—
1

OBJEC

;
U0 Y

SPAC

PACE
bt R

The Agent ORB for Java

Core Technology
User Guide

Version 1.0.0

/f

I]HJEET/,EFHE[

© 1997 ObjectSpace, Inc. All rights reserved.

ObjectSpace, Inc. has used its best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness.
ObjectSpace, Inc. makes no warranties of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. ObjectSpace, Inc. shall not be liable in any
event for incidental or consequential damages in connection with, or arising from, the furnishing,
performance, or use of these programs.

ObjectSpace Voyager and Space are trademarks of ObjectSpace, Inc.
Javais atrademark of Sun Microsystems.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

RESTRICTED RIGHTS LEGEND:

ObjectSpace Voyager is furnished under alicense and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license.

This document and all online system documentation are © 1997 by ObjectSpace, Inc. All rights
reserved. No portion of this document may be copied, photocopied, reproduced, transcribed,
tranglated, or reduced into any language, in any form or by any means, without the prior written
consent of ObjectSpace, Inc.

This document is subject to change without notice.

Part No. DOC-3000-00
Software Version 1.0.0
First Edition

Printed in the United States of America

Table of Contents

PrETACE ..t viii
PUrPOSE AN AUdIENCE. ..ottt enee e Viii
HOW t0 USE ThiS DOCUMENLoveiuiiiieiieieriisie st viii
Notational CONVENLIONS.........ccceeriiiieeeeiese e ee e seesreeneeneens Viii
RElEEA DOCUMENES.......cuiiiiriiieieiisiesieee ettt st X
DIreCLOrY LaYOULocveiieiieciesieseestee s ee s e e ste e s e e teeste e teesteeteenesnnesneesneesnaesnnesnnens X
EXAMPIE PrOQraMSocveie ettt sttt sttt naenne s X
L= Lo S o] oo o PSR Xi

= ST o] oo SRR Xi
Annual Technical SUPPOrt CONIECES.........ccceevereieeieeiere e Xi
Problem Reports and SUGQESLIONS.cooiiereererereneeee e e Xii
ProduCt UPOELESccuvriiriiieieiisiesie ettt Xii
ACKNOWIBAGMENTS........eoiiieeeeeee sttt ee e Xii
Part 1 ObjectSpace Voyager Overview

IR 1 011 oo 11 o4 i T o SR 1
ATV T Y A0 = o T PSP 1
Future CORBA INtEOIatioNccceeiiieiie e s sieesieeieesteesteesteeaeeeesseeseesaaesnnesneens 2
Voyager Class HIErarChy.........c.coeieceeieese ettt 2

10 = o= 2
L0 = 5.5 SR RSR 3
(o= o (o LT 4

P ©0] [o]=T o PSPPSR TPRTRRTIN 5
L@ o= ox £ 5
Voyager-Enabled Programsccceeeeeeniii et 5
Remote-Enabled Classes and Virtual REFEFreNCES.........cccevvvereeienr e 6
Generating a Remote-Enabled Class........ccccviiieeveiiiecese e 6
Constructing aReMOtE ODJECLoccviieiir e 7
Sending a Message to a ReEMOte ODJECEcccvveeeevieiecece e 7

Table of Contents

Connecting to an Existing Remote ObJeCtccccvviieeieve v 8
1Y o] o1 1 Y2 8
PEISISIENCE. ...ttt bbbttt 10
A = 1S 13
R0 o PP ROPRRPRN 16
IMIESSAgE TYPES ... eeeeeeteetee ettt ettt ettt sttt e st e sae e sae e sbe e she e sae e saeeebeebeenbeenes 18
DYNaMIC MESSAGINGveveiveereerestisteeeesieste st e esae e s e sseesaestesresseessestesresseeseensessens 19
Life Spans and Garbage ColleCtion...........c.cooeeieiiieniecere e 19
K I C 10T (<o I 1o U SRS 20
INEFOTUCTION ...ttt 21
Phase 1: BUildiNg SLOFES........ccvcciiiieiie et ee st e e s re e 22
Phase 2: Launching a Shopping AgQeNt..........cccvvieieeeere e 29
Phase 3: BUYING @N [TEM.......ccciieece et e et 36

Part 2 ObjectSpace Voyager ORB

4 INEFOAUCTION ...ttt 40
5 Fundamental ORB FEATUIES..........cooeiiiriiiiieinie e 41
Starting Voyager Within @aProgram..........ccceveieenieene s csecseeceeeee e see e 42
Starting a Voyager Server fromaCommand Line..........cccoovvveeveveneiisceese e, 44
Remote-ENabling @ ClasS ..ot s 46
TREVCC ULIHITY .o 47
Setting Your CLASSPATH ..o 47
Command Line OPLiONS.........cccvvviieeeeie e 48
CYCliC REFEIENCESee e et snaesree 52
VOB ECE MELNOAS ..o e 53
IMOVEIMENT ...ttt r e r e nre e 53
PEISISIENCE ...ttt 53

I LT 07 1 SRS 53
0] 07 =SSR 53
ASSISIANtS AN LISLENENS.eeieieeeiieeeie ettt ee e neeas 54
Methods That Override Object Methods..........cccccveveieieieece e 54
Remote Construction and MESSagiNg.......cccceecuerreriereiersieeseeseesesseeseesseessessseens 55
REMOLE EXCEPLIONS. ..ottt 61
Storing and Passing Virtual REFErENCES.........ccveveiveeie e 63
Connecting to an EXisting OBJECL..........ccoviiiiiriee e 67
ConNECtiNg Viaan AliBS.......ccoeiiieeiese s 67
Connecting Via @ GUIDcoviiiieeece e 70
Remote Arguments, Serialization, and Morphologyccoceeeeeerieneneerenenenne 72
CYClIC REFEIENCES. ... st ae e ens 74

ObjectSpace Voyager Core Technology User Guide iv

Table of Contents

Inheritance and PolymOrphiSM..........cccoeiiieiieie i 78
10 = o= R 82
EXceptions With INEErfacesccvvveeeiiie e 85
Life Spans and Garbage ColleCtion...........coceoeeieieieneecee e 86

Reference-Based Life Spans.......cccooviieeeieneneeee e 86

FiXEO Lif@ SPANSei ettt 87

Dynamic Reference Updating.........ccocviieeeiineiiceese e 87

Scalability of the Garbage Collection Model ..o 87
0] 07 =SS 94
Y Ao A7 T aTod=To I 1Y T=TI ST Vo T o PSR 97
THMEBOULS......ceieeeeieete ettt sttt b ettt sb e e 98
Thread ManagemMENt........ccce e iierier e e e ee e ee s e re e s te e s te e s e e s reesbeereenreens 105
SMAIT M ESSENGENS......teeiteeiiee it stee sttt e et e b sree s st sbee e saee e sate e sabe e sreesnres 106

ONE-WaY MESSENQENS.....coeiiiieiieirieesieesiee et see et sbe bt se e sanesane s 107

FULUNE M BSSENGEN'S ..o e iieecieecieeeteeetee e stee e stte e ste e ste e s e e ste e ste e enseeesneeesnneens 108

SYNCrONOUS MESSENGENS.c.viveuiriiriiriesieeeiesie sttt 115
DYNaMIC INVOCELION ..ot s 117
Virtual References to RemMOte RESUILS..........cooeeriririreccsese e 125
Events, Listeners, and ASSIStANTSccoiiiiiinineneeese e 128
Listening to @an ObJECEcccviie et e e sne e e nreas 129
ODJECE EVENES ...ttt st sre b e enaeneens 129
Listening to the SYStEMc.ccci e nres 131
SYSEEM EVENTS ..ottt sttt st s b e 131
Listening t0 & SUDSPACE.cccoiiieeee e e 134
SUDSPACE EVENES.....coviiiiceice et s sresreenaennens 134
Y £S = 1 (T I = o1 o S 135
System Tracing With the MONILOr...........cccveiiii e 138
S S = 11 £ TS 141
Vo] o1 1 £SO PSPRSSRSPN 154
Performance Benefits of MObIlityccoeeveeieiiiieececeee e 156
INVOKING & CallDACK........ccciieiice e e 162
(07 o [g0 = W SO 166
MoVving an ACIVE ODJECEccvccieeieeie ettt nneas 167
MOVE EXCEPLIONS.cctiitiieiciesie sttt sttt st ettt re e e 170
M ESSAgE FOrWAIAINGccveeiiieiiece et e e e sreenneas 173
AAGENTS ettt beeaaeean 175
(0= (g To I g 172N 1= o | 176
Y KoY gTe (o J= W T | ! o O 176
Moving t0 ANOthEr OLJECEoccueciece e e 181

ObjectSpace Voyager

Core Technology User Guide v

Table of Contents

MoVing t0 aMOVING ODJECLccoiiiieiiirerieee e 185
Releasing an ObjeCt EarlYcccv it 189
0N o]] U (SR 192
Calculator Example— Getting Started..........cccooeeeeveieiiece e 193
Compiling the Programs..........ccceieieeee vt 195
Running the Applet from aLocal Machine............cocooeiiiiiiie e 195
Running the Applet from aWeh Servercoceoviieeeienereeeee e 196
Chat Example— Applet COmMmUNICALIONScccoeieieeieeieseseeeere e 201
Preparing an Applet for Remote Messaging.........cccveeevveveeneneesiesesieseeniens 204
NEWOIK ROULING.....cvieieeiicciecece ettt ee e s e e nneas 204
Compiling the Programs.........ooviiere e 206
Running the Applet from aLocal Machine............cooeoiiiiiiceie e 206
Running the Applet from aWebh SErvercccevvvvceeceve e 207
Shopper Example— Applets and AgQENtScoooeeeereieeieee e 213
Compiling the Programs..........coviere e 216
Running the Applet from aLocal Machine...........cccoooeveviiiicce e, 216
Running the Applet from aWeb SErvercccovvvvceececece e 217
=T oW o | SO S 230
12 Customizing Voyager Applicationscccooeiriiiieieie e 236
CUSEOM SOCKELS ...ttt sttt sttt 237
SOCKEL FACIOMES.....cviveeeiieiesie ettt 237
Customizing the Default Socket Factorycccvvvvveeevene i, 237
Adding Custom SOcket FaCtOriEScccceveeieicier e 237
Custom Class LOBING.......cccecviuiieeie e e et sreesaeeens 238
Voyager on Multihomed COMPULErS.........cooviireeriere e 239
Part 3 ObjectSpace Voyager Services
I I 1 011 oo 11 o4 i [o TSR 241
14 Database-Independent PersiStENCEcccvvviieiie i 242
(001010 o LTS U R PRPRPR 243
ASSIgNING @ Databhase.........ccceeieiiecie e 243
S YT g o = 1 1 = 243
Loading an ODJECL.........cccueiiiicee et 243
Saving aVirtual REFENENCE..........ccveeeee e 243
Distributing Persistent ODJECESccveceiiiececece e 243
Moving aPersistent ODJECL........cccviiieierie et ee e e e s 243
Removing a Persistent ObJECE........ccccvvieiieiee e 244
Garbage-Collecting a Persistent ObJeCtccccceevieeveevi e e 244
Flushing a Persistent ODJECccceeeeiiiiiecese e 244
PErsisting @ ClaSS.......cccueueiiiicieie et 244
ObjectSpace Voyager Core Technology User Guide vi

Table of Contents

Modifying the Persistence of an ObJeCt..........cccccvvviiieieveiiseece e 244
Starting a Persistent VOYager SEIVESccivveieeieereereeseesie et reeee e s 245
Saving, Loading, and Deleting a Persistent Object..........coccveveveieecevecesienn, 246
Distributed PersiSteNCe........oooviieeeee e e 249
[TU 1T 0o O o=t £SO 254
MODIIE PErSISLENCEeee ettt s 254
Database AAMINISIIAtIONcveeriiiiereeeeres s 260

15 Space: Scalable Group CommMUNICAtION........c.cceveieeiere e 262

CreatiNng @ SPACE. ... eeteeeeeeeeeee et ree et e et esteste s e et e seesbe e e e eesreseeeneeeens 264

MUItiCaStING 10 @ SPACEeeeeeecieeeee ettt s 268

Distributing JavaBeans EVENLS...........ccccceeieiie i ciee e ses e see e see e 271

NESEE SPACES.......eeeeiiiiticeeite sttt s ettt st et e et e s resreesaentesresaeeneenes 276

Publishing MessageSto & SPaCe.cocvveeeererere e 279

Creating aPersiStent SPACEcccvevevereeeeie ettt e e sre e esaeeens 282

Maintaining & SUDSPACE.........coiiieieee et 286

16 Federated DIreCtOry SEIVICE.......cciviiirieiriie et 290

ObjectSpace Voyager Core Technology User Guide vii

Preface

Purpose and Audience

How

This user guide is designed to educate users on the basic operation of the ObjectSpace
Voyager™ Core Technology (Voyager). This user guide is intended for those with abasic
working knowledge of Java™. It explains the power and simplicity of Voyager and benefits
anyone currently developing network Java applications.

to Use This Document

This user guide is organized into three parts. Part 1, “ ObjectSpace V oyager Overview,”
presents a high-level explanation of Voyager, using amix of text, diagrams, and sample code.
Part 2, “ ObjectSpace Voyager ORB,” describes Voyager’s ORB functionality in detail,
including a description of each VVoyager class. Part 3, “ ObjectSpace Voyager Services,”
describes the extra services that come with Voyager.

The chapters of this user guide contain several sections, each of which describe aVoyager
feature using a comprehensive set of examples. We recommend that you read each chapter
sequentially, because examples presented later in a chapter often build on previous examples
in the chapter.

Notational Conventions

The following conventions are used in this guide:

Italic text Used for document titles and user-supplied variablesin
command examples

Arial Narrow font Used for keyboard key names and for field names and
user-supplied text in GUI windows

Couri er Newf ont Used to identify source code, file names, and directory names

Bold Courier New font Used to identify code output
> Used to indicate a user prompt

viii

Preface

Commands that the user typesin a screen and resulting output displayed to the screen are
presented in awindow, as shown below.

>Command typed in screen
Resulting output displayed to screen

Sometimes, all output from a command does not display to the screen at once. When
additional output is presented in awindow, the original command and output text are shaded
gray, and new output is presented in bold. For example:

More output displayed to screen
>

The following key can be used for the diagrams in this manual.

