
Page ‹#›

Advanced Programming
Handout 10

A Module of Simple
Animations

(SOE Chapter 13)

Motivation
 In the abstract, an animation is a continuous,

time-varying image.
 In practice, it is a sequence of static images

displayed in succession so rapidly that it looks
continuous.

 Our goal is to present to the programmer an
abstract view of animations that hides the
practical details.

 In addition, we will generalize animations to
be continuous, time-varying quantities of any
value, not just images.

Representing Animations
 As usual, we will use our most powerful tool,

functions, to represent animations:
type Animation a = Time -> a
type Time = Float

 Examples:
rubberBall :: Animation Shape
rubberBall t = Ellipse (sin t) (cos t)

revolvingBall :: Animation Region
revolvingBall t = let ball = Shape (Ellipse 0.2 0.2)

 in Translate (sin t, cos t) ball

planets :: Animation Picture
planets t = let p1 = Region Red (Shape (rubberBall t))

 p2 = Region Yellow (revolvingBall t)
 in p1 `Over` p2

tellTime :: Animation String
tellTime t = "The time is: " ++ show t

An Animator

 Given a function...

animate :: String -> Animation Graphic -> IO ()

...we could then execute (display) the previous
animations like this:

main1 :: IO ()
main1 = animate "Animated Shape“

 (withColor Blue . shapeToGraphic .
 rubberBall)

main2 :: IO ()
main2 = animate "Animated Text“

 (text (100,200) . tellTime)

Definition of “animate”
animate :: String -> Animation Graphic -> IO ()

animate title anim = runGraphics $
do w <- openWindowEx title (Just (0,0)) (Just
(xWin,yWin))

drawBufferedGraphic (Just 30)
 t0 <- timeGetTime
 let loop =
 do t <- timeGetTime

 let ft = intToFloat (word32ToInt (t-t0)) / 1000
 setGraphic w (anim ft)
 getWindowTick w
 loop

 loop

See text for details...

Common Operations
 We can define many operations on animations based

on the underlying type. For example, for Pictures:
emptyA :: Animation Picture
emptyA t = EmptyPic

overA :: Animation Picture
 -> Animation Picture

 -> Animation Picture
overA a1 a2 t = a1 t `Over` a2 t

overManyA :: [Animation Picture] -> Animation Picture
overManyA = foldr overA emptyA

 We can do a similar thing for Shapes, etc.
 Also, for numeric animations, we could define

functions like addA, multA, and so on.
 But there is a better way...

(naturally)

Page ‹#›

Behaviors
 Basic definition (replacing Animation):

newtype Behavior a = Beh (Time -> a)

 Recall that newtype creates a single-argument
datatype with (time and space) efficiency the
same as a simple type declaration.

 (So then what is the difference??)

Behaviors
 We need to use newtype here because

type synonyms are not allowed in type
class instance declarations -- only types
declared with data or newtype.

Constant Behaviors
 Given a scalar value x, we can lift it to a

constant behavior that, at all times t,
yields x:

lift0 :: a -> Behavior a
lift0 x = Beh (\t -> x)

Dependent Behaviors
 Given a function f, we can lift it to a

function on behaviors that, at a given
time t, samples its argument and passes
the result through f:

lift1 :: (a -> b) -> (Behavior a -> Behavior b)

 lift1 f (Beh a) = Beh (\t -> f (a t))

Numeric Behaviors
instance Num a => Num (Behavior a)
where

(+) = lift2 (+)
(*) = lift2 (*)
negate = lift1 negate
abs = lift1 abs
signum = lift1 signum
fromInteger = lift0 . fromInteger

...where:

 lift0 :: a -> Behavior a
 lift0 x = Beh (\t -> x)

 lift1 :: (a -> b) -> (Behavior a -> Behavior b)
 lift1 f (Beh a) = Beh (\t -> f (a t))

 lift2 :: (a -> b -> c) -> (Behavior a -> Behavior b -> Behavior c)
 lift2 g (Beh a) (Beh b) = Beh (\t -> g (a t) (b t))

instance Floating a =>
 Floating (Behavior a)
where
pi = lift0 pi
sqrt = lift1 sqrt
exp = lift1 exp
log = lift1 log
sin = lift1 sin
cos = lift1 cos
tan = lift1 tan
etc.

...and similarly for the other basic classes (Fractional, etc.)

Type Class Magic
 Furthermore, define time as a behavior:

time :: Behavior Time
time = Beh (\t -> t)

 Now consider the expression “time + 42”:
time + 42
 unfold overloaded defs of time, (+), and 42
 (lift2 (+)) (Beh (\t -> t)) (Beh (\t -> 42))
 unfold lift2
 (\ (Beh a) (Beh b) -> Beh (\t -> a t + b t))
 (Beh (\t -> t))
 (Beh (\t -> 42))
 perform some anonymous function applications
 Beh (\t -> (\t -> t) t + (\t -> 42) t)
 and two more
 Beh (\t -> t + 42)

this is cool

Page ‹#›

New Type Classes
 Besides lifting existing type classes such as Num to

behaviors, we can define new classes for
manipulating behaviors. For example:

class Combine a where
empty :: a
over :: a -> a -> a

instance Combine Picture where
empty = EmptyPic
over = Over

instance Combine a => Combine (Behavior a) where
empty = lift0 empty
over = lift2 over

overMany :: Combine a => [a] -> a
overMany = foldr over empty

Hiding More Detail
 We have not yet hidden all the “practical” details of

animation – in particular time itself.
 But through more aggressive lifting...

reg = lift2 Region
shape = lift1 Shape
ell = lift2 Ellipse
red = lift0 Red
yellow = lift0 Yellow
translate (Beh a1, Beh a2) (Beh r) -- note subtlety here

= Beh (\t -> Translate (a1 t, a2 t) (r t))

...we can redefine our red revolving ball without
referring to time at all:

revolvingBallB :: Behavior Picture
revolvingBallB =

 let ball = shape (ell 0.2 0.2)
 in reg red (translate (sin time, cos time) ball)

More Liftings

 Comparison operators:
(>*) :: Ord a => Behavior a -> Behavior a -> Behavior Bool
(>*) = lift2 (>)

 Conditional behaviors:
cond :: Behavior Bool

 -> Behavior a -> Behavior a -> Behavior a
cond = lift3 (\p c a -> if p then c else a)

 For example, a flashing color:
flash :: Behavior Color
flash = cond (sin time >* 0) red yellow

Time Travel

 A function for translating a behavior through time:
timeTrans :: Behavior Time -> Behavior a -> Behavior a
timeTrans (Beh f) (Beh a) = Beh (a . f)

 For example:
timeTrans (2*time) anim -- double speed
(timeTrans (5+time) anim) `over` anim -- one anim 5 sec

 behind another
timeTrans (negate time) anim -- go backwards

 Any kind of behavior can be time transformed:
flashingBall :: Behavior Picture
flashingBall =

 let ball = shape (ell 0.2 0.2)
 in reg (timeTrans (8*time) flash)

 (translate (sin time, cos time) ball)

Final Example

revolvingBalls :: Behavior Picture

revolvingBalls =
overMany [timeTrans (time + t*pi/4) flashingBall

 | t <- map lift0 [0..7]]

See SOE for a more substantial example: a
kaleidoscope program. (The details of its construction can
be skimmed, but you may enjoy running it...)

