((\n -> (iszero n)

c1

(times n (fix factf (pred n)))) (pred c3))

--> times c3

((iszero (pred c3))

c1

(times (pred c3) (fix factf (pred (pred c3)))))

--> times c3

(times (pred c3)

(fix factf (pred (pred c3))))

--> etc.