’ program name ‘ Q

V oyager-enabled program Object Virtual object
“‘___j‘ % program name
Agent Virtual agent Forwarder object
. >
Database Message Forwarded message

ObjectSpace Voyager Core Technology User Guide ix

Preface

Related Documents

Voyager comes complete with online APl documentation. Access this materia by opening a
browser on\ voyager 1. 0. O\ doc\ i ndex. ht m .

Information about how to install Voyager is provided in the online Voyager Installation
Guide.

For the most up-to-date information about Voyager and other ObjectSpace products, visit the
ObjectSpace Web site at www.objectspace.com.

Directory Layout

Following is a high-level map of the Voyager directory structure:
\voyager1.0.0

\bin Voyager vcc and voyager scripts

\ doc Documentation files

\ exanpl es Examplefiles

\lib voyager 1. 0. 0. j ar file(Voyager. cl ass files)

Example Programs

Voyager examples shown in this user guide are located in the\ voyager 1. 0. 0\ exanpl es
directory, which also containsvimake. bat and vimeke script files for most of the examples.
This user guide presents each example in the following order:

1. First, the commands used to prepare the example program for execution are presented.
Commands that generate virtual classes and compile Java source code belong in this
category.

2. Next, the commands used to run the example program are presented, followed by the
program output.

3. Finally, thefiles associated with the example program are shown.

Each file associated with an example program is preceded by an example heading. As shown
bel ow, the example heading contains the type of file and the path that describes thefile's
location in the Voyager directory structure. Applets and applications are the main example
programs. Classes and interfaces are the class and interface definitions associated with the
main programs. HTML listings are the HTML source files for the applets.

Applet voyager1.0.0\examples\applets\chat\ChatApplet.java
Application voyager1.0.0\examples\shopper\Build.java

Class voyager1.0.0\examples\orb\Customer.java

HTML voyagerl.0.0\examples\applets\calculator\Calculator.html

Interface voyager1.0.0\examples\applets\shopper\IMall.java

ObjectSpace Voyager Core Technology User Guide X

Preface

Technical Support

ObjectSpace offersits customers the following support options.

Free Support

Our Web site contains useful information about ObjectSpace products. Visit

www .objectspace.com and select the appropriate product to view answers to frequently asked
guestions (FAQ), read about known problems, review technical white papers, or download
new versions of software. Several forums, such as discussion lists, newsgroups, and
notification mailing lists, are also available for select products.

Annual Technical Support Contracts

ObjectSpace offers commercial quality technical support for the Voyager Core Technology
download. This support is sold as an annual contract on a per-product, per-user basis. An
annual support contract offers several important benefits.

e Full-service problem resolution, viatelephone (in North Americaonly), fax, or e-mail, for
one year from the date of purchase.

e All mgjor and minor product upgrades for one year from the date of purchase. Mgjor
upgrades include significant product enhancements and compl ete new documentation.

e Accessto members-only sections and downloads on the ObjectSpace Web site.

e Participation in selective restricted programs for early code access. These programs are
available only to supported customers.

Customers that purchase in volume receive discounts on technical support. Support contracts
arevalid for one year from date of purchase.

Our technical support staff are available from 9:00 a.m. to 5:00 p.m. central time and can be
contacted as follows.

Internet mail: support@objectspace.com

Phone: 972.726.4500
Fax: 972.715.9099
Web site: www.objectspace.com

When you contact our support staff, please have the following items of information available.

e Your support ID number. This number is assigned to your group when you purchase or
renew your support contract. This number is on the support certificate sent to you at the
time you purchase support.

e Theversion number of the product you are using.
e The name and version of the operating system and compiler you are using.
e A small example program that demonstrates the problem, if appropriate.

e Thepreferred time and method of reaching you, in case we cannot solve the problem right
away.

ObjectSpace Voyager Core Technology User Guide xi

Preface

Problem Reports and Suggestions

ObjectSpace welcomes problem reports and suggestions for improving Voyager. All
significant contributionsto V oyager will be acknowledged in future rel eases. Please send your
valuabl e feedback to voyager @objectspace.com. ObjectSpace does not guarantee responsesto
customers without support contracts.

Product Updates

To be notified of new Voyager releases and other V oyager-related news items, do one of the
following.

e Join the automatic e-mail notification service when you download Voyager. This happens
automatically when you download V oyager from the ObjectSpace Web site unless you
explicitly deny automatic notification or enter an incorrect e-mail address.

e Request this service now by sending e-mail to voyager@objectspace.com.

Acknowledgments

Many peopl e contributed to the success of the Voyager product. Thanks to everyone who
contributed to the Voyager Interest Group. With the awareness that someone important might
be left out, and a sincere apology if that is the case, specia thanks go to the following people:

Gad Barnea Scott Ganyo

David Brown Johan Gilliusson
Tilo Christ Jay Gindin

Randy Darling Mike Jenkins

Julio Cesar de Almeida Maia Carey Jung

Richard Deadman Dmitri Kondratiev
Court Demas Steve MacDonald
Erik Eilerts Jaco van der Merwe
Steven Farley Matthias Oelmann

Additionally, Voyager could not have succeeded without the cooperation and help from all
ObjectSpace personnel. Thank you, SpacePeopl el

ObjectSpace Voyager Core Technology User Guide xii

Part 1

ObjectSpace Voyager
Overview

1

Introduction

Part 1 is comprised of three chapters that present a high-level overview of the ObjectSpace
Voyager™ Core Technology (Voyager).

e Read this chapter for a summary of the Part 1 chapters, a quick overview of Voyager and
Voyager's future integration with CORBA, and a Voyager class hierarchy listing.

e Read Chapter 2, “Concepts,” for adescription of Voyager's primary concepts related to
traditional and agent-enhanced distributed computing.

e Read Chapter 3, “Guided Tour,” for an example project that quickly demonstrates the
power and simplicity of Voyager. Chapter 3 contains all steps necessary to build an
agent-enhanced system, complete with full, annotated source code.

What Is Voyager?

ObjectSpace Voyager is the ObjectSpace product line designed to help devel opers produce
high-impact distributed systems quickly. Voyager is 100% Java™ and is designed to use the
Javalanguage object model. Voyager allows you to use regular message syntax to construct
remote objects, send them messages, and move them between programs. This reduces|earning
curves, minimizes maintenance, and, most importantly, speeds your time to market for new
advanced systems. Voyager’ sarchitectureis designed to provide developersfull flexibility and
powerful expansion paths.

Theroot of the Voyager product line is the ObjectSpace Voyager Core Technology. This
product contains the core features and architecture of the platform, including a full-featured,
intuitive object request broker (ORB) with support for mobile objects and autonomous agents.
Alsointhe core package are servicesfor persistence, scalable group communication, and basic
directory services. The ObjectSpace Voyager Core Technology is everything you need to get
started building high-impact systemsin Javatoday.

Asthe industry evolves, other companies providing distributed technologies struggle as they
try to adapt to the new Javalanguage. These companies are required to adapt earlier object
modelsto fit Java. Thisresultsin aseries of compromises that together have adramatic impact
on time to market and devel opment costs. Voyager, on the other hand, is devel oped to use the
Java language as its fundamental interface.

One of Java' s primary differentiationsisthe ability to load classesinto avirtual machine at run
time. This capability enables infrastructures to use mobile objects and autonomous agents as

1 Introduction

another tool for building distributed systems. Adding this capability to older distributed
technologiesis often impractical and results in difficult-to-use infrastructures. V oyager
provides seamless support for mobile objects and autonomous agents.

Future CORBA Integration

Complete bidirectional CORBA integration is scheduled for release as part of the Voyager
Core Technology 1.1.0. This additional Java package allows Voyager to be used asa
CORBA 2 client or server. You will be able to generate a Voyager remote interface from any
IDL file. You will be able to use this interface to communicate with any Voyager or CORBA
server. Without modifying the code, you will be able to export any Java class asa CORBA
server in seconds, automatically generating IDL for use by CORBA implementations.

As part of the Voyager Core Technology, the CORBA integration will also be free for most
commercial use.

Voyager Class Hierarchy

The following lists outline the hierarchy of Voyager’s public interfaces, classes, and
exceptions. A brief description is provided for each class.

Interfaces

o S Database interface.

Y YXoT=Y T T S Smart messenger interface.

Qbj eCt Li St eNEr wovvvveceeie e Interface that allows object event notification.

RESUI t cviiiieieeeee et Result interface.

Resul t Li St @Ner ..ococveceevereireeeceeseeenen Interface that allows result event notification.

I IN=Tok B o SO Unary predicate for applying a boolean pass/fail test
to an object.

Syst enmbLi St €Ner ..occvvveeveveceeeecesie s Interface that allows system event notification.

Voyager O assLoadercccoeveveeveernenne Interface that allows developersto plug in custom
class loading semantics.

Voyager Server SOCKetcovvveeereerveenn. Interface that allows devel opers to define custom
server socket semantics.

Voyager SOCKET uvevievreeireereirecreeeree v Interface that allows devel opers to define custom
client socket semantics.

Voyager Socket Fact oryccceeevvernenne. Interface that allows developersto plug in custom

socket creation semantics.

ObjectSpace Voyager Core Technology User Guide 2

1 Introduction

Classes

DireCctory ccceeeeeeeeeeeeeeennnnnns

I NVErter i,

MONT L OF oo
OneVAyResUl t .ooevveeiieiiiiieee,
Smart Messengeroovvveeeeeeeene.

Future .,

Vo) V2= To [T S
Voyager Dbcuvvveveeieeeieeeeeennninnn,
java. util.Event Obj ect

Qoj ect Event ...cocvvvvvvnciiennnnn,

SubspaceEvent

Resul t Eventccovvvivniiennnnns

SystenkEventccccoeveeeennnnns

j ava. | ang. Securit yManager

Voyager Securi t yManager

Root of all agents.

Building block of a Space.

Information about a persistent object.

Building block of the federated naming service.

Selector that returnst r ue if an object fails a set of
criteria.

Listensto all Obj ect Event events.

Result of OneWay or OneVWayMul ti cast message.
Root of all smart messengers.

Returns immediately. Delivers return value later.
Returns when return value is received.
Returnsimmediately. Does not deliver return value.
Returns immediately. Broadcasts to many objects.

Selector for OneVWayMul ti cast . Usedin
publish/subscribe.

Holds a string or GUID.

Result of synchronous or future messages.
Root of all virtual references.

Root of al virtual references to agents.
Represents a VVoyager program.
Lightweight object storage engine.

Root of all Java events.

Generated by objects when object-level activities
occur.

Generated by subspaces when objects are added or
removed and when neighbors are connected or
disconnected.

Generated by aResul t when reply is received.

Generated by Voyager when system-level activities
occur.

Default security manager.
V oyager-specific security manager.

ObjectSpace Voyager

Core Technology User Guide 3

1 Introduction

Exceptions
java.l ang. EXCeption ...ceereeereeevennne. Root of all Java exceptions.
Voyager EXcepti onccoceeeeeveecnennene. Root of all Voyager exceptions.

Anbi guousAl i asExcept i onMore than one object had the same alias.
d assloadi ngExcepti on......... Voyager could not load a class.
DHEXCEPL i ON wovvevcvecveceeeeesie i Database input/output error occurred.
Deadl ockExcepti on........c....... Condition that causes deadlock occurred.
Di rect or yExcepti on.............. Illegal directory path was supplied.

I nval i dAddr essExcept i onIl1legal address was supplied.
Met hodNot FoundExcept i onMethod was not found.
(bj ect Not FoundExcept i onObject was not found.

Resul t Excepti on ...cccceceveereenee. Attempted to read from aOneWayResul t .
St art upExcepti on...cccceeeeennnn. Program startup error occurred.
Ti meout Excepti oncccceeeeneee. Activity could not be completed in specified time.
Transport Excepti on......o....... Object or message could not be transported.
User EXcepti on coecvveveeeceeecveenne, Wraps a user exception asaVoyager Excepti on.
j ava. | ang. Runt i meExcepti on........... Root of all Java run-time exceptions.
Voyager Runt i mreExcepti on........... Wraps_aVoyager Excepti on asarun-time
exception.

ObjectSpace Voyager Core Technology User Guide 4

2

Concepts

This section describes the concepts behind the ObjectSpace Voyager™ Core Technology
(Voyager) architecture, using a mix of text, example code, and drawings.

Objects

Objects are the building blocks of all Voyager programs. An object is a software component
that has awell-defined set of public functions and encapsulates data. The following object is
an instance of the class St or e with apublic function to accept new stock.

Store store = new Store();
store.stock("w dget", 43);

An object
(an instance L §
of class Store) < Stock("widget",43)

Voyager-Enabled Programs

When a V oyager-enabled program starts, it automatically spawns threads that provide timing
services, perform distributed garbage collection, and accept network traffic. Each

V oyager-enabled program has a network address consisting of its host name and a
communications port number, which is an integer unique to the host.

Port numbers are usually randomly allocated to programs. Thisis sufficient for clients
communicating with remote objects and for creating and launching agents into a network.

However, if aprogram will be addressed by other programs, you can assign awell-known port
number to the program at startup.

Voyager . startup(7000); // assign port number 7000 to this program
Store store = new Store();

A Voyager-enabled
program on the host
london with port 7000 ‘ ‘

london:7000

2 Concepts

Remote-Enabled Classes and Virtual References

A classisremote-enabled if itsinstances can be created outside the local address space of a
program and if these instances can receive messages as if they were local. Voyager allows an
object to communicate with an instance of a remote-enabled class via a special object called a
virtual reference. When messages are sent to avirtual reference, the virtual reference forwards
the messages to the instance of the remote-enabled class. If a message has a return value, the
target object sends the return value to the virtual reference, which returns this message to the

sender.
message L e remote message _
// \\ 4
return value { vstore | < return value
« \ /

london:7000 dallas:8000

After remote-enabling aclass, you can:

e Construct instances remotely, even if the class code does not exist on the remote machine.
e Send messages to remote instances using regular Java™ syntax.

e Connect to existing remote instances in other programs.

e Move objectsto other programs, even if the class codeis not aready in the destination
program.

e Persist the object.

Generating a Remote-Enabled Class

Use Voyager'svcec utility to generate aremote-enabled class from an existing class. Thevcc
utility readsa. cl ass or. j ava file and generates a new virtual class. The virtual class
contains asuperset of the original class functions and allows function callsto occur even when
objects are remote or moving.

Thevirtual classnameisV plusthe original class name. For example, if thefile St or e. j ava
contains the source code for class St or e, the compiled classfileis St or e. cl ass. You can
remote-enable the St or e classby running vcc on either St ore. j ava or St ore. cl ass to
create anew, virtual class named VSt or e.

