
Page ‹#›

Advanced Programming
Handout 11

Programming With
Streams
(SOE Chapter 14)

Streams

 A stream is an infinite sequence of values.
 We could define a special data type for them:

data Stream a = a :^ Stream a
but in practice it’s easier to use conventional lists,
ignoring [], so that we can reuse the many operations
on lists.

 Streams are often defined recursively, such as:
twos = 2 : twos

 By calculation:
twos 2 : twos 2 : 2 : twos 2 : 2 : 2 : twos …

 This calculation does not terminate – yet it is not the
same as _|_, in that it yields useful information.

 [Another example: numsfrom n = n : numsfrom (n+1)]

Lazy Evaluation
 Two ways to calculate “head twos”:

head twos head twos
 head (2 : twos) head (2 : twos)
 2 head (2 : 2 : twos)

 head (2 : 2 : 2 : twos)
 …

 One strategy terminates, the other doesn’t.
 Normal order calculation guarantees finding a

terminating sequence if one exists.
 Normal order calculation: always choose the

outermost calculation (e.g.: unfolding “head” above
instead of unfolding “twos”).

 Also called lazy evaluation, or non-strict evaluation.
 (In contrast to eager or strict evaluation.)

Example: Fibonacci Sequence

 Well-known sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

 Here is a Haskell program that mimics the
mathematical definition:

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

 Unfortunately, this program is terribly inefficient
(perform the calculation to see this). Indeed, it has an
exponential blow-up.

 Perhaps surprisingly, it is more efficient to create the
infinite stream of Fibonacci numbers first, then select
to the one we need.

Fibs, cont’d

 Note this relationship:
fibs 1 1 2 3 5 8 13 21 34

 + tail fibs 1 2 3 5 8 13 21 34 55

tail (tail fibs) 2 3 5 8 13 21 34 55 89
 This is easily transcribed into Haskell:

fibs = 1 : 1 : add fibs (tail fibs)

where add = zipWith (+)
 And then finally:

fib n = fibs !! n

tail (tail fibs)

Chasing One’s Tail
 Notice in:

fibs 1 : 1 : add fibs (tail fibs)

that “tail fibs” starts right here .
 Introduce a name for that value so it can be shared:

fibs 1 : tf where tf = 1 : add fibs (tail fibs)
 1 : tf where tf = 1 : add fibs tf

 Doing this again for the tail of the tail yields:
 1 : tf where tf = 1 : tf2

 where tf2 = add fibs tf
 Finally, unfold add:

 1 : tf where tf = 1 : tf2
 where tf2 = 2 : add tf tf2

Page ‹#›

Garbage Collection

 Because of sharing, exponential blowup is avoided.
 In a few more steps we have:

fibs 1 : tf
 where tf = 1 : tf2

 where tf2 = 2 : tf3
 where tf3 = 3 : add tf2 tf3

 Now note that “tf” is only used in one place, and thus
might as well be eliminated, yielding:

 1 : 1 : tf2
 where tf2 = 2 : tf3

where tf3 = 3 : add tf2 tf3
 Think of this as “garbage collection” of names.

Stream Diagrams

 An alternative
(perhaps better)
way to depict
sharing is
graphically using a
stream diagram.

 Another example:
client-server
interactions.

1

1

fibs 1,1,2,3,5,8,…

1,2,3,5,8,…

2,3,5,8,…

(:)

(:)

add

