
CSE399: Advanced Programming

Handout 2

Input and Output Actions

I/O in Haskell

Q: Of course, most programs don’t just calculate values:
they have effects on the world — displaying text or graphics,
reading or writing the file system and network...

How does this square with Haskell’s value-oriented,
calculational style of computation?

I/O in Haskell

A: Haskell provides a special kind of value, called an action,
that describes an effect on the world.

Pure actions, which just do something and have no
interesting “result,” are values of type IO ().

For example, the putStr function takes a string and yields an
action describing the act of displaying this string on stdout.

putString :: String -> IO ()

I/O in Haskell

To actually perform an action, we make it the value of the
special name main.

main :: IO ()

main = putStr "Hello world\n"

I/O in Haskell

~/current/advprog/common/lectures> hugs hello.hs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2003

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || Version: November 2003 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Main> main

Hello world

Main>

The Batch Interpreter

The command

runhugs file.hs

will load the file file.hs into hugs and perform the action
bound to the top-level name main.

~/current/advprog/common/lectures> runhugs hello.hs

Hello world

~/current/advprog/common/lectures>

Actions

Actions are descriptions of effects on the world. Simply
writing an action does not, by itself, cause anything to
happen.

hellos :: [IO ()]

hellos = [putStr "Hello somebody\n",

putStr "Hello world\n",

putStr "Hello universe\n"]

main = head (tail hellos)

I/O in Haskell

~/current/advprog/common/lectures> runhugs hellos.hs

Hello world

~/current/advprog/common/lectures>

Combining Actions

The infix operator >> takes two actions a and b and yields an
action that describes the effect of executing a and b in
sequence.

hello1 :: IO ()

hello1 = putStr "hello " >> putStr "world\n"

“Do” Notation

To avoid writing >> all the time, Haskell provides special
syntax for sequencing actions:

hello2 = do putStr "hello "

putStr "world\n"

In general, if act1, act2, ..., actn are actions, then
do act1

act2

...

actn

is an action that represents performing them in sequence.

Note the use of the “layout convention” here: the first action
begins right after the do and the others are laid out
vertically beneath it.

Input Actions

Some actions have an effect on the world and yield a result.
For example,

getLine :: IO String

is an action that, when executed, consumes the next line
from the standard input and returns it.

“Do” Notation for Input Actions

The do syntax provides a way to bind the result of an action
to a variable so that it can be referred to later.

main =

do putStr "Please type a line...\n"

s <- getLine

putStr "You typed ’"

putStr s

putStr "’\n"

“Do” Notation for Input Actions

~/current/advprog/common/lectures> runhugs lec2a.lhs

Please type a line...

hello there

You typed ’hello there’

Graphics

Graphics in Haskell

The module SOEGraphics provides a number of actions for
drawing things on the screen.

openWindow :: Title -> Size -> IO Window

type Title = String

type Size = (Int,Int)

A Complete Graphics Program

import SOEGraphics

g = do w <- openWindow

"My First Graphics Program" (300,300)

drawInWindow w

(text (100,200) "Hello Graphics World")

drawInWindow w

(withColor Red (ellipse (0,0) (100,150)))

k <- getKey w

closeWindow w

main = runGraphics g

Sierpinski’s Triangle

Sierpinski’s Triangle

fillTri :: Window -> Int -> Int -> Int -> IO ()

fillTri w x y size

= drawInWindow w (withColor Blue

(polygon [(x,y),(x+size,y),(x,y-size),(x,y)]))

Sierpinski’s Triangle

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()

sierpinskiTri w x y size

= if size <= 8

then fillTri w x y size

else let size2 = size ‘div‘ 2

in do sierpinskiTri w x y size2

sierpinskiTri w x (y-size2) size2

sierpinskiTri w (x+size2) y size2

Sierpinski’s Triangle

g = do w <- openWindow

"Sierpinski’s Triangle" (400,400)

sierpinskiTri w 50 300 256

k <- getKey w

closeWindow w

main = runGraphics g