For more detailed information about remote enabling, refer to “Remote-Enabling a Class’ on
page 46.

ObjectSpace Voyager Core Technology User Guide 6

2 Concepts

Constructing a Remote Object

After remote-enabling a class, you can use the class constructors of the resulting virtual class
to create aremote instance of the original class. The remote instance can reside in your current

program or adifferent program, and a virtual reference to the remote instance is created in
your current program.

To construct aremote instance of a class, give the virtual class constructor the address of the
destination program where the remote instance will reside. If the original class code for the
remote instance does not exist in the destination program, the Voyager network class loader
automatically loads the original class code into the destination program.

Voyager . startup(7000);
VStore vstore = new VStore("dallas: 8000/ Ace"); // alias is Acme

A virtual object A remote object
(an instance of VStore) (an instance of Store)
construct // \\\ remote construction
T ¥ ivstore | e >
london:7000 dallas:8000

When aremote object is constructed, it is automatically assigned a 16-byte globally unique
identifier (GUID), which uniquely identifies the object across all programs worldwide.
Optionally, you can assign an aliasto an object during construction. The GUID or the optional
alias can be used to locate or connect to the object at alater point in time. This directory
serviceisabasic Voyager feature. Voyager also includes an advanced federated directory
service for more complex directory requirements. Refer to Chapter 16, “Federated Directory
Service,” for information.

Sending a Message to a Remote Object

When amessage is sent to avirtual reference, the virtual reference forwards the messageto its
associated remote object. If the message requires a return value, the remote object passes the
return value to the virtual reference, which forwards it to the sender. Similarly, if the remote

object throws an exception, the exception is caught and passed back to the virtual reference,
which throwsit to the caller.

vstore.stock("w dget", 43);

stock("widget’, 43) | - stock("widget", 43)

<return value ! vstore | return value
\ /

london:7000 dallas:8000

ObjectSpace Voyager Core Technology User Guide 7

2 Concepts

Connecting to an Existing Remote Object

A remote object can be referenced by any number of virtual references. To create anew virtual
reference and associate it with an existing remote object, supply the address of the program

where the existing remote object currently resides and the alias of the remote object to the
static VObj ect . f or Cbj ect At () method.

/1 connect using alias
Voyager . startup(9000);

VStore vstore2 = (VStore) VObject.forObjectAt("dallas: 8000/ Acre");
int price = vstore2. buy("w dget");

buy("widget" N buy("widget L buy('widget') /. buy("widget"
uy("widget") { vstore } -2 uy("widget") ouy("widget') { ooz | uy("widget")

london:7000 dallas:8000 toky0:9000

Mobility

Y ou can move an object from one program to another by sending the nroveTo() messageto

the object viaits virtual reference. Supply the address of the destination program as a
parameter.

vst ore. noveTo("tokyo: 9000");

moveTo("toky0:9000") moveTo("tokyo:9000")
> | vstore | >
|] | | | |

london:7000 dallas:8000 toky0:9000

The object waits until al pending messages are processed and then moves to the specified
program, leaving behind a forwarder to forward messages and future connection requests.

(/vstore \\}
\\\ // ‘ @ tokyo0:9000 ‘ ‘

london:7000 dallas:8000 tokyo:9000

ObjectSpace Voyager Core Technology User Guide 8

2 Concepts

Y ou can send a message to an object even if the object has moved from one program to
another. Simply send the message to the object at its last known address. When the message
cannot locate its target object, the message searches for aforwarder. If the message locates a

forwarder representing the object, the forwarder sends the message to the object’ s new
location.

int price = vstore. buy("w dget");

buy("widget") // buy("widget") buy("widget") .
" vstore ! e~ T "
‘ ‘ [toky0:9000 ‘ ‘ ‘

london:7000 dallas:8000 tokyo:9000

Thereturn value is tagged with the remote object’s new location, so the virtual reference can
update its knowledge of the remote object’ s location.

return value with new location

/// \\\\\ ‘/ \\\
return value / \
————— | vstore !
‘ / ‘ ‘ % toky0:9000 ‘ ‘ ‘

london:7000 dallas:8000 tokyo:9000

Subsequent messages are sent directly to the remote object at its new location, bypassing the

forwarder.
buy("widget") PN buy("widget") R
{ vstore |
J ‘ % tokyo:9000 ‘ ‘
london:7000 dallas:8000 toky0:9000

ObjectSpace Voyager Core Technology User Guide 9

2 Concepts

Persistence

A persistent object has a backup copy in a database. A persistent object is automatically
recovered if its program is unexpectedly terminated or if it is flushed from memory to the
database to make room for other objects. Voyager includes seamless support for object
persistence. In many cases, you can persist an object without modifying its source.

Each Voyager program can be associated with a database. The type of database can vary from
program to program and is transparent to a VVoyager programmer. Voyager includes a
high-performance object storage system called Voyager Db, but Voyager works with most
popular relational and object databases.

To save an object to the program’ s database, send saveNow() to the object. This method
writes a copy of the object to the database, overwriting any previous copy. If the programis
shut down and then restarted, the persistent objects are left in the database. Any attempt to
communicate with a persistent object causes the object to be reloaded from the database.

ObjectSpace Voyager Core Technology User Guide 10

2 Concepts

See Chapter 14, “ Database-Independent Persistence,” for more details about V oyager
persistence.

saveNow() Q
| | The saveNow() message writes
london:7000 a copy of the persistent object to
eneen .‘ the database.

System Shutdown System is shut down temporarily.

When the system restarts, the copy of

\ the object remains in the database,
london:7000 - but the actual object is not
immediately restored in its original

location.

message autoload

—_—>
‘ ° When a message arrives, a copy of
Jondon:7000 ;he persistent object is autoloaded
into memory.

The object is restored, the message is
delivered to the object, and a return
value is sent.

return value Q
< Jeturnvalue

london:7000

ObjectSpace Voyager Core Technology User Guide 11

2 Concepts

If apersistent object is moved from one program to another, the copy of the object is
automatically removed from the source program’ s database and added to the destination
program’ s database.

moveTo("dallas:8000") Q
T,

london:7000 dallas:8000 @

\
el
/

A persistent object in london: 7000 and its copy
in the database.

O

‘ % dallas:8000 ‘ ‘ ‘
london:7000 - dallas:8000 -
[% dallas:8000
\ 1\
v P
e /

Forwarders are left behind in The persistent object is moved to dallas:8000,

london:7000 and in the london:7000 and a copy of the persistent object is entered

database. into the dallas:8000 database.

Y ou can conserve memory by using one of thef | ush() family of methods to remove a
persistent object from memory and store it in a database. Any subsequent attempt to
communicate with aflushed persistent object reloads the object from the database.

flushNow() Q
london:7000 ‘.
U The flushNow() message writes a
copy of the persistent object to the

database and causes the actual

object to be garbage-collected from

its original location. The object is

restored the first time a message is
‘ sent to it.

london:7000 -

By default, Voyager’'s database system automatically persists Java classes loaded into a

program across a network, thus avoiding areload of these classes when the program is
restarted.

ObjectSpace Voyager Core Technology User Guide 12

2 Concepts

Agents ‘E—:}

An agent isaspecial object type. Although there is no single definition of an agent, al
definitions agree that an agent has autonomy. An autonomous object can be programmed to
satisfy one or more goals, even if the object moves and |oses contact with its creator.

Some definitions state that an agent has mobility aswell as autonomy. Mobility isthe ability to
move independently from one device to another on a network. VVoyager agents are both
autonomous and mobile. They have all the same features as simple objects—they can be
assigned aliases, have virtual references, communicate with remote objects, and so on.

To create an agent, extend the base class COM obj ect space. voyager . Agent , and then
use Voyager'svcec utility to remote-enable the agent’ s class. Use the resulting virtual classto
instantiate an agent object and use virtual referencesto communicate with this object even if it
MOVES.

Like all objects, an agent can be moved from one program to another. However, unlike simple
objects, an agent can move itself autonomously. An agent can move to other programs,
allowing the execution of distributed itineraries, or an agent can move to other objects,
allowing communication using high-speed, local messaging.

An agent can move to another program and continue to execute when it arrives by sending
itself moveTo() with the address of the destination program and the name of the member
function that should be executed on arrival.

For example, an agentindal | as: 8000 istold to travel. The agent sendsitself anoveTo()
message with two parameters: dal | as: 9000, the destination address, and at Tokyo, the
name of the callback function.

public void travel () // defined in Shopper

{
noveTo("tokyo:9000", "atTokyo");

}
moveTo("tokyo:9000:, "atTokyo")

travel() > N ,,,,,,,,,,, travel() . ,‘Ej\ _ |
‘ london:7000 ‘ ‘ dallas:8000 ‘ ‘ tokyo:9000

ObjectSpace Voyager Core Technology User Guide 13

2 Concepts

The agent then movestot okyo: 9000, leaving behind aforwarder to forward messages.

—\
| (R tokyo:9000 | — |
london:7000 dallas:8000 toky0:9000

After arriving at its new location, the agent automatically receivesthe at Tokyo() message.

atTokyo()
~ —_—
‘ % toky0:9000 ‘ ‘:j ‘

london:7000 dallas:8000 tokyo:9000

The following code in the agent is then executed.

public void atTokyo() // defined in Shopper
{

/1 this code is executed when | nove successfully to tokyo: 9000.

}

If an agent wants to have a high-speed conversation with a remote object, the agent can move
to the object and then send it local Java messages. The easiest way for an agent to moveto an
object isby sending itself avariation of moveTo() that specifies both avirtual reference to
the destination object and a callback parameter.

For example, an agent in dal | as: 8000 istold to buy from a store object. The agent sends
itself amoveTo() message with two parameters: vst or e, avirtual reference to the remote
store object, and shop, the name of a callback function.

public void buyFrom VStore vstore) // defined in Shopper
{

moveTo(vstore, "shop");

}

A remote store object
referenced by vstore
moveTo(vstore, "shop") ‘

buyFrom(vstore) | geaiziz™s, buyFrom(vstore) ~—_\
> v, AN - “—j

london:7000 dallas:8000 tokyo:9000

ObjectSpace Voyager Core Technology User Guide 14

2 Concepts

After leaving behind aforwarder and movingtot okyo: 9000, the agent receives the callback
message shop() with alocal native Java reference to the object st or e.

High-speed, local message

shop(store)

3 b
‘ ‘ ‘ % tokyo:9000 ‘ ‘
london:7000 dallas:8000 toky0:9000

The following code in the agent is then executed.

public void shop(Store store) // defined in Shopper
{
/1 this code is executed when | successfully nove to the store
/1 note that store is a regular Java reference to the store
int price = store.buy("w dget");

}

ObjectSpace Voyager Core Technology User Guide 15

2 Concepts

Space

Many distributed systems require features for communicating with groups of objects. For
example:

e Stock quote systems use a distributed event feature to send stock price eventsto customers
around the world.

e A voting system uses a distributed messaging feature (multicast) to send messages around
the world to voters, asking their views on a particular matter.

e News services use a distributed publish/subscribe feature so that broadcasts are received
only by readers interested the broadcast topic.

Most traditional systems use a single repeater object to replicate the message or event to each

object in the target group.
OO OO
RN /’ //

N \
N \
N \
\
N \ .,
N N / ,
/
\ N / /
N / L
NN / / b 4
A3 NI / . .
. N / / L
~ AN Vi %
\\ DR N A 7 L
o NN Ve e
N \ .
AR s =

london:7000 SN dallas:8000

message ‘ ’—
> [repeater |

tokyo:9000 perth:10000

—————————— » Message being forwarded
and delivered

ObjectSpace Voyager Core Technology User Guide 16

2 Concepts

This traditional approach works well if the number of abjectsin the target group is small, but
does not scale well when large numbers of objects are involved.

Voyager uses adifferent and innovative architecture for message/event replication called
Space™ that can scale to global proportions. Clusters of objects in the target group are stored
in local groups called subspaces. Subspaces are linked to form alarger logical group called a
Space. When amessage or event is sent into one of the subspaces, the message or event is
cloned to each of the neighboring subspaces before being delivered to every object in the local
subspace. This processresultsin arapid parallel fanout of the message or event to every object
in the Space. A special mechanism in each subspace ensures that no message or event is
accidentally processed more than once, regardless of how the subspaces are linked.

meee (VO -
=

london:7000 dallas:8000

toky0:9000 perth:10000

‘«’ Message being delivered
v to local objects

—————————— » Cloned message being
duplicated

@ Subspace

Subspace Link

Voyager’ smulticast, distributed events, and publish/subscribe features all use and benefit from
the same underlying Space architecture.

ObjectSpace Voyager Core Technology User Guide 17

2 Concepts

Message Types

Unlike traditional object request brokers, which use a smple, on-the-wire message protocol,
V oyager messages are delivered by lightweight agents called messengers. Voyager has four
predefined message types.

Synchronous Messages

By default, Voyager messages are synchronous. When a caller sends a synchronous message,
the caller blocks until the message completes and the return value is received. Y ou can use
regular Java syntax to send a synchronous message to an object. Arguments are automatically
encoded on the sender side and decoded on the receiver side.

int price = vstore.buy("Killer Rabbits");

One-Way Messages

Although messages are synchronous by default, Voyager supports one-way messages as well.
One-way messages do not return avalue. When a caller sends a one-way message, the caller
does not block while the message completes.

vstore. buy("Killer Rabbits", new OneWay()); // no return

Future Messages

Voyager aso supports future messages. When a caller sends a future message, the caller does
not block while the message completes. The caller receives a placeholder that can be used to
retrieve the return value later by polling, blocking, or waiting for a callback.

Result result = vstore.buy("Killer Rabbits", new Future());

int price =result.readlnt(); // Block for price.

One-Way Multicast Messages

One-way multicast messages can be used to send one-way messages to all objectsin a Space
using a single operation.

VStore stores = new VStore(space); // gateway into space
stores.stock("video", 25); // send stock() to all stores in space

To send a one-way message to only certain objects in a Space, use a one-way multicast
message with a selector.

ObjectSpace Voyager Core Technology User Guide 18

2 Concepts

Dynamic Messaging

Voyager supports dynamic message construction at run time. The following code creates a
synchronous message at run time using the Java virtual machine syntax for signature
definition.

/1 Dynamically create and execute a synchronous nessage.

Sync sync = new Sync();

sync. set Si gnature("buy(Ljava.lang. String;)!1");

sync.witeject("Killer Rabbits");

Result result = vstore.send(sync);

int price = result.readlnt(); // price

Life Spans and Garbage Collection

Each instance of aremote-enabled class has alife span. When an object reaches the end of its
life span, the object dies and is garbage-collected. Garbage collection destroys an object,
freeing the object’s memory for reclamation by the Java virtual machine.

