
Page ‹#›

Advanced Programming
Handout 10

A Module of Simple
Animations

(SOE Chapter 13)

Motivation
 In the abstract, an animation is a continuous,

time-varying image.
 In practice, it is a sequence of static images

displayed in succession so rapidly that it looks
continuous.

 Our goal is to present to the programmer an
abstract view of animations that hides the
practical details.

 In addition, we will generalize animations to
be continuous, time-varying quantities of any
value, not just images.

Representing Animations
 As usual, we will use our most powerful tool,

functions, to represent animations:
type Animation a = Time -> a
type Time = Float

 Examples:
rubberBall :: Animation Shape
rubberBall t = Ellipse (sin t) (cos t)

revolvingBall :: Animation Region
revolvingBall t = let ball = Shape (Ellipse 0.2 0.2)

 in Translate (sin t, cos t) ball

planets :: Animation Picture
planets t = let p1 = Region Red (Shape (rubberBall t))

 p2 = Region Yellow (revolvingBall t)
 in p1 `Over` p2

tellTime :: Animation String
tellTime t = "The time is: " ++ show t

An Animator

 Given a function...

animate :: String -> Animation Graphic -> IO ()

...we could then execute (display) the previous
animations like this:

main1 :: IO ()
main1 = animate "Animated Shape“

 (withColor Blue . shapeToGraphic .
 rubberBall)

main2 :: IO ()
main2 = animate "Animated Text“

 (text (100,200) . tellTime)

Definition of “animate”
animate :: String -> Animation Graphic -> IO ()

animate title anim = runGraphics $
do w <- openWindowEx title (Just (0,0)) (Just
(xWin,yWin))

drawBufferedGraphic (Just 30)
 t0 <- timeGetTime
 let loop =
 do t <- timeGetTime

 let ft = intToFloat (word32ToInt (t-t0)) / 1000
 setGraphic w (anim ft)
 getWindowTick w
 loop

 loop

See text for details...

Common Operations
 We can define many operations on animations based

on the underlying type. For example, for Pictures:
emptyA :: Animation Picture
emptyA t = EmptyPic

overA :: Animation Picture
 -> Animation Picture

 -> Animation Picture
overA a1 a2 t = a1 t `Over` a2 t

overManyA :: [Animation Picture] -> Animation Picture
overManyA = foldr overA emptyA

 We can do a similar thing for Shapes, etc.
 Also, for numeric animations, we could define

functions like addA, multA, and so on.
 But there is a better way...

(naturally)

Page ‹#›

Behaviors
 Basic definition (replacing Animation):

newtype Behavior a = Beh (Time -> a)

 Recall that newtype creates a single-argument
datatype with (time and space) efficiency the
same as a simple type declaration.

 (So then what is the difference??)

Behaviors
 We need to use newtype here because

type synonyms are not allowed in type
class instance declarations -- only types
declared with data or newtype.

Constant Behaviors
 Given a scalar value x, we can lift it to a

constant behavior that, at all times t,
yields x:

lift0 :: a -> Behavior a
lift0 x = Beh (\t -> x)

Dependent Behaviors
 Given a function f, we can lift it to a

function on behaviors that, at a given
time t, samples its argument and passes
the result through f:

lift1 :: (a -> b) -> (Behavior a -> Behavior b)

 lift1 f (Beh a) = Beh (\t -> f (a t))

Numeric Behaviors
instance Num a => Num (Behavior a)
where

(+) = lift2 (+)
(*) = lift2 (*)
negate = lift1 negate
abs = lift1 abs
signum = lift1 signum
fromInteger = lift0 . fromInteger

...where:

 lift0 :: a -> Behavior a
 lift0 x = Beh (\t -> x)

 lift1 :: (a -> b) -> (Behavior a -> Behavior b)
 lift1 f (Beh a) = Beh (\t -> f (a t))

 lift2 :: (a -> b -> c) -> (Behavior a -> Behavior b -> Behavior c)
 lift2 g (Beh a) (Beh b) = Beh (\t -> g (a t) (b t))

instance Floating a =>
 Floating (Behavior a)
where
pi = lift0 pi
sqrt = lift1 sqrt
exp = lift1 exp
log = lift1 log
sin = lift1 sin
cos = lift1 cos
tan = lift1 tan
etc.

...and similarly for the other basic classes (Fractional, etc.)

Type Class Magic
 Furthermore, define time as a behavior:

time :: Behavior Time
time = Beh (\t -> t)

 Now consider the expression “time + 42”:
time + 42
 unfold overloaded defs of time, (+), and 42
 (lift2 (+)) (Beh (\t -> t)) (Beh (\t -> 42))
 unfold lift2
 (\ (Beh a) (Beh b) -> Beh (\t -> a t + b t))
 (Beh (\t -> t))
 (Beh (\t -> 42))
 perform some anonymous function applications
 Beh (\t -> (\t -> t) t + (\t -> 42) t)
 and two more
 Beh (\t -> t + 42)

this is cool

Page ‹#›

New Type Classes
 Besides lifting existing type classes such as Num to

behaviors, we can define new classes for
manipulating behaviors. For example:

class Combine a where
empty :: a
over :: a -> a -> a

instance Combine Picture where
empty = EmptyPic
over = Over

instance Combine a => Combine (Behavior a) where
empty = lift0 empty
over = lift2 over

overMany :: Combine a => [a] -> a
overMany = foldr over empty

Hiding More Detail
 We have not yet hidden all the “practical” details of

animation – in particular time itself.
 But through more aggressive lifting...

reg = lift2 Region
shape = lift1 Shape
ell = lift2 Ellipse
red = lift0 Red
yellow = lift0 Yellow
translate (Beh a1, Beh a2) (Beh r) -- note subtlety here

= Beh (\t -> Translate (a1 t, a2 t) (r t))

...we can redefine our red revolving ball without
referring to time at all:

revolvingBallB :: Behavior Picture
revolvingBallB =

 let ball = shape (ell 0.2 0.2)
 in reg red (translate (sin time, cos time) ball)

More Liftings

 Comparison operators:
(>*) :: Ord a => Behavior a -> Behavior a -> Behavior Bool
(>*) = lift2 (>)

 Conditional behaviors:
cond :: Behavior Bool

 -> Behavior a -> Behavior a -> Behavior a
cond = lift3 (\p c a -> if p then c else a)

 For example, a flashing color:
flash :: Behavior Color
flash = cond (sin time >* 0) red yellow

Time Travel

 A function for translating a behavior through time:
timeTrans :: Behavior Time -> Behavior a -> Behavior a
timeTrans (Beh f) (Beh a) = Beh (a . f)

 For example:
timeTrans (2*time) anim -- double speed
(timeTrans (5+time) anim) `over` anim -- one anim 5 sec

 behind another
timeTrans (negate time) anim -- go backwards

 Any kind of behavior can be time transformed:
flashingBall :: Behavior Picture
flashingBall =

 let ball = shape (ell 0.2 0.2)
 in reg (timeTrans (8*time) flash)

 (translate (sin time, cos time) ball)

Final Example

revolvingBalls :: Behavior Picture

revolvingBalls =
overMany [timeTrans (time + t*pi/4) flashingBall

 | t <- map lift0 [0..7]]

See SOE for a more substantial example: a
kaleidoscope program. (The details of its construction can
be skimmed, but you may enjoy running it...)

