
CSE399: Advanced Programming

Handout 15

Modularity

Modularity

Modularity is where you don’t have to understand
everything to change anything.

–Penny Anderson

Aspects of Modularity

The Evils of Duplication

Every time something is duplicated in your program, you’ve
got a bug waiting to happen.

Principle: Every piece of knowledge must have a single,
authoritative representation within a system.

Hunt and Thomas talk about the DRY principle: Do not
Repeat Yourself!

Abstraction

A great deal of duplication involves things that are almost
but not quite the same.

Abstraction is the antidote to this kind of duplication.

Principle: When things start to get duplicated, look for
a way of separating (“abstracting out”) the common part
from the varying parts.

Conceptually, the common part becomes a function and the
varying parts become parameters that are supplied to the
function to yield particular instances.

Often, the abstracted-out common part will turn out to be
interesting in itself and to have other potential uses.

Generality

The temptation to duplicate often arises from trying to
program against insufficient general abstractions.

Principle: When building an abstraction, try to find a “nat-
ural” level of generality that leaves room for applications
besides the one you’ve got in mind right now.

Dangers of Abstraction and Generality

Warning: Although more abstraction is generally a good
thing, there are limits!

• Choosing to abstract instead of duplicate often comes
with a cost in terms of the complexity / readability of
the code.

• Similarly, a more general abstraction is sometimes harder
to understand than a more specific one.

Principle: Use taste when deciding how much to ab-
stract.

It’s OK to duplicate something that is really never going to
change, or where the “knowledge” being duplicated is very
simple.

Example

Which is better?

ex1 =

do putStrLn ("The user’s last name is " ++ lastname)

putStrLn ("The user’s first name is " ++ firstname)

ex1’ =

do aux "last name" lastname

aux "first name" firstname

where aux x y =

putStrLn ("The user’s " ++ x ++ " is " ++ y)

DRY documentation

Duplication occurs not only between different bits of code,
but between code and documentation!

Principle: Code should be self-documenting whenever
possible.

For example:

• A meaningful variable name is better than an obscure
name with a meaningful comment.

• Breaking up a complex function into several bite-sized
pieces is better than writing a long explanation of how it
works.

• Unnecessary documentation is worse than none at all.

In general, use comments only to explain high-level features
of code. Low-level details should usually be clear from the
code itself.

Checked Documentation

• Type declarations are a good idea because they are
checked documentation: they are useful to readers, but
if they get out of date with respect to the code, the
compiler will complain.

• Ditto assertions.

• Ditto unit tests.

Principle II: Documentation should be checked whenever
possible.

Locality of Repetition

Principle: When something must be repeated, the two
copies should be located as close as possible to each
other — preferably immediately adjacent.

For example, the documentation of a program’s switches and
preferences (for the user manual) should live in the code,
near where the switches themselves are defined and used.

(Example from Unison.)

Components

Complex software systems need to be organized into
bite-sized (or brain-sized) chunks, of manageable size and
complexity.

These chunks are generally called components or modules.

Orthogonality

Two components are orthogonal if one can be changed
without affecting (or even knowing about!) the other.

This is also known as loose coupling.

Orthogonality is the quality that keeps large systems “light
on their feet” — maintainable, extensible, and resilient to
change.

Cohesion

One way of enhancing orthogonality is ensuring that
individual components have clearly defined roles.

Principle: Each component of a system should have a
single, well-defined purpose.

Interfaces

Another important way of increasing orthogonality is limiting
the “surface area” that each module presents to the others
in a system.

The interface of a component limits which parts of its
internals are exported for the use of other components.

Abstract Data Types

An abstract data type (or ADT) is a component that provides
a single type and a collection of associated operations.

The type is “abstract” in the sense that the component’s
interface exposes only the name of the type, not its
concrete definition. The only way other modules can do
things with values of this type are via the operations
exported by the defining component.

(Note the similarity to the notion of class in OO languages.)