Voyager includes a distributed garbage collector that supports a variety of life spans.
e Anobject can live forever.

e Anobject can live until there are no more local or virtual referencesto it. By default, an
instance of any class that does not extend Agent hasthiskind of reference-based life span.

e Anobject can livefor a specified amount of time. By default, an instance of any class that
extends Agent livesfor one day.

e Anobject can live until aparticular point in time.

Y ou can change an object’slife span at any time.

ObjectSpace Voyager Core Technology User Guide 19

3

Guided Tour

This chapter guides you through an example project to demonstrate the power and simplicity of the
ObjectSpace Voyager™ Core Technology (V oyager). All steps necessary to build an agent-enhanced,
persistent electronic shopping system are presented, complete with full, annotated source code from
the directory \ voyager 1. 0. 0\ exanpl es\ shopper.

This chapter is not atechnical reference. For information about a particular aspect of V oyager, consult
Part 2, “ ObjectSpace Voyager ORB.”

20

3 Guided Tour

Introduction

One of the hot areas of computer technology is electronic commerce. As companies begin to
allow customers to purchase goods and services electronically, an interesting opportunity
arises for the consumer. Rather than scan the yellow pages for stores that sell the product you
want, why not use a personal shopping agent that can do this for you automatically? Such an
agent could learn your tastes and requirements over time and tirelessly scour the network to
find you the best possible deal. Another advantage of such agentsistheir proactive abilities—
they could be smart enough to locate items similar to those you purchased in the past and
suggest them to you, rather than relying on you to continually prompt them into action.

This chapter demonstrates how to build asimple version of an agent-based shopping systemin
the following phases.

Phase 1: Building Stores. Inthefirst phase, aJava™ classis defined to represent a store.
Two persistent stores are constructed in different V oyager servers, and each storeis added to a
well-known registry. The Voyager servers are then shut down.

Phase 2: Launching a Shopping Agent. Inthe second phase, aJavaclassis defined to
represent a shopping agent. The Voyager servers are restarted, and a persistent shopping agent
named Al f r ed is constructed in one of the servers and told the location of the store registry
and the name of the desired product. Al f r ed sets hisitinerary to the contents of the registry,
visits each store in turn, and then moves to the store with the best price to await further
instructions.

Phase 3: Buying an Item. Inthethird and final phase, a program iswritten that contacts
Al f r ed to request the store location offering the best price. The program then tellsAl f r ed
to die and contacts the recommended store to purchase the item directly.

The remainder of this chapter describes how to complete each phase of the shopping system
using Voyager. The program in this section is text based. For an appl et-based version of the
same program, consult Chapter 10, “Applets.”

ObjectSpace Voyager Core Technology User Guide 21

3 Guided Tour

Phase 1: Building Stores

Thefirst phase of the shopping system project constructs two persistent stores and adds virtual
references to each store into aregistry by performing the following steps:

1. DefineaJavaclass named St or e that represents a store and generate a virtual version of
St or e s0 it can be constructed remotely.

Choose a class for the registry and generate a virtual version of this class.

Write aprogram named Bui | d. j ava that creates two persistent stores and populates the
remote registry.

4. Compilethe Phase 1 programs.

5. Start Voyager serversto hold the persistent remote stores.

6. RunBui | d. cl ass to create the stores and registry.

7. Shut down the Voyager servers.

Therest of this section discusses these steps in detail.

Step 1. Define aJavaclass named Store that represents a store and generate avirtual version
of Store so it can be constructed remotely.

For the purposes of this example, a store has limited behavior. The St or e. j ava program
below givesthe St or e class a name and a hash table that maps the name of a product to its
price. St or e defines functions for adding, pricing, and purchasing a product. Several
functions contain print statements used to track transactions asthey occur. St or e isdefined to
be seriaizable so it can be stored persistently in the default Voyager database.

ObjectSpace Voyager Core Technology User Guide 22

3 Guided Tour

Class voyagerl.0.0\examples\shopper\Store.java
/1 Copyright(c) 1997 bject Space, Inc.
import java.util.Hashtable; // utilize a JDK Hashtable

public class Store inplenents java.io. Serializable

{
String nane;
Hasht abl e products = new Hashtable(); // contains product->price pairs

public Store(String nane)

{

thi s. nane = nane;
Systemout.printin("Build " + this);

}
public String toString()
{
return "Store(" + name + ")",
}

public void stock(String product, int price)
{

Systemout.printlin("stock " + product + " @$" + price);
products. put (product, new Integer(price)); // add product to stock

}

public int getPrice(String product)
{
Integer integer = (Integer) products.get(product); // get price
return integer == null ? 0 : integer.intValue(); // zero if not in stock
}

public int buy(String product) throws |Il1|egal Argunment Exception
{

int price = getPrice(product);

if(price ==0)
throw new ||| egal Argunent Exception("no " + product + " found");

Systemout.println("purchase " + product + " @$" + price);
return price;

}
}

Run the Voyager vcc utility on St or e. Thevcc utility uses the most recently modified
version of the St or e. j ava or St or e. cl ass fileto create avirtual class named VSt or e.

ObjectSpace Voyager Core Technology User Guide 23

3 Guided Tour

For the rest of this guided tour, assume commands are typed from a command line in the
directory voyager 1. 0. O\ exanpl es\ shopper.

>ycc Store

vcc 1.0.0, copyright objectspace 1997

note: VoyagerException not thrown by java.lang.Object:java.lang.String
toString(Q)

>dir Vstore.*

VSTORE~1 JAV 4,658 08-22-97 10:17a VStore.java

>

Like all virtual classes, VSt or e directly or indirectly extends VObj ect , which contains the
functionality common to all virtual objects.

Step 2. Choose aclass for the registry and generate a virtual version of this class.

This guided tour usesthe JDK classj ava. uti | . Vect or astheregistry class. Runvcc to
create avirtual version of Vect or . The following code creates the virtual class VWect or and
placesit in the current directory.

/>vcc java.util. Vector \

vcc 1.0.0, copyright objectspace 1997
note: java.* virtual classes are not placed in a package
note: VoyagerException not thrown by java.lang.Object:java.lang.Object

clone()

note: VoyagerException not thrown by java.lang.Object:java.lang.String
toString(Q)

>dir Wector.*

VVECTO~1 JAV 21,434 08-22-97 11:04a VVector.java

\ J

ObjectSpace Voyager Core Technology User Guide 24

3 Guided Tour

Step 3. Writeaprogram named Build.javathat createstwo persistent stores and popul atesthe
remote registry.

TheBui | d. j ava program below constructs two persistent instances of St or e in local
Voyager servers and populates the persistent registry.

Application voyager1.0.0\examples\shopper\Build.java

/1 Copyright(c) 1997 hject Space, Inc.

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Build

{
public static void main(String args[])
{
try
{
/1 create store in local server @port 8000
VStore storel = new VStore("VideoHeaven", "l ocal host:8000");
storel.liveForever(); // prevent garbage collection
storel.stock("Killer Rabbits", 25); // stock item
storel.stock("Jaws XXII1", 29); // stock item
storel. saveNow(); // beconme persistent, save copy to database
/1 create store in local server @port 7000
VStore store2 = new VStore("MegaHits", "local host:7000");
store2.liveForever(); // prevent garbage collection
store2.stock("Killer Rabbits", 35); // stock item
store2.stock("Jaws XXII1", 30); // stock item
store2. saveNow(); // beconme persistent, save copy to database
/1 create vector with alias "Registry" in |local server @port 8000
Wector registry = new Wector("l ocal host: 8000/ Regi stry");
registry.liveForever();
regi stry. addEl ement (storel);
regi stry. addEl ement (store2);
registry.saveNow(); // store in database
Systemout.println("Registry is " + registry);
Voyager . shut down(); // shutdown program
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 25

3 Guided Tour

TheBui | d. j ava program usesthe VSt or e constructor to instantiate a St or e. Virtual class
constructors have the same arguments as their original classes plus an additional string that
specifies the address of the destination program. In other words, the virtual counterpart of the
constructor St ore(String name) isVStore(String name, String address).
The format of an object’s address resembles a URL and usually includes the host name and
port number of the program in which the object isto be created. Y ou can supply a specific host
name or use the built-in host name| ocal host to denote your current local host.

Store name Store address

/1 create store in the program &port 8000 in ny | ocal Yhost
VStore storel = new VStore("VideoHeaven", "l ocal host:8000");

—

Virtual constructor

TheBui | d. j ava program also creates aremote Vect or and assignsittheaiasRegi stry
in asingle step. VVoyager allows you to assign an alias to a new object using standard URL
syntax. A separate name-binding step is not required.

Program address Alias

/1 create vector with alias "Registry" * *
Wector registry = new Wector("l ocal host: 7000/ Regi stry");/

Constructs the registry

The following excerpt from Bui | d. j ava demonstrates how to prevent an object from being
garbage-collected. By default, a simple (non-agent) remote object is garbage-collected when

there are no more local or virtual referencesto it. Sending thel i veFor ever () message to

an object prevents its garbage collection; that is, the object lives forever unless you explicitly
send it thedi eNow() message. Because the stores and the registry must survive beyond the

lifetime of the program, they are made immortal.

storel.liveForever(); // prevent garbage collection

ThesaveNow() method instructs an object to become persistent and save itself into its
program’ s database.

storel. saveNow(); // become persistent, save copy to database

Step 4. Compile the Phase 1 programs.

Usethej avac command to compile the Phase 1 source code.

javac Store.java Build.java VStore.java Wector.java

ObjectSpace Voyager Core Technology User Guide 26

3 Guided Tour

Step 5. Start Voyager serversto hold the persistent remote stores.

Start a VVoyager server on each of ports 7000 and 8000 by running the voyager command in
two separate windows. As shown below, this command accepts the required port number as an
argument. The - d option instructs Voyager to use the named database file for its persistent
storage. The - ¢ option clearsthe databasefileif one already exists. Note that aV oyager server
runs until it is explicitly terminated, and two Voyager programs cannot share the same port.

Window 1

>voyager 7000 -cd 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 0 objects, 0 classes

Window 2

>voyager 8000 -cd 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 0 objects, 0 classes

Step 6. Run Build.class to create the stores and registry.
Run Bui | d. cl ass inathird window. The following output isinitially displayed.

Window 3

>java Build
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1187

ObjectSpace Voyager Core Technology User Guide 27

3 Guided Tour

Window 3 remainsinactive while Bui | d. j ava constructs the persistent stores and popul ates
theregistry. AsBui | d. j ava executes, additional output displaysin the first two windows:

Window 1

Build Store(MegaHits)
stock Killer Rabbits @ $35
stock Jaws XXI1I11 @ $30

Window 2

P

Build Store(VideoHeaven)
stock Killer Rabbits @ $25
stock Jaws XX111 @ $29

N)

After the stores are constructed and the registry is populated, the Bui | d. j ava program
displays an additional line of output in Window 3, then terminates.

Window 3

Registry is [Store(VideoHeaven), Store(MegaHits)]
>

Step 7. Shut down the Voyager servers.

Phase 1 is now complete. Shut down the two V oyager servers by pressing Ctrl+C in Windows 1
and 2.

ObjectSpace Voyager Core Technology User Guide 28

3 Guided Tour

Phase 2: Launching a Shopping Agent

In this phase, a persistent shopping agent named Al f r ed is used to find the best price for a
product. When launched, Al f r ed sets hisitinerary to the contents of the registry, visits each
storein the itinerary to find the best price, and then parks at the server that contains the best
store to await further instructions. Phase 2 is comprised of the following steps:

Define a class named Shopper that represents a shopping agent.

Write a program named Shop. j ava to instantiate and launch an instance of Shopper .
Create avirtual version of Shopper.

Compile the Phase 2 programs.

Restart the Voyager servers.

o g b~ wWw DN P

Run Shop. cl ass to launch the shopper.

Therest of this section discusses these steps in detail.

Step 1. Define a class named Shopper that represents a shopping agent.

The Shopper class defined below extends the Agent class and adds behavior specific for a
shopping agent. The program does not need to override any specia functions for the agent to
operate correctly. Because Agent implements Ser i al i zabl e, al the nontransient,
nonstatic fields in the agent are automatically maintained as the agent moves.

Class voyager1.0.0\examples\shopper\Shopper.java
/1 Copyright(c) 1997 bject Space, Inc.

i mport COM obj ect space. voyager. *;
import java.util.Vector;
i mport Wector;

public class Shopper extends Agent
{
String product; // the product to |locate
Vector itinerary; // list of stores to visit
int index; // index into itinerary
VStore bestStore = null; // store with cheapest price
int bestPrice = Integer. MAX VALUE; // current best price
bool ean parked = false; // have |I finished?

public void findBestPriceFor(String product, VWector registry)

{
this. product = product;

try
{
moveTo(registry, "atRegistry");
}

cat ch(Voyager Exception exception)

{

Systemerr.println(exception);

ObjectSpace Voyager Core Technology User Guide 29

3 Guided Tour

}
}
public void atRegistry(Vector registry)
{
itinerary = (Vector) registry.clone(); // get local copy of registry
Systemout.println("shopping using itinerary: " + itinerary);
try
{
moveTo((VStore) itinerary.elementAt(index), "shop");
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}

public void shop(Store store)

{

int price = store.getPrice(product);

if(price ==0)
{

Systemout.println("at " + store + ", " + product + " not sold");

}

el se

{

Systemout.println("at " + store + ", " + product + " is $" + price);

if(price < bestPrice) // best store so far

{
/] obtain virtual reference to store
try
{
best Store = (VStore) VObject.forObject(store);
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

bestPrice = price;
}
}

/1 delay to nmake execution easier to follow
try{ Thread.sleep(5000); } catch(InterruptedException exception) {}

try
{
if(++index < itinerary.size())
noveTo((VStore) itinerary.elementAt(index), "shop"); // next store
el se

moveTo(best Store. get ProgramAddress(), "park"); // best store

ObjectSpace Voyager Core Technology User Guide 30

3 Guided Tour

}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
public void park()
{
parked = true;
Systemout.printin("at " + bestStore + ", best price $" + bestPrice);

System out. println("shopper parks at " + Voyager.getAddress());

if(getPersistent()) // if i'mpersistent save ny final state

{
try
{
flushNow(); // save copy to database and flush from nenory
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}
public VStore getBestStore()
{
if(!parked)
throw new || | egal St at eExcepti on("not parked yet");

return bestStore;

}
}

A shopper uses two variations of moveTo() to move and continue execution on arrival:

e WhennoveTo() ispassed aprogram address and a function name, the agent is moved to
the specified program and is then resumed by executing the callback function with no
arguments.

e WhennoveTo() ispassed avirtual reference and afunction name, the agent is moved to
the referenced object and is then resumed by executing the callback function with alocal
reference to the target object asthe single argument. The agent can then communicate with
the target object using high-speed, local Java method calls.

