
CSE399: Advanced Programming

Handout 20



Tail Recursion



Recall...

Ordinary factorial function:

fact n = if n==0 then 1 else fact(n-1)



Recall...

Tail-recursive factorial:

fact’ n a = if n==0 then a

else fact (n-1) (a*n)

fact’’ n = fact’ n 1

The second one will be compiled to much more efficient
code, because the compiler can see that the recursive call
to fact’ is in tail position—i.e., its result is the result of the
whole body of fact’.

This means that the stack frame for the current call to
fact’ is not needed any more, so the recursive call can just
re-use the same stack frame. (The “call” instruction
becomes a “jump.”)

I.e., fact’ will be compiled to a loop.



Tail Position

But what, exactly, is this notion of “tail position”?

Not “rightmost subexpression,” because this also describes
the (non-tail) recursive call in the original fact.

And conversely, tail calls may also occur in non-rightmost
positions, textually:

fact4 n a = if n/=0 then fact (n-1) (a*n)

else a

We can make the notion precise by introducing the idea of
continuations.



Continuations



Continuations

At each point during a computation, we can think of (1)
some subcomputation that is eventually going to yield a
value and, (2) some context that is waiting for this value and
is going to use it to finish computing the final value of the
whole program.

(2) is called the continuation of (1).

E.g., the continuation of the subexpression fact 3 in the
computation of fact 6 is.

6 * (5 * (4 * �)),

where � indicates the place where the value of fact 3 will
be used.



Making Continuations Explicit

A continuation can be thought of as a function from the
result of the subexpression to the final result of the whole
computation. I.e., we can write the continuation from the
previous slide as

\x -> 6 * (5 * (4 * x))



Making Continuations Explicit

We can use this observation to write another version of fact
that makes these continuations explicit:

fact_cps n k =

if n==0

then k 1

else fact_cps (n-1) (\x -> k (n*x))

Note that all calls in fact_cps are in tail position. I.e., every
call can be compiled as a jump. (A continuation can be
described as a “goto with arguments.”)

Q: So when does the stack grow?



CPS

This programming style is called continuation-passing style:
every function is explicitly passed its continuation—i.e.,
another function to which it should send its result.



Another Example

Here’s a CPS variant of another familiar function:

length_cps [] k = k 0

length_cps (x:xs) k = length_cps xs (\x -> k (x+1))

Q: What is the type of length_cps?



Continuations in WASH

Many WASH programs are written in continuation-passing
style: the “callback” argument to ask never returns—it just
keeps (often recursively) making new calls to ask until the
interaction is finished.



Continuations for Backtracking

It is sometimes useful to define functions taking multiple
continuations.

For example, programs that perform some kind of search
can often be expressed very naturally using continuations. A
searching function is passed two continuations:

• a success continuation that tells it what is the next
subgoal to try if this one works, and

• a failure continuation that tells it how to “unwind” to a
previous choice point, if something fails.



Example: Searching in CPS

data Tree a b = Leaf a b | Node (Tree a b) (Tree a b)

myTree = Node (Leaf 5 3) (Leaf 2 4)

findk :: Eq a => a -> (Tree a b) -> (Maybe b -> r) -> r -> r

findk a t sk fk =

case t of

Leaf a’ b | a==a’ -> sk (Just b)

| a/=a’ -> fk

Node t1 t2 -> findk a t1 sk (findk a t2 sk fk)

find a t = findk a t (\b -> b) Nothing

main =

do print (find 1 myTree)

print (find 2 myTree)



Example: Searching in CPS

To make the failure continuation more interesting, let’s keep
track of how many nodes had to be searched to find the
given key.

findk :: Eq a => a -> (Tree a b) -> Int ->

(Maybe (b,Int) -> r) -> (Int->r) ->

r

findk a t count sk fk =

case t of

Leaf a’ b | a==a’ -> sk (Just (b,count))

| a/=a’ -> fk count

Node t1 t2 -> findk a t1 (count+1)

sk (\c -> findk a t2 c sk fk)

find a t = findk a t 1 (\b -> b) (\c -> Nothing)

main =

do print (find 1 myTree)

print (find 2 myTree)



CPS Transform

It is possible to rewrite any program in continuation-passing
style.

Indeed, there is a mechanical procedure (called a CPS
transform) that will take an arbitrary program and produce
an equivalent CPS program.

This transformation plays a critical role in some compilers for
functional languages.



Call/CC

Many functional languages (including Scheme, Standard ML,
and Haskell’s Cont monad) provide an operator for gaining
explicit access to the “current continuation” at any point in a
program.

This operator is traditionally called call/cc.

It can be used for many amazing and mind-bending
programming tricks.


