
CSE399: Advanced Programming

Handout 17



Course Projects



Projects

• Assignment: Design and implement a full-featured web
application on top of WASH/CGI.

• Grading will be based on
• creativity and usefulness of your application
• elegance of design
• beauty of code

• Workload:
• Roughly 30 hours of work
• Due last day of class (April 22)



Project Proposals

As we decided on Monday, the due date for initial project
proposals will be two weeks from this Friday, March 18th.

Your proposal must include all of the following (around 6-8
pages total):

• A short (less than one page) description of the
application you intend to build

• Several (two or three pages worth) use cases, each
sketching the “story” of a particular kind of interaction
with the system, from the client’s point of view. (Feel
free to include pictures of possible screenshots, but don’t
spend a long time on them!)

• A (preliminary) list of the most important modules, with
a brief description of what each one will do.

• A time budget for the project, adding up to about 30
hours.



Possible Project Ideas

• A blog server

• An E-vite server

• A more sophisticated Adventure game (perhaps
something like Kingdom of Loathing)

• etc.

Details are up to you!



Miscellaneous Points on WASH/CGI



HTML Concrete Syntax

As described in the WASH/CGI User Manual (it was
implemented after the tutorial paper was written), WASH
provides an HTML-like concrete syntax for the API we have
been discussing:

mainCGI =

standardQuery "Your name please"

<div>

<p>Enter your name <% iName <- textInputField empty %></p>

<p><% submit iName showResult empty %></p>

</div>

showResult iName =

let name = value iName in

standardQuery "Hello"

<#>Hello <%=name%>, how are you?</#>

Feel free to use it or not, as you prefer.



Variants of the HTML commands

We noticed last time that there were three different versions
of all the basic HTML constructors: p vs. p_T vs. p_S.

The differences between them are not essential for our
purposes. Just use the un-annotated ones.



Quasi-Validation



Review: Type Constructors

Recall the general form of a type constructor declaration
(with a newtype—type and data can also be used for
declaring type constructors, but the trick we are about to
see only works with newtype and data):

newtype C x y z = CC body

• C is the name of the type constructor being defined
• x, y, and z are its parameters
• body is its definition
• CC is the name of the (value) constructor used to build
values of type C

Example:

newtype C x y z = CC [(x,y)->z]



Phantom Types

Note that we do not have to use all of the parameters in the
body. For example, it is perfectly legal to write:

newtype P x y = PP [y]

or even:

newtype Q x = QQ [Int]

A phantom type is a parameter to a type constructor that
does not appear in its body (like x here).

Why would such a thing be useful????



A Tiny Example of Phantom Types

newtype Q x = QQ [Int]

data Even = Even

data Odd = Odd

nil :: Q Even

nil = QQ []

conse :: Int -> Q Even -> Q Odd

conse i (QQ l) = QQ (i:l)

conso :: Int -> Q Odd -> Q Even

conso i (QQ l) = QQ (i:l)

myList = conso 5 (conse 3 nil)



Tiny Example Continued

But trying to write

myList’ = conso 5 nil

results in this complaint from the compiler:

Couldn’t match ‘Odd’ against ‘Even’

Expected type: Q Odd

Inferred type: Q Even

In the second argument of ‘conso’, namely ‘nil’

In the definition of ‘myList’’: myList’ = conso 5 nil

I.e., the type system now “understands” the difference
between even- and odd-length lists.



Tiny Example, Continued

Moreover, we can define functions on these new lists that are
polymorphic in the phantom type parameter—i.e., that work
for both even and odd lists:

mapQ :: (Int->Int) -> (Q a) -> (Q a)

mapQ f (QQ l) = QQ (map f l)

myList’’ = mapQ (+ 3) myList



Phantom Types in WASH

Phantom types are a very useful trick that has been
exploited many times to achieve an astonishing range of
effects.

It is used in various places in WASH. Two that we’ve seen
are:

• quasi-validation of HTML

• VALID vs. INVALID input handles



Quasi-validity

WASH/CGI enforces quasi validity through (phantom type
parameters in) the types of the construction functions for
document nodes.

Read WithHTML e m a as “The type of (sequences of) HTML
content [attributes and elements]...

• that can be used in a context described by the phantom
parameter e

• whose construction involves side effects side effects in
monad m (typically CGI)

• whose construction yields a value of type a (typically
either () or some kind of input handle).”



Quasi-validity

Now:

text :: (Monad m, AdmitChildCDATA e)

=> String -> WithHTML e m ()

ul :: (Monad m, AdmitChildUL e)

=> WithHTML UL m a -> WithHTML e m a

I.e., if s is some string, then text s can be used in any
context e that belongs to the type class AdmitChildCDATA.

Similarly, UL can be used in any context e that belongs to the
type class AdmitChildUL. Moreover, ul takes as an argument
some HTML content that can be used in the context UL.

Which types of HTML content are those??



Quasi-validation

From the HTMLMonad98 module...

class AdmitChildUL e where

ul :: (Monad m) => WithHTML UL m a -> WithHTML e m a

ul = HTMLMonad.ul

...

data LI = LI

data DD = DD

data BODY = BODY

...

instance AdmitChildUL LI

instance AdmitChildUL DD

instance AdmitChildUL BODY

...



Input Handles



type HTMLField context a =

WithHTML INPUT CGI () -> WithHTML context CGI a

submit0 :: (AdmitChildINPUT context) =>

CGI () -> HTMLField context ()

textInputField :: (AdmitChildINPUT context) =>

HTMLField context (InputField String INVALID)

submit1 :: (AdmitChildINPUT context) =>

InputField a INVALID

-> (InputField a VALID -> CGI ())

-> HTMLField context ()

value :: InputField a VALID -> a

N.b.: submit1 is subsumed by activate in the current version of
WASH.



Validated Input



inputField :: (AdmitChildINPUT context, Reason a, Read a) =>

HTMLField context (InputField a INVALID)

page1 =

standardQuery "Numeric Input" $

do inf <- p (do text "Enter a number "

inputField (attr "size" "10"))

submit inf page2 (attr "value" "Process")

page2 inf =

let n :: Int

n = value inf

in

standardQuery "Your Number" $

p (text "Your number was " ## text (show n) ## text "!")