This callback style of programming, familiar to any programmer who has created a graphical
user interface, neatly avoids Java' s inability to maintain an execution stack across virtual
machine boundaries.

If an error occurs at any time during a move, an exception is thrown when the agent calls
nmoveTo() . Because an agent is deactivated conceptually when it executesnoveTo() , a
programming error occursif any code other than exception-handling code follows these
methods.

ObjectSpace Voyager Core Technology User Guide 31

3 Guided Tour

Step 2. Write a program named Shop.javato instantiate and launch an instance of Shopper.

The Shop. j ava program below creates a persistent instance of Shopper withaliasAl f r ed
and tells him to find the best price for avideo named Killer Rabbits.

Application voyager1.0.0\examples\shopper\Shop.java
/1 Copyright(c) 1997 hject Space, Inc.

i mport COM obj ect space. voyager. *;
i mport Wector;

public class Shop

{
public static void main(String[] args)
{
try
{
/1 connect to vector with alias "Registry" in |local server @port 8000
VWector registry =
(Wector) VObject.forObjectAt("local host: 8000/ Registry");
/1 create a shopper with alias "Alfred" in local server @port 7000
VShopper shopper = new VShopper("l ocal host: 7000/ Al fred");
shopper.saveNow(); // becone persistent, save copy to database
/1 ask the shopper to use the registry to find the best price of product
shopper. findBestPriceFor("Killer Rabbits", registry);
/1 shut down program
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

Thefirst line of Shop. j ava usesthe static method VObj ect . f or Cbj ect At () toobtaina
virtual reference to the existing remote Vect or named Regi stry.

The second and third lines of Shop. j ava create a persistent Shopper with aliasAl fr ed.
Unlike asimple (non-agent) object, an agent lives for one day by default. This allows an agent
to roam a network and perform duties without requiring any local or virtual references.
Chapter 4, “Introduction,” explains how you can specify an agent’s life span so that the agent
can either live forever or diewhen it has no local or virtual references.

The fourth line of Shop. j ava instructs Al f r ed to find the best price for the Killer Rabbits
video. When Al f r ed receives the messagef i ndBest Pri ceFor () , he saves the name of
the product for future use and then executes the following code:

noveTo(registry, "atRegistry");

ObjectSpace Voyager Core Technology User Guide 32

3 Guided Tour

Thisfunction deactivates Al f r ed, moves him from server 8000 to the registry in server 7000,
and then reactivates him by sending him the message at Regi st ry() with theregistry asits
single argument. Because Al f r ed is persistent, his database backup copy is automatically
moved between serverswhen Al f r ed moves. When Al f r ed arrives at server 7000, the
original call tofi ndBest Pri ceFor () returns, and the Shop. j ava program terminates.
Al f r ed, however, continuesto executein the Voyager server. He storesaclone of theregistry
and then executes the following code:

noveTo((VStore) registry.elenentAt(index), "shop");

Thiscauses Al f r ed to move to the first store (located in server 8000) and execute shop()
with the store as its single argument. This function gets the price of the product from the store,
updates the variable best St or e if appropriate, and then moves Al f r ed to the next store.
This sequence continues until theitinerary is exhausted, at which point Al f r ed executes the
following code:

noveTo(best Store. get ProgramAddress(), "park");

Thisvariation of noveTo() causes Al f r ed to move into the program that holds the best
store and then execute par k() with no arguments. The par k() method displays a status
message and flushes the final state of Al f r ed to the local database. When par k()
completes, Al fr ed’sthread of execution finishes, but Al f r ed does not die.

Step 3. Create avirtual version of Shopper.

Usevcc to create avirtual version of Shopper .

>vcc Shopper

vcc 1.0.0, copyright objectspace 1997

>di r VShopper. *

VSHOPP~1 JAV 5,926 08-25-97 9:37a VShopper.java
>

Step 4. Compile the Phase 2 programs.
Usethej avac command to compile the Phase 2 source files.

javac Shopper.java VShopper.java Shop.java

Step 5. Restart the Voyager servers.

Restart a VVoyager server on each of ports 7000 and 8000 in two different windows. Asin
Phase 1, use the - d option to load the handles of all persistent objectsin a database.

ObjectSpace Voyager Core Technology User Guide 33

3 Guided Tour

Window 1

>voyager 7000 -d 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 1 object, 0 classes

Window 2

>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 2 objects, 0 classes

ObjectSpace Voyager Core Technology User Guide 34

3 Guided Tour

Step 6. Run Shop.class to launch the shopper.

Run Shop. cl ass inathird window. This program launches Al f r ed and then immediately
terminates. The following output is displayed.

Window 3

>j ava Shop

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1191
>

AsAl f r ed movesfrom server to server to find the best price, additional output displaysin the
first two windows.

Window 1

at Store(MegaHits), Killer Rabbits is $35

Window 2

[~)

shopping using itinerary: [Store(VideoHeaven), Store(MegaHits)]
at Store(VideoHeaven), Killer Rabbits is $25

at Store(VideoHeaven), best price $25

shopper parks at 208.6.239.200:8000

N J

After Al f r ed finds the best price for Killer Rabbits, he parksin server 8000 to await further
instructions. Phase 2 is now complete. Because the stores, registry, and shopper are all

persistent, the VVoyager servers could be shut down and restarted at this point without causing
problems.

ObjectSpace Voyager Core Technology User Guide 35

3 Guided Tour

Phase 3: Buying an Item

In the final phase of the shopping system project, a program is created that contacts Al f r ed,
asks for the best store, tells Al f r ed to die, and then makes a remote purchase from the store.
When Al f r ed dies, hisresources are reclaimed by the local Java virtual machine. Phase 3 is
comprised of the following steps:

1. Writeaprogram called Buy. j ava that uses Al f r ed’s recommendation to purchase a
product.

2. CompileBuy. j ava.

3. RunBuy. cl ass.

Step 1. Write aprogram called Buy.java that uses Alfred’ s recommendation to purchase a
product.

Thefollowing isthe Buy. j ava source code:

ObjectSpace Voyager Core Technology User Guide 36

3 Guided Tour

Application voyager1.0.0\examples\shopper\Buy.java
/1 Copyright(c) 1997 bject Space, Inc.
i mport COM obj ect space. voyager. *;

public class Buy

{
public static void main(String[] args)
{
try
{
/1 connect to Alfred, whose |ast known | ocation was server @port 7000
VShopper shopper =
(VShopper) Vnject.forObjectAt("local host: 7000/ Al fred");
/'l ask the shopper for the best store, waiting if not ready yet
VStore bestStore = getBestStore(shopper);
/1 tell the shopper to die
Systemout.println("sorry Alfred, but i have to kill you now');
shopper.dieNow(); // kill and renove from dat abase
/1 buy the product
int price = bestStore.buy("Killer Rabbits");
Systemout.println("bought video for $" + price + " @" + bestStore);
/1 shutdown program
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
/**

* Get the best store fromthe agent, waiting until the store is available

*/
static VStore getBest Store(VShopper shopper) throws Voyager Exception
{
while(true)
{
try
{
return shopper.getBestStore();
}
catch(Il egal StateExcepti on exception)
{
System out. println("Shopper not parked yet");
try { Thread.sleep(2000); } catch(InterruptedExceptionie) {}
}
}
}
}

ObjectSpace Voyager Core Technology User Guide 37

3 Guided Tour

Step 2. Compile Buy.java.
Usethej avac command to compile the Phase 3 program.

javac Buy.java

Step 3. Run Buy.class.

TheBuy. j ava program connectsto Al f r ed, using his last known location at server 7000,
even though by this time he has moved to the best storein server 8000. Thisis possible due to
thetrail of forwarders Al f r ed leaves behind as he moves. Buy. j ava then attempts to obtain
avirtual reference to the best store. If Al f r ed has not yet parked, an exception is thrown,
which the Buy. j ava program catches. Buy. j ava continuesto attempt to get avirtual
reference to the best store. When successful, the program kills Al f r ed (removing him from
the local database) and makes the purchase.

Running Buy. j ava generates the output below.

>j ava Buy

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1195

sorry Alfred, but i have to kill you now

bought video for $25 @ Store(VideoHeaven)
>

This concludes the guided tour.

ObjectSpace Voyager Core Technology User Guide 38

Part 2

ObjectSpace Voyager
ORB

A

Introduction

Part 2 is comprised of nine chapters that describe the various object request broker (ORB)
features of the ObjectSpace Voyager™ Core Technology (Voyager).

Read this chapter for a summary of the Part 2 chapters.

Read Chapter 5, “ Fundamental ORB Features,” for a description of the features commonly
associated with ORBS, such as the creation of virtual classes, remote instantiation, remote
messaging, connecting to existing objects, and object life spans. Two of the main Voyager
classes introduced are Voyager and VObj ect .

Read Chapter 6, “ Advanced Messaging,” for an explanation of Voyager’'s messaging
capabilities, including lightweight messenger agents. Some of the main Voyager classes
introduced are Messenger , Smar t Messenger , Fut ur e, OneVy, Sync, Resul t,
OneWayResul t, Uni cast Resul t, Resul t Event , and Resul t Li st ener.

Read Chapter 7, “ Events, Listeners, and Assistants,” for an explanation of how to monitor
programs and mobile objects using Voyager’ s events, listeners, and assistants. Some of the
main Voyager classes introduced are Obj ect Event , Obj ect Li st ener,

Syst enEvent , Syst enli st ener, and Moni t or.

Read Chapter 8, “Mobility,” for an explanation of how to move objects between programs
at run time, even as the objects continue to receive remote messages. Also included are
figuresthat illustrate the performance benefits of mability.

Read Chapter 9, “Agents,” for details about the creation and deployment of mobile,
autonomous agents. Some of themain Voyager classesintroduced are Agent and VAgent .

Read Chapter 10, “Applets,” for step-by-step instructions on how to use Voyager to create
network-enabled applets that take full advantage of ORB and agent technology.

Read Chapter 11, “ Security,” for information about restricting the operations that can be
performed by foreign objects. VVoyager’ s security manager allows you to control the
features available to roaming agents. One of the main Voyager classes introduced is
Voyager Securi t yManager .

Read Chapter 12, “ Customizing Voyager Applications,” to learn how to customize your
Voyager applications to your specific needs. Y ou can use custom sockets, extend class
loading behavior, and configure your computer with more than one domain name.

40

5

Fundamental ORB Features

This chapter describes fundamental distributed computing using the ObjectSpace Voyager™
Core Technology (Voyager) features, including remote-enabling classes, exception handling,
virtual references, garbage collection, and life spans. The source code for the examplesin this
chapter islocated in\ voyager 1. 0. 0\ exanpl es\ or b. Execute all commands for
compiling and running the examples from within this directory. Adding\ voyager 1. 0. 0 to
your CLASSPATH is required to run the Voyager example programs. Usually, this path is set
automatically at startup.

41

5 Fundamental ORB Features

Starting Voyager Within a Program

Each Voyager program has a single communications port with a number that is unique to the
program’s local host. Additionally, each Voyager program has a Web root used for remote
classloading, described in detail in Chapter 10, “Applets.” These features enable you to create
objects in remote programs and move the objects between programs.

By default, when you call aVoyager method, Voyager starts on arandom, unique port number
and the Web root is set to a backslash (\). To start Voyager on a specific port number, call
Voyager . st art up() with the desired port number before calling any other VV oyager
methods.

A Voyager program displays a copyright notice, the program address, and the program root
during startup. The address of a program consists of the name of the host and its port number,
separated by acolon. A host name can be either anumeric | P address, like208. 6. 239. 200,
or asymbolic host name, like honer .

Usethej avac command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to compile
the Pr ogr aml. j ava example program:

javac Programl.java

Now run Pr ogr aml. cl ass.

>j ava exanpl es. orb. Progranml

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1072

program address is 208.6.239.200:1072
program running. ..

Application voyager1.0.0\examples\orb\Program1.java
/1 Copyright(c) 1997 bject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Programl

{

public static void main(String args[])

{

/1 display address of program
Systemout.println("programaddress is " + Voyager.get Address());

/1 program code goes here...
Systemout.println("programrunning...");

}

ObjectSpace Voyager Core Technology User Guide 42

5 Fundamental ORB Features

Note: When executed, this example program does not automatically terminate when the last
line of the program is reached. This default behavior allows objects to move in and out of a
program even after the main method of the program has compl eted.

To terminate a Voyager program, execute Voyager . shut down() , which shuts down the
program gracefully by allowing sockets to flush pending data to the network and by cleaning
up al threads. To manually set a program’ s port number, execute Voyager . st art up() in
thefirst line of the main program.

Usethej avac command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to compile
the Pr ogr an?. j ava example program:

javac Progran®.java

Now run Pr ogr an®. cl ass.

>j ava exanpl es. or b. Progran®

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

program address is 208.6.239.200:8000
program running. ..

>

Application voyager1.0.0\examples\orb\Program2.java

/1 Copyright(c) 1997 bject Space, Inc.
package exanpl es. orb;
i mport COM obj ect space. voyager. *;

public class Progran®

{
public static void main(String args[])
{
try
{
/1 initialize programto use port 8000
Voyager . startup(8000);
/1 display address of program
Systemout.println("programaddress is " + Voyager.get Address());
/1 program code goes here...
Systemout.println("programrunning...");
/1 shutdown program gracefully
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 43

5 Fundamental ORB Features

Starting a Voyager Server from a Command Line

A Voyager server isaVoyager program that initially contains no user objects. When you start
aVVoyager server, the server continues to execute until explicitly terminated. Use the
voyager utility to start a Voyager server on a specified port. You can start a VVoyager server
from any directory, regardless of the location of the program source code or object code.

Executing voyager with no arguments displays alist of the command line options:
voyager(tnm) 1.0.0, copyright objectspace 1997

Usage: voyager <argunent |ist>

This utility starts a voyager server on a specified port.
If the server will serve applets froma web server, you
must al so supply the root of pages on the web server.