The Haskell Module System

Modules

A Haskell program is a collection of modules, one of which,
by convention, must be called Main and must export the
value main. The value of the program is the value of the
identifier main in module Main, which must be a computation
of type IO t for some type t. When the program is
executed, the computation main is performed, and its result
(of type t) is discarded.

Modules may reference other modules via explicit import
declarations, each giving the name of a module to be
imported and specifying its entities to be imported. Modules
may be mutually recursive.

Module Names

The name-space for modules themselves is flat, with each
module being associated with a unique module name (which
are Haskell identifiers beginning with a capital letter). There
is one distinguished module, Prelude, which is imported into
all modules by default.

Hierarchical Modules

Module names are allowed to contain the character . —
e.g., Text.XML.HaXml.Types is a valid module name.

Implementations may (and GHC and Hugs do) choose to
interpret dots in module names as instructions for where to
look for modules in the file system during compilation.

E.g., the module Text.XML.HaXml.Types might be found in a
directory Text with a subdirectory XML containing a
sub-sub-directory HaXml containing a file Types.hs.

Module syntax

(See 5.1 in Haskell 98 Report.)

Export lists

(See 5.2 in Haskell 98 Report.)

Import Declarations

(See 5.3 in Haskell 98 Report.)

Abstract Data Types

module Stack(StkType, push, pop, empty) where

data StkType a = EmptyStk | Stk a (StkType a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

A nice convention for using ADTs (originally from
Cedar-Mesa and Modula-3, I think) is always to call the main
type of the module just T.

module Stack (T, push, pop, empty) where

data T a = EmptyStk | Stk a (T a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

The “.T” Convention

Now, if other modules import the Stack module with the
qualified keyword, the name of the abstract type becomes
Stack.T — nice!

module M where

import qualified Stack

myStack :: Stack.T Int

myStack = Stack.pop (Stack.push 5 Stack.empty)

The “.T” Convention

To keep programs from getting unreasonably verbose when
using this style, the names of modules need to be kept fairly
short. So, if Stack were actually called
Mystuff.Util.Datastructures.Stack, we would rename it
locally using as:

...

import qualified Mystuff.Util.Datastructures.Stack as Stack

...

Summmary

Haskell’s module system is rather basic, as functional
languages go. (For example, OCaml, SML, and PLT Scheme
all offer much more sophisticated features.)

However, it can be used together with some programming
conventions to get the job done in a great many situations.

For example...

Interfaces

Every Haskell module has an interface, in the sense of a set
of facilities (types, values, and classes) that it makes available
to the rest of the world.

However, there is no particular place where its interface is
specified.

• The names that it exports are listed in the exports

clause at the top.
• But the types of these names are not.

In other words, to know how to use a module, we need to
look at its implementation.

Many module systems provide a separate syntactic construct
(which often lives in a separate file!) for writing down
interfaces, so that users of a module are not even tempted
to look at its internals — indeed, they may not be given the
source code for its internals, and the internals may not even
be written yet.

Interfaces

This situation sounds bad for modular programming, but
there are actually a variety of ways to work with it.

Two common ones:

1 Provide interfaces “by convention”

2 Extract interfaces from implementations

Interfaces by Convention

Haskell doesn’t provide any way to put a module’s interface
in a separate file. But it can at least be collected in a
separate part of the file.

module Stack (T, push, pop, empty) where

data T a = EmptyStk | Stk a (T a)

empty :: T a

push :: a -> T a -> T a

pop :: T a -> T a

-- Implementation:

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

Interfaces by Convention

This is not completely satisfactory — the right-hand side of
the definition T belongs in the implementation. But we can fix
that too:

module Stack (T, push, pop, empty) where

type T a = TRep a

empty :: T a

push :: a -> T a -> T a

pop :: T a -> T a

-- Implementation:

data TRep a = EmptyStk | Stk a (T a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

Extracting Interfaces

Another point of view is to leave the type declarations
adjacent to their definitions (which avoids editing two parts of
the file when things change) and instead using a tool to
extract the interface from the module.

Indeed, we can go a step further, keeping not only the type
signature but also the documentation for interface functions.

(Haddock demo.)

