
Advanced Programming (CSE 399)

Homework Assignment 4

Due Tuesday, February 8, at noon

A collection of files that form the starting point of this assignment is available on the Schedule page under
the main course web page. Begin by grabbing these files, unpacking them, and making sure that you can
successfully run the main program (in Main.hs). Remember that you need to use Hugs for this assignment.

1. Before starting this problem, read Sections 24.1 to 24.4 of SOE.

Here is a slightly more refined variant of the SimpleXML datatype used for the last assignment.

data XML =

PCDATA String

| Element ElementName [Attribute] [XML]

type ElementName = String

type Attribute = (String,String)

Use the facilities described in 24.4 to create an instance declaration making the XML type an instance
of the Show class. Use standard XML concrete syntax for printing SimpleXML structures. For example,
executing

xml = Element "A" []

[PCDATA "data1",

Element "B" [("a1","v1"),("a2","v2")] [PCDATA "moredata"],

PCDATA "data2",

PCDATA "data3",

Element "C" [("a3","v3")] [],

PCDATA "data4"]

main = print xml

should result in the following output on stdout:

<A>data1<B a1="v1" a2="v2">moredata</B>data2data3<C a3="v3"></C>data4</A>



2. Before starting this problem, make sure you thoroughly understand SOE chapter 13 (you can just skim
the kaleidoscope example). You may want to play around with variants of some of the examples in the
chapter before starting on the following steps.

The file Main.hs includes a definition of a very simple planetary system containing just a single object
called sun.

(a) Use the provided function translateB to write a function

orbit :: Behavior Picture -- the satellite

-> Behavior Picture -- the fixed body

-> Float -- the frequency of the orbit

-> Float -- the x-radius of the orbit

-> Float -- the y-radius of the orbit

-> Behavior Picture

that takes two picture behaviors and makes the first orbit around the second at the specified
distance and with the specified radii. That is, the two pictures will be overlayed (using over)
and, at each time t, the position of the satellite will be translated by xradius×cos(t×frequency)
in the x dimension and by yradius× sin(t × frequency) in the y dimension.

Test your function by creating another circle, mercury, colored red and with radius 0.1, and
making it orbit around the sun with a frequency of 2.0, and with radii of 2.0 and 0.2 in the x and
y axes, respectively.

(b) Use your orbit function again to create an earth with a moon orbiting around it. The earth
should be a blue circle of radius 0.2. The moon should be a white circle of radius 0.08. The
orbit of the moon around the earth should be characterized by a frequency of 2.5 and radii of 0.5
and 0.15. Use orbit once again to make this whole system orbit around the sun (in addition to
mercury).

(c) A problem you might have noticed is the overlay behavior of planets. For this part modify orbit
to put planets over or under each other. Hint: you might find the lifted conditional cond from
SOE useful for this part.

(d) Modify your functions (and write any support functions that you find necessary) to make the
orbital distances and planet sizes shrink and grow by some factor (you can pass this factor as
parameter to the orbit function), according to how far the planets are from the observer. For
example, the earth and moon should look a little smaller when they are going behind the sun,
and the orbital distance of the moon from the earth should be less.

Choose the scaling factor so that the solar system simulation looks good to you.

(e) Optional: Add some other planets, perhaps with their own moons. If you like, feel free to adjust
the parameters we gave above to suit your own aesthetic or astronomical tastes. Make sure,
though, that the features requested in parts (c) and (d) — growing, shrinking, occlusion, etc. —
remain clearly visible.

2



3. Extra credit: Figure 13.3 in SOE defines an equality function for behaviors that fails whenever it is
called. This sort of thing represents both an unfortunate weakening of the type system (the compiler
will allow us to write a program that accidentally compares behaviors, even though this makes no
sense) and a danger signal for the design: it generally means that something is not structured properly.
Why do we need it here? Are there similar problems hiding in any of the other numeric classes? Could
the numeric classes be restructured to fix this problem? Would it be a good idea to do so?

Submission instructions:

• Put the solutions to all parts into the file Main.hs. (If you choose to do the extra credit part, either
write your solution as a comment in Main.hs or, if you prefer to use a word processor, email a separate
PDF document.)

Your main action should look exactly like the one provided in our Main.hs:

main =

do print xml

animateB "Solar system" planets

Email (just) the file Main.hs to bcpierce@cis.upenn.edu.

• As usual, make sure this file is accepted by Hugs without errors and follows the other rules in the Style
Guide on the course web page. In particular, please put your name in a comment at the top of the
file. And remember that style counts!

3