Valid argunents:

port t he nunber of the port to serve
-C cl ear voyager database
-d <fil enane> use voyager database with specified nanme
-e extended stack trace
-i <interpreter> wuse this interpreter instead of java
-p <int> t he maxi num t hread pool size
-q qui et nbde, do not display status on startup
-r <root> the root of applet codebases
-s install voyager security manager
-t [ohc] trace node
0 = objects
h = housekeepi ng

c conmuni cati ons
- X pass remai ning paraneters to the java interpreter

The- c (clear) and - d (database) options are related to Voyager’ s database support and are
described in detail in Chapter 14, “ Database-I ndependent Persistence.”

The - e (extended) option causes remote exceptions to include Voyager source information in
annotated exceptions. To get this extended stack trace information from within your Voyager
program, use Voyager . set Ext endedSt ackTr ace() .

The-i (interpreter) option allows you to specify adifferent interpreter than the default, j ava.
The - p (pool size) option sets the size of the thread pool used for caching of inactive threads.

The - g (quiet) option inhibits the display of startup information. To disable startup
information from within your VVoyager program, use Voyager . qui et () .

The-r (root) option allows you to override the default location for performing remote class
loading for applets. This option is described in detail in Chapter 10, “Applets.”

The- s (security) option installs a V oyager security manager. See Chapter 11, “ Security,” for
more information.

The-t [ohc] (trace) option causes the server to display information about the events
generated in the Voyager program, such as incoming and outgoing messages, class loading,
and object life spans. The o (object) switch causes object events to be traced,

ObjectSpace Voyager Core Technology User Guide 44

5 Fundamental ORB Features

the ¢ (communication) switch causes communication system events to be traced, and the
h (housekeeping) switch causes housekeeping system events to be traced. See the “ System
Tracing with the Monitor” section of Chapter 7, “ Events, Listeners, and Assistants,” for
information about how to trace your system with VVoyager's Moni t or class.

The - x (extra) option passes all remaining parametersto the Java™ interpreter. Each element
following the - x option must be in the format specified by the Javainterpreter or the
interpreter specified earlier in the command line with the- i option.

ObjectSpace Voyager Core Technology User Guide 45

5 Fundamental ORB Features

Remote-Enabling a Class

Remote-enabling a class allows you to create remote instances of the class and send messages
to the remote instances. In order to remote-enable aclassin VVoyager, simply create a virtual
version of the class using the vcc (virtual class creator) utility, as discussed in detail on page
47. Y ou do not need to modify the classin any way, nor do you need access to the class source
code.

The following rules describe the default relationship between an original class and its virtual
version:

Thevirtual classis placed into the same package as the original class, except for j ava. *
classes, which are placed in no package.

Thevirtual classnameisV plusthe original class name; for example, the virtual version of
class Per son isnamed VPer son.

The virtual class implements the same interfaces as the original class.

If the original class extends the class MySuper C ass, then the virtual class extends the
class VMySuper Cl ass. If the original class extendsj ava. | ang. Qbj ect , the virtual
class extends COM obj ect space. voyager . VObj ect .

Every public constructor ClassName(<args>) t hr ows <exceptions> generates two
public constructors with the signatures:

+ ClassName(<args>, Stringaddress) throws <exceptions>Jr
+ ClassName(<args>, Stringaddress, | ongtimeout) throws <exceptions>Jr

where address specifies the program in which the object should be constructed and
timeout specifies the construction timeout in milliseconds.

Every public instance method <returntype> f oo(<args>) throws <exceptions>
generates two public instance methods with the signatures:

+ <returntype> foo(<args>) throws <exceptions>Jr
+ Result foo(<args>, Messenger messenger)

where Result isaVoyager interface to a class that acts as a placehol der for amethod result
and messenger is the type of Voyager messenger used to deliver the message.

Every public static method <returntype> f oo(<args>) throws <exceptions>
generates four public static methods with the following signatures:

+ <returntype> foo(<args>, String address) throws <exceptions>T

+ <returntype> foo(<args>, String address, | ong timeout) throws
<exceptions>

By default, vcc adds Voyager Except i on to thelist of exceptionsthat avirtual version of a
method can throw. If aclassimplements an interface and there are methods in that interface that do
not declare Voyager Except i on, the virtual class method throws V oyager-related exceptions as
run-time exceptions for those methods. Use the - r (run-time) option to specify that all exceptions
be thrown as run-time exceptions.

ObjectSpace Voyager Core Technology User Guide 46

5 Fundamental ORB Features

+ Result foo(<args>, Messenger messenger, String address)

+ Resultf oo(<args>, Messenger messenger, String address, | ong timeout

)

where address specifies the program in which the static class resides, timeout specifiesthe
message timeout value in milliseconds, Result is aVoyager interface to aclassthat acts as
aplaceholder for a method result, and messenger is the type of Voyager smart messenger
used to deliver the message.

e The private methods, protected methods, package methods, and data fields of the original
class have no counterpartsin the virtual class.

The vcc Utility

To create avirtual version of one or more classes, execute the Voyager vcc utility. Specify the
names of the classes, not including extensionssuch as. cl ass and . j ava. Thevcc utility
searchesthe directories, . zi p files,and . j ar filesin your CLASSPATH environment variable
tofind thefirst. cl ass or. j ava filethat corresponds to each specified file. If the. j ava
fileisthe only file found, or if the. j ava file was modified more recently than the.. cl ass
file,vcc parsesthe. j ava file; otherwise, vcc parsesthe. cl ass file. Thevcec utility
creates, but does not compile, avirtual class for each class specified. Each virtual class hasthe
same package and name as its original class, except the virtual class name beginswith aV; for
example, the virtual version of class Per son isVPer son.

You can runvcc on an interface aswell asaclass. The virtual version of an interface
implements the original interface and extends COM obj ect space. voyager . VObj ect . If
amethod in the original interface does not throw Voyager Except i on, vcc guarantees that
the virtual classimplements the interface by throwing V oyager-related exceptions as run-time
exceptions for that method.

You can aso run vce on an abstract or nonpublic class. In each case, however, the resulting
virtual class cannot be used to construct instances. A constructor that takes a VSubspace is
provided so that instances of the virtual class can serve as gateways into a Space. See Chapter
15, “Space: Scalable Group Communication,” for details.

Setting Your CLASSPATH

When executed, vcc searches for both the class source code and the class object code via
CLASSPATH. The search is automatically successful if the class source files and object files
reside in the same directory. If the class source files and object files reside in different
directories, then, for the search to be successful, the directory structure that leads to the source
files must mirror the directory structure that |eads to the object files, and the root of each path
must be added to CLASSPATH.

ObjectSpace Voyager Core Technology User Guide 47

5 Fundamental ORB Features

For example, the ObjectSpace convention is to place source code and object filesin different
directories. Because ObjectSpace packages begin with the prefix COM obj ect space, the
following directory structureis used for VVoyager:

\voyager1.0.0
\ COM
\ obj ect space
\ voyager Voyager . cl ass files (object code)
\src
\ COM
\ obj ect space
\ voyager Voyager . j ava files (source code)

Note: The object code directory structure mirrors the package structure.

So that vec searches are successful, the CLASSPATH for each ObjectSpace devel oper includes
both\ voyager 1. 0. 0 and\ voyager 1. 0. O\ src.

Command Line Options

Tolist all vcc optionsfrom the command line, execute vcc with no arguments. Thefollowing
output displays.

vcc 1.0.0, copyright objectspace 1997

usage: vcc <argument |ist>

vcc creates the source of virtual classes from.class

and .java files. By default, non-java.* virtual classes are
pl aced into the sanme package as the original class and

java.* virtual classes are not placed into a package.

valid argunents:

file nane of class to be processed, w thout extension

-d <pat h> store packages relative to <path>

-e <cl ass> pretend subsequent cl asses extend <cl ass>

-i <interpreter> use <interpreter> instead of java

-m <cl ass> <package> virtual version of <class> was placed into <package>
-0 out put interface version of classes

-p <package> put virtuals of subsequent classes into <package>
-q qui et node, do not display copyright notice

-r t hrow voyager-related errors as runtime exceptions
-V ver bose node, display status while processing

-d (directory) Option

By default, vcc placesthe. j ava and. cl ass filesof avirtual classinto the current working
directory. The - d option allows you to specify a different root directory to store the virtual
classesin. This option is analogousto the - d option of j avac.

ObjectSpace Voyager Core Technology User Guide 48

5 Fundamental ORB Features

For example, to create avirtual version of exanpl es. or b. Adder (assuming Voyager is
installed in\ voyager 1. 0. 0), execute the vcc utility as shown:

>vcc exanpl es. orb. Adder -d \voyager1.0.0
vcc 1.0.0, copyright objectspace 1997
>di r \voyager 1. 0. 0\ exanpl es\ or b\ VAdder . j ava

VADDER~1 JAV 6,255 08-25-97 12:09p VAdder.java
>

If your current directory is the same as the output directory, you can omit the - d argument.

>cd \voyager 1. 0. O\ exanpl es\orb

>vcc exanpl es. orb. Adder

vcc 1.0.0, copyright objectspace 1997
>di r VAdder.j ava

VADDER~1 JAV 6,255 08-25-97 12:09p VAdder.java
>

Similarly, if your current directory is the same as the one containing the source code and
object code of the original class, you do not have to supply the full class name.

>cd \voyager 1. 0. O\ exanpl es\orb

>vcc Adder

vcc 1.0.0, copyright objectspace 1997
>di r VAdder.j ava

VADDER~1 JAV 6,255 08-25-97 12:09p VAdder.java
>

-i (interpreter) Option

By default, vcc isexecuted by j ava. To override this default, usethe- i option followed by
the name of the required interpreter. For example, if you are using the Microsoft devel opment
system, you can specify vec -i j vi ew.

-p (package) Option

By default, vcc does not placej ava. * virtua classesinto any package, but it placesal other
virtual classes into the same package as the original class. To override this default, usethe - p
option followed by the name of apackage. The virtual versions of all subsequent classes on the
command line are placed into the specified package.

For example, to create avirtual versionof j ava. uti | . Vect or and placeit into the package
t est relativeto\ voyager 1. 0. 0, use the following command:

vcc -p test java.util.Vector -d \voyagerl.0.0

ObjectSpace Voyager Core Technology User Guide 49

5 Fundamental ORB Features

-m (map) Option

The - moption isused to instruct vcc about previous uses of the - p option. For example,
suppose you create avirtual version of j ava. uti | . Di cti onary asfollows:

vcc -p test java.util.Dictionary -d \voyagerl.0.0

Now, suppose you want to create avirtual version of j ava. uti | . Hasht abl e that inherits
fromj ava. util.Dictionary. Forvcc to know where the virtual version of
java.util.Dictionary resides, you must use the - moption followed by the name of the
original class and the original class package.

vcec -p test java.util.Hashtable -d \voyager1.0.0 -mjava.util.Dictionary test

The - moption is unnecessary if you can place all of the classes to be repackaged on the same
command line.

vcc -p test java.util.Dictionary java.util.Hashtable -d \voyager1.0.0

-e (extended) Option

By default, if subclass Al pha inherits from superclass Bet a, then the virtual class VAl pha
inherits from VBet a. The - e option forcesvcc to treat all subsequent classes on the
command line asif each extends a different specified class. For example, if you create an
applet class My Appl et that extendsj ava. appl et . Appl et , you can forcevcec totreat
MyAppl et asif it extendedj ava. | ang. Obj ect asfollows:

vce -e java.lang. Object MyAppl et

The resultant virtual class VMy Appl et extends COM obj ect space. voyager . VQObj ect .
The - e option is particularly useful if you want to avoid sending an object messages that are
defined in the object’ s superclasses and if you want to avoid processing every classin the
object’ s superclass chain.

-r (run-time) Option

Voyager supports two exception handling policies: Voyager can throw a V oyager-related
exception as a checked exception (Voyager Except i on) or as arun-time exception
(Voyager Runt i nreExcepti on).

By default, vcc generates methods that throw the checked exception Voyager Except i on.
This exception is thrown if any Voyager-related exception occurs during the method call,
including network errors and class-loading problems. Because Voyager Except i on isnot a
run-time exception, a user of the virtual class must explicitly catch Voyager Excepti on
when calling aremote method. However, if one of the interfaces implemented by the class
declares a method of the same signature, but the interface method does not throw

Voyager Except i on, then vcc createsthe virtual class so that each Voyager-related
exception caused by the remote method isthrown asaVoyager Runt i meExcepti on. This
approach ensures that the generated virtual class implements the interface. In other words,
Voyager-related exceptions are thrown as checked exceptions when possible, as run-time
exceptions when necessary.

The-r option causesvcc to take the opposite approach. Thatis, vcc - r generatesthe virtual
class so that V oyager-related exceptions are thrown as run-time exceptions when possible, as

ObjectSpace Voyager Core Technology User Guide 50

5 Fundamental ORB Features

checked exceptions when necessary. If the target class implements an interface that defines a
method with the same signature as the remote method, but the interface method declares
Voyager Except i on initsthrows clause, then vcc generates the remote method to throw
Voyager Excepti on.

To promote good programming practices, most of the examples in this document are
processed without the - r option.

-gq (quiet) Option
By default, vcc displays a copyright notice. Use the - g option to disable this notice.

-v (verbose) Option

By default, no statusis printed asvcc operates. Usethe - v option to view status output.

-0 (output interface) Option

The - o option instructs vcc to generate an interface definition from the original class. For
example, to generate an interface for a class Per son, use the following command.

vcc -0 Person

This generates the interface | Per son that includes all public methods defined by Per son.
Each method declares Voyager Except i on initst hr ows clauses. Per son should then be
modified to implement | Per son and can be remote-enabled with vcc by using the following
command.

vce Person

Both Per son and VPer son then implement | Per son, and users can use interface
programming to hide the underlying implementation. See “Interfaces’ on page 82 for more
information.

vcc Notes

Periodically, vcc prints notes to the console, each preceded by the word note. If vec isrunon
aclass that implements an interface and some of the interface methods do not declare
Voyager Except i on intheir t hr ows clauses, Voyager prints a note to the console to notify
the devel oper that run-time exceptions will be thrown. To seeavcc note, runvcc on
exanpl es. or b. Account (assuming VVoyager isinstalledin\ voyager 1. 0. 0).

>vcc exanpl es. orb. Account -d \voyager1.0.0
vcc 1.0.0, copyright objectspace 1997
note: VoyagerException not thrown by java.lang.Object:java.lang.String

toString(Q)
>

ObjectSpace Voyager Core Technology User Guide 51

5 Fundamental ORB Features

By default, vcc doesnot placej ava. * classesinto a package. The developer is reminded
about this default behavior viaanoteeachtimevcc isrunonaj ava. * class, asshowninthe
following example.

>vce java. util. Vector ‘\\
vcc 1.0.0, copyright objectspace 1997

note: java.* virtual classes are not placed in a package

note: VoyagerException not thrown by java.lang.Object:java.lang.Object
clone()

note: VoyagerException not thrown by java.lang.Object:java.lang.String
toString()

>

)

Cyclic References

If two or more classes contain cyclic virtual references to each other, all of the classes
involved in the circular reference must be processed by vcc before any of their virtual classes
are compiled. For example, if a Man class contains a VWbnman, and a Wnan class contains a
VMan, use the following commands to create and compile the virtual classes:

vcc Man Wman
javac VMan.java VWéman. j ava

For an example that uses these cyclic references, read the “ Cyclic References’ section on
page 74.

All classes containing cyclic references also must be found explicitly in the CLASSPATH
directories, not only the current directory.

ObjectSpace Voyager Core Technology User Guide 52

5 Fundamental ORB Features

VObject Methods

Once processed with vcc, aclass can be sent messages and remotely constructed. However,
thisisjust the beginning of what a remote-enabled object can do. Virtual references to objects
are instances of VObj ect subclasses and, as such, contain awide variety of methods that
transparently add significant functionality to domain objects. A brief synopsis of afew of the
commonly used methods and features are described below. For details on these and many
more methods and features, read about the class COM obj ect space. voyager . VObj ect
in the API documentation.

Movement

ThenoveTo() family of methods allows a remote-enabled object to be moved around the
network or moved to other objects and agents. These methods also allow a moved object to be
sent callbacks with optional parameters upon arrival at its destination. When noveTo() is
sent to an object with aremote object as the destination, the moving object performs the
following actions.

1. Locates and moves to the remote object, even if the remote object is moving around the
network

2. Locksthe remote object
3. Exchanges high-speed, raw Java™ messages with the now-local object

ThenoveTo() methods are often used for load balancing, disconnected operation, and
message performance enhancement. See Chapter 8, “Mobility,” for more information.

Persistence

The save() andf | ush() methodsallow objectsto be transparently saved and flushed from
memory to persistent storage. These methods can be used with Voyager’ s built-in
object-storage system or with avariety of third-party databases. See Chapter 14,
“Database-Independent Persistence,” for more information.

Life Spans

Thedi e() family of methodsis used to customize the life span of remote-enabled objects. A
comprehensive toolkit of methods is provided for tailoring Voyager’s distributed
garbage-collection mechanism on an object-by-abject basis. Refer to “Life Spans and Garbage
Collection” on page 86 of this chapter for more information.

Properties

The property() family of methods provides away to attach arbitrary key-value properties
to aremote-enabled object. This mechanism is leveraged by the publish/subscribe feature, in
which one or more subscribe properties are attached to an object. Refer to “Properties’ on
page 94 of this chapter and to Chapter 15, “ Space: Scalable Group Communication,” for more
information about properties.

ObjectSpace Voyager Core Technology User Guide 53

5 Fundamental ORB Features

Assistants and Listeners

TheaddAssi st ant () and addLi st ener () family of methods allows you to attach an
Obj ect Li st ener to any remote-enabled object. Voyager automatically generates an

Obj ect Event if aremote-enabled object has an Obj ect Li st ener and something of
specified interest happens to the object. Therefore, an bj ect Li st ener can receive events
for almost every object behavior, including movement, dying, saving, and messaging.

oj ect Li st ener objects can be added as assistants if the listeners need to move with or be
persisted with the event source. Consult Chapter 7, “ Events, Listeners, and Assistants,” for
details.

Methods That Override Object Methods

Of particular interest are the methods that override those of thej ava. | ang. Obj ect class.
Therealities of distributed computing sometimes force these methods to be implemented on
the virtual referenceitself, rather than being delivered to the remote object. The semantics of
each of the methods that override the methods on class Cbj ect are described below.

equals()

When invoked on two virtual references, the equal s() method returnst r ue if both virtual
references point to the same remote object, that is, if they have the same GUID. This
comparison does not generate extra message traffic because no messages are sent to the
remote object.

hashCode()

When invoked on the virtual object, the hashCode() method returns a hash code based on
the remote abject’s GUID. Likeequal s(), thehashCode() method does not send a
message to the remote object, so no extra message traffic occurs.

toString()

Thet oSt ri ng() method isinvoked on the remote object. To maintain the signature of
oj ect.toString(),vcc cannot add Voyager Except i on tothet hr ows clause of

t oString() . Asaresult, each Voyager-related exception isthrown as a

Voyager Runt i neExcept i on. Because callsinvoked across the network can fail in many
ways, every invocation of t oSt ri ng() should be accompanied by atry-catch statement to
prevent aVoyager Runt i neExcept i on from terminating the invoking thread.

clone()

If aclassimplementscl onabl e and exposescl one() asapublic method, the virtual class
cl one() method isgenerated. This method is executed on the remote object, and the result of
the clone is serialized across the network and returned to the caller. Aswitht oSt ri ng(),
callers should accompany an invocation of cl one() with atry-catch statement to prevent a
Voyager Runt i mneExcept i on. To create a clone of the virtual reference, use

VObj ect . cl oneRef er ence() . To clone the remote object but return a new virtual
reference to the clone, invoke set Vi rt ual () beforeinvoking cl one() .

Other Methods
All other methods of Cbj ect are implemented on the virtual reference itself.

ObjectSpace Voyager Core Technology User Guide 54

5 Fundamental ORB Features

Remote Construction and Messaging

As discussed on page 46, you can remote-enable a class by creating a virtua version of the
class. Remote-enabling a class allows you to construct a remote instance of the original class
in any program and send messages to the remote instance.

To construct aremote instance of aclass, supply the virtual class constructor the address of the
destination program where the remote instance is to reside. If the original class code for the
remote instance does not exist in the destination program, the Voyager network class loader
automatically loads the original class code into the destination program. If the original classis
abstract, the virtual class still can be used to construct instances, but only as gatewaysinto a
Space. See Chapter 15, “ Space: Scalable Group Communication,” for details.

To send a message to aremote instance, simply send a message to its virtual reference; the
message is automatically forwarded to the remote instance. Return values and exceptions are
returned to the virtual reference, which passes them to the sender.

By default, a simple (hon-agent) remote object is destroyed when it no longer has local or
virtual references. If you want aremote object to live whether it has references or not, send
| i veForever () totheobject. To destroy an object explicitly, send it the di eNow()
message. Object life spans are discussed in more detail on page 86.

A virtual class has methods for each public constructor and each public static method in the
original class. However, each virtual class method has an additional argument: the destination
address, that is, the program where the function should be executed. The built-in address

| ocal host refersto your current local host. If you specify | ocal host without a port
number, the local program port number is used.

Each remote object is assigned arandom, 16-byte globally unique id (GUID). When
displayed, a GUID is formatted like a numeric IP address. The address of an object isthe
object’s program address followed by a slash (/) and its GUID. To get an abject’s program
address and GUID, use get Obj ect Addr ess() and get GUI D() , respectively. To get a
remote object’ s program address, use get Pr ogr amAddr ess() .

The Account 1. j ava example program creates an instance of Account in the local
program, sends the instance messages, and then executes a static method.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
compile Account 1. j ava:

vcc Account
javac Account.java VAccount.java Accountl.java

ObjectSpace Voyager Core Technology User Guide 55

5 Fundamental ORB Features

Now run Account 1. cl ass.

/égava exanpl es. orb. Account 1 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1110
Construct with initial balance 0
program address = 208.6.239.200:1110
Account address =
208.6.239.200:1110/221-49-244-233-168-93-38-63-231-205-72-134-
111-72-132-214
Account id = 221-49-244-233-168-93-38-63-231-205-72-134-111-72-132-214
application = 208.6.239.200:1110
initial balance is 0
deposit 1000
deposit 1000
balance is 1000
accounts opened in localhost = 1

\ /

Class voyagerl1.0.0\examples\orb\Account.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.orb

public class Account

{
static int opened; // nunber of opened accounts in program
int balance; // current bal ance

publ i c Account ()
{

Systemout.println("Construct with initial balance 0");
++opened;

}
public Account(int anpunt)
{

Systemout.println("Construct with initial balance " + anmount);

if(amount < 0)
throw new |11 egal Argunent Exception("cannot initialize with "+amunt);

bal ance = anount;

++opened;
}
public String toString()
{
return "Account(" + balance + ")";
}

public synchroni zed int deposit(int anmount)

{

ObjectSpace Voyager Core Technology User Guide 56

5 Fundamental ORB Features

Systemout.println("deposit " + anount);

if(amount < 0)
throw new ||| egal Argunent Exception("cannot deposit " + anount);

bal ance += anount;
return bal ance;

}

public synchronized int withdraw(int anount)
t hrows Not EnoughMoneyExcepti on

{

Systemout.println("withdraw " + anpunt);

i f(balance < anpunt)
t hr ow new Not EnoughMoneyException(anmount + " > " + bal ance);

bal ance -= anount;
return bal ance;
}
public synchroni zed int getBal ance()
{
return bal ance;
}
static public int getQpened()
{
return opened;
}

}

ObjectSpace Voyager Core Technology User Guide 57

5 Fundamental ORB Features

Application voyager1.0.0\exampels\orb\Accountl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Accountl

{
public static void main(String args[])
{
try
{
/1 create account in my local program
VAccount account = new VAccount("local host");
/1 display address and id information
Systemout.println("program address = " + Voyager.get Address());
Systemout. println("Account address = " + account. get Cbj ect Address());
Systemout.println("Account id =" + account.getGU D));
Systemout.println("application = " + account. get ProgranAddress());
/'l execute sone instance mnethods
Systemout.println("initial balance is " + account.getBal ance());
System out. println("deposit 1000");
account . deposit(1000);
Systemout.println("balance is "+account. getBal ance());
/'l execute a static method
int count = VAccount.get Opened("Il ocal host");
Systemout. println("accounts opened in |ocalhost =" + count);
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 58

5 Fundamental ORB Features

The Account 2. j ava example program isthe sasme as Account 1. j ava except

Account 2. j ava remotely constructs the account in server 8000 using the remote variation
of the constructor that allows an initial balance to be specified. Use the following command
fromthe\ voyager 1. 0. O\ exanpl es\ or b directory to compile Account 2. j ava

javac Account?2.java

Start a server on port 8000 in one window, and then run Account 2. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct with initial balance 1000

deposit 1000

Window 2

/<; ava exanpl es. orb. Account 2 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1111
application address = 208.6.239.200:1111
Account address =
208.6.239.200:8000/122-197-2-32-202-20-102-84-131-66-72-134-11
1-72-159-192
Account id = 122-197-2-32-202-20-102-84-131-66-72-134-111-72-159-192
application = 208.6.239.200:8000
initial balance is 1000
deposit 1000
balance i1s 2000
accounts opened in localhost:8000 = 1

\ /

ObjectSpace Voyager Core Technology User Guide 59

5 Fundamental ORB Features

Application voyagerl.0.0\examples\orb\Account2.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Account?2

{
public static void main(String args[])
{
try
{
/'l create account with initial balance of 1000 in a renpte application
VAccount account = new VAccount(1000, "l ocal host:8000");
/1 display address and id information
Systemout.println("application address = " + Voyager.get Address());
Systemout. println("Account address = " + account. get Cbj ect Address());
Systemout.println("Account id =" + account.getGU D));
Systemout.println("application = " + account. get ProgranAddress());
/'l execute some renote instance nethods
Systemout.println("initial balance is " + account.getBal ance());
System out. println("deposit 1000");
account . deposit(1000);
Systemout.println("balance is " + account.getBal ance());
/'l execute a renote static method
int count = VAccount. get Opened("I ocal host: 8000");
Systemout. println("accounts opened in |ocal host:8000 =" + count);
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 60

5 Fundamental ORB Features

Remote Exceptions

The Account 3. j ava example program demonstrates how remote exceptions are handled.
When aremote exception occurs, it is shipped to the virtual reference and then rethrown. Use
the following command from the\ voyager 1. 0. O\ exanpl es\ or b directory to compile
Account 3. j ava:

javac Account 3. ava
Start a server on port 8000 in one window, and then run Account 3. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct with initial balance 500

withdraw 1000

deposit -1

Window 2

/15 ava exanpl es. orb. Account 3 ‘\\

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1113

withdraw 1000

examples.orb.NotEnoughMoneyException: 1000 > 500
at examples.orb.Account.withdraw(Account. java:48)
thrown remotely from 208.6.239.200:8000

deposit -1

jJava.lang.lllegalArgumentException: cannot deposit -1
at examples.orb.Account.deposit(Account. java:37)
thrown remotely from 208.6.239.200:8000

_ Y,

ObjectSpace Voyager Core Technology User Guide 61

5 Fundamental ORB Features

Application voyagerl.0.0\examples\orb\Account3.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Account3

{
public static void main(String args[])
{
try
{
// create a renpte account with initial balance of 500
VAccount account = new VAccount(500, "I ocal host:8000");
try
{
Systemout.println("w thdraw 1000");
account.withdraw(1000); // w thdraw too much
Systemout.println("balance is " + account.getBal ance());
}
cat ch(Not EnoughMoneyExcepti on exception)
{
Systemerr.println(exception);
}
try
{
Systemout.println("deposit -1");
account.deposit(-1); // deposit too little
Systemout.println("balance is " + account.getBal ance());
}
catch(|11l egal Argunent Excepti on exception)
{
Systemerr.println(exception);
}
Voyager . shut down() ;
}
catch (Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 62

5 Fundamental ORB Features

Storing and Passing Virtual References

A virtual reference can be stored and passed around like any other Java object. Because a
virtual reference contains only the address of a remote object plus a small amount of
bookkeeping information, storing and passing are efficient.

Use the static method VObj ect . f or Gbj ect (Obj ect obj ect) toobtainavirtual
reference to asimplelocal object. Although this method always returns the virtual instance as
aVObj ect , Voyager looks for the most specific virtual class available for the given object’s
class. Thisclassisinstantiated and the instance is returned. Cast the instance to the appropriate
class or interface.

TheBank1. j ava example program demonstrates the storing and passing of virtual
references. The program creates a remote bank and two customers, allocates each customer a
remote account, and then arranges for each customer to make a deposit into his account.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compile the Bank1. j ava program:

vcc Bank Custoner
javac Bank.java VBank.java Custoner.java VCustoner.java Bankl.java

Start a server on port 8000 in one window, and then run Bank 1. cl ass in asecond window.

Window 1

/;;oyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
Construct with initial balance 0
Construct customer David
Construct with initial balance 0
deposit 1000
deposit 2000
balance of David is 2000
accounts are
Account(1000)
Account(2000)

-)

Window 2

>j ava exanpl es. or b. Bank1l

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1115

Construct customer Graham

balance of Graham is 1000

>

ObjectSpace Voyager Core Technology User Guide 63

5 Fundamental ORB Features

Class voyagerl1.0.0\examples\orb\Bank.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

import java.util.Vector;
i mport COM obj ect space. voyager. *;

public class Bank

{

Vector accounts = new Vector(); // vector of bank accounts

publ i c VAccount newAccount () throws Voyager Exception
{

Account account = new Account();
account s. addEl ement (account);

/]l return a virtual reference to the account
return (VAccount) VQbject.forObject(account);

}

public void printAccounts()

{
Systemout.printlin();

Systemout.println("accounts are");

for(int i =0; i < accounts.size(); i++)
Systemout.printin(" " + accounts.elementAt(i));

Systemout.printlin();
}

ObjectSpace Voyager Core Technology User Guide 64

5 Fundamental ORB Features

Class voyagerl.0.0\examples\orb\Customer.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Custoner

{

String nane; // name of custoner
VAccount account; // reference to renpte account

public Customer(String name)

{

t hi s. name = nane;
Systemout.println("Construct custonmer " + nane);

}
public void setAccount (VAccount account)
{
this.account = account;
}

public void deposit(int amount) throws Voyager Exception
{
account . deposit(anmount);
System out . printl n(
"bal ance of " + nanme + " is " + account.getBal ance());
}
}

ObjectSpace Voyager Core Technology User Guide 65

5 Fundamental ORB Features

Application voyagerl1.0.0\examples\orb\Bank1.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Bankl

{
public static void main(String args[])
{
try
{
/1 create a bank in a renmpte program
VBank bank = new VBank("I ocal host:8000");
/'l create custoner in local programand allocate renote account
VCust omer custonerl = new VCustomer("G ahant, "local host");
cust oner 1. set Account (bank. newAccount ());
/1 create custoner in renpte programand all ocate renpte account
VCust oner custoner2 = new VCustoner("David", "local host:8000");
cust oner 2. set Account (bank. newAccount ());
/1 make some deposits
cust oner 1. deposi t (1000);
cust oner 2. deposi t (2000);
/1 display both accounts
bank. pri nt Accounts();
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide

66

5 Fundamental ORB Features

Connecting to an Existing Object

Distributed programs often create an object for another program to use. Voyager allowsyou to
connect to such an object using itsalias or GUID.

Connecting via an Alias

The simplest way to connect to an object is through its alias. VVoyager provides the option of
assigning an alias to any object during construction of the object or by using set Al i as() to
assign an alias after construction. To assign an alias to an object during construction, follow
the program address with a slash (/) and the desired alias. Numeric aliases cannot contain a
dash; for example, 123- 45 isan invalid alias. More than one object in the same program can
have the same dlias.

To obtain avirtual reference to an object viaits alias, pass the object’ s address with aslash (/)
and the desired aliasto the static method VQbj ect . f or Obj ect At (String address). If
more than one object in the target program has the same alias, an

Anbi guousAl i asExcept i on isthrown.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to
compilethe Al i as1A. j ava and Al i as1B. j ava example programs:

javac AliaslA java AliaslB.java

Start a server on port 8000 in one window and run Al i as1A. cl ass inasecond window. An
object withthe alias My Account iscreated in server 8000. Thenrun Al i as1B. cl ass inthe
second window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct with initial balance 0

deposit 1000

deposit 500

Window 2

/45 ava exanpl es.orb. Ali aslA ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1117
The account alias iIs MyAccount
deposit 1000
account = Account(1000)
>j ava exanpl es.orb. Ali aslB
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1119
deposit 500
account = Account(1500)

N /

ObjectSpace Voyager Core Technology User Guide 67

5 Fundamental ORB Features

Application voyager1.0.0\examples\orb\Alias1A.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class AliaslA

{
public static void main(String args[])
{
try
{
/1 create a renote account with the alias "M/Account"
VAccount account = new VAccount("l ocal host: 8000/ MyAccount");
Systemout.println("The account alias is " + account.getAias());
account.liveForever(); // don't garbage collect this account
System out.println("deposit 1000");
account . deposit(1000);
Systemout.println("account = " + account);
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 68

5 Fundamental ORB Features

Application voyager1.0.0\examples\orb\Alias1B.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class AliaslB

{
public static void main(String args[])
{
try
{
/1 connect to the aliased account
VAccount account =
(VAccount) Vnject.forObjectAt("local host: 8000/ MyAccount”);
Systemout.println("deposit 500");
account . deposit(500);
Systemout.println("account = " + account);
account . dieNow(); // destroy the account
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 69

5 Fundamental ORB Features

Connecting via a GUID

Connecting to an existing object using its GUID-based address is possible, although not as
convenient as using an alias.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to
compilethe Connect 1. j ava example program:

javac Connectl.java

Start a server on port 8000 in one window, and then run Connect 1. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct with initial balance 0

deposit 1000

deposit 500

Window 2

//;java exanpl es. or b. Connect 1 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1121
deposit 1000
accountl = Account(1000)
connected to Account(1000)
deposit 500
accountl = Account(1500)

2 /

ObjectSpace Voyager Core Technology User Guide 70

5 Fundamental ORB Features

Application voyagerl.0.0\examples\orb\Connectl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Connectl

{
public static void main(String args[])
{
try
{
/1 create account in renote application
VAccount accountl = new VAccount ("l ocal host: 8000");
Systemout.println("deposit 1000");
account 1. deposit(1000);
Systemout.println("accountl =" + accountl);
useAccount (account 1. get Cbj ect Address());
Systemout.println("accountl =" + accountl);
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}

static void useAccount(String address) throws Voyager Excepti on
{
/1 connect to existing account using its address
VAccount account = (VAccount) VObject.forObjectAt(address);
Systemout.println("connected to " + account);
Systemout. println("deposit 500");
account . deposit(500);

}

ObjectSpace Voyager Core Technology User Guide 71

5 Fundamental ORB Features

Remote Arguments, Serialization, and Morphology

Arguments of a remote message are copied using the Java serializati on' mechanism before
they are sent to adifferent program. If an argument is not serializable, a
Transport Except i on isthrown.

M odifications made to a remote argument do not affect the original argument. If an argument
isavirtual reference, all messages sent to that argument are automatically forwarded to the
argument’ s associated remote object.

V oyager maintains morphology across remote method calls. An object that is an argument or
part of an argument is copied exactly once to the remote program. An argument or part of an
argument that shares an object in the local program also shares a copy of the object in the
remote program.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compile the Mor phol ogy 1. j ava example program:

vcc Conpar at or
javac Conparator.java VConparator.java Mrphol ogyl.java

Start a server on port 8000 in one window, and then run Mor phol ogy1. ¢l ass inasecond
window.
Window 1

ﬁvoyager 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000

a=3,b=3
a.equals(b) = true
(a=Db) = false
a=3,b=3

a.equals(b) = true

\(a:=b):true /

Window 2

>j ava exanpl es. or b. Mor phol ogy1l

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1123

>

Tt Consult any Javalanguage reference guide for information about serialization.

ObjectSpace Voyager Core Technology User Guide 72

5 Fundamental ORB Features

Class voyagerl.0.0\examples\orb\Comparator.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

public class Conpar at or

{
public void conpare(Object a, Cbject b))
{
Systemout.println("a=" +a+", b="+b);

/1 conpare the objects using equal s()
Systemout.println("a.equals(b) =" + a.equals(b)));

/'l conpare the objects using ==
Systemout.printin("(a==b) ="+ (a=b));
}

}

Application voyager1.0.0\examples\orb\Morphologyl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Mrphol ogyl
{
public static void main(String args[])
{
try
{
VConpar at or conpar ator = new VConpar ator("I ocal host: 8000");

/1 conpare two different Integers
conparator.conpare(new Integer(3), new lInteger(3));

/1 compare an Integer against itself
Integer three = new Integer(3);
conparator.conpare(three, three);
Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 73

5 Fundamental ORB Features

Cyclic References

Two or more classes often contain cyclic virtual references to each other. For example, a Man
object can contain avirtual reference to hiswife, and aWbman object can contain avirtual
reference to her husband. In this kind of circular situation, vcc requiresthat all classes
involved are processed together, on the same command line.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compilethe Mar ri agel. j ava example program:

vcc Man Worman
javac Man.java Wnan.java VMan.java Wwnan. java Marri agel. java

Start a server on port 8000 in one window, and then run Mar ri agel. cl ass inasecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct woman with name Bertha

set husband of Bertha to Fred

Window 2

>j ava exanpl es. orb. Marri agel

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1147

Construct man with name Fred

set wife of Fred to Bertha

Man(Fred married to Bertha)

Woman(Bertha married to Fred)
>

ObjectSpace Voyager Core Technology User Guide 74

5 Fundamental ORB Features

Class voyagerl.0.0\examples\orb\Man.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Man
{
String nane;
Weoman wife; // circular reference

public Man(String nane)
{
t hi s. name = nane;
Systemout.println("Construct man with nane " + nanme);

}
public String toString()
{
String s = new String();
try
{
s ="Man(" + nane + " married to " + wife.getName() + ")";
}
cat ch(Voyager Exception exception)
{
s = "Exception”;
}
return s;
}
public String getNane()
{
return nane;
}
public void setWfe(VWénman wonan) throws Voyager Exception
{

Systemout.printin("set wife of " + name + " to " + woman. get Nane());
wi fe = wonan;
}

}

ObjectSpace Voyager Core Technology User Guide 75

5 Fundamental ORB Features

Class voyagerl1.0.0\examples\orb\Woman.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Wrman
{
String nane;
VMan husband; // circular reference

public Wman(String name)

{
t hi s. name = nane;
Systemout.println("Construct woman with nanme " + nane);

}
public String toString()

{

String s = new String();

try
{
s = "Wman(" + name + " married to " + husband. getName() + ")";
}

cat ch(Voyager Exception exception)
{
s = "Exception”;
}

return s;

public String getNane()

{
return nane;
}
public void setHusband(VMan man) throws Voyager Excepti on
{

Systemout.println("set husband of " + name + " to " + man.getNane());
husband = nman;

}
}

ObjectSpace Voyager Core Technology User Guide 76

5 Fundamental ORB Features

Application voyagerl1.0.0\examples\orb\Marriagel.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;
i mport COM obj ect space. voyager. *;

public class Mrriagel

{
public static void main(String args[])
{
try
{
VMan man = new VMan("Fred", "local host");
VWoman woman = new VWwnman("Bertha", "l ocal host: 8000");
man. set Wfe(wonman);
wonman. set Husband(man);
Systemout.println(man);
System out . println(woman);
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 77

5 Fundamental ORB Features

Inheritance and Polymorphism

When you send a message to an object viaavirtual reference to one of the object’ s base
classes, the message is executed correctly according to the standard rules of polymorphism.
For example, consider a hierarchy of employees in which the method wor kHar der () is
defined in Enpl oyee and overridden in its subclasses. Sending wor kHar der () toa
VEnpl oyee causes the correct version of wor kHar der () to be executed on the remote
employee, regardless of whether the employeeisaPr ogr anmer or aManager .

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compilethe | nheri t ancel. j ava example program:

vcc Enpl oyee Progranmer Manager
javac Enpl oyee.java Progranmer.java Manager.java
javac VEnpl oyee.java VProgrammer.java VManager.java | nheritancel.java

Start a destination program on port 8000 in one window, and then run
I nheri tancel. cl ass inasecond window.

Window 1

//;Qoyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
construct class examples.orb.Programmer Steve
construct class examples.orb.Manager Mary
construct class examples.orb.Manager Doug
Doug: pass me the whip
Doug tells examples.orb.Manager(Mary) to work harder
Mary: pass me the whip
Mary tells examples.orb.Programmer(Steve) to work harder
Steve: pass me the Jolt and 1711 hack harder
\\??ry tells examples.orb.Programmer(Dave) to work harder

Window 2

>j ava exanpl es. orb. I nheritancel

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1150

construct class examples.orb.Programmer Dave
Dave: pass me the Jolt and I*11 hack harder
>

ObjectSpace Voyager Core Technology User Guide 78

5 Fundamental ORB Features

Class voyagerl.0.0\examples\orb\Employee.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;
public abstract class Enmpl oyee

{

String nane;

publ i c Enpl oyee(String name)

{
thi s. nane = nane;
Systemout.println("construct " + getClass() + " " + nane);
}
public String toString()
{
return getd ass().getName() + "(" + name + ")";
}

public abstract void workHarder();
}

Class voyagerl.0.0\examples\orb\Programmer.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

public class Progranmer extends Enpl oyee

{

public Programmer(String nane)

{

super(nane);

public void workHarder ()
{

Systemout.println(name + ": pass ne the Jolt and I'll hack harder");

}
}

ObjectSpace Voyager Core Technology User Guide 79

5 Fundamental ORB Features

Class voyagerl1.0.0\examples\orb\Manager.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

import java.util.Vector;
i mport COM obj ect space. voyager. *;

public class Manager extends Enpl oyee

{

Vect or enpl oyees = new Vector();

publ i c Manager(String nane)
{
super (nane);

}

public void addEnmpl oyee(VEnmpl oyee enpl oyee)
{
enpl oyees. addEl enent (enpl oyee);

}

public void workHarder ()
{

Systemout.println(nane + ": pass nme the whip");

for(int i =0; i < enployees.size(); i++)
{
try

{
VEnpl oyee subordi nate = (VEnpl oyee) enpl oyees.elenentAt(i);

Systemout.println(nane + " tells " + subordinate
+ " to work harder");

subor di nat e. wor kHar der () ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}
}

ObjectSpace Voyager Core Technology User Guide 80

5 Fundamental ORB Features

Application voyagerl1.0.0\examples\orb\Inheritancel.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Inheritancel
{
public static void main(String args[])
{
try
{

/'l create two progranmers
VPr ogrammer programmerl = new VProgranmer("Steve", "l ocal host:8000");
VProgramer programer2 = new VProgramer("Dave", "local host");

/1 create a nanager to nanage the programers

VManager managerl = new VManager("Mary", "l ocal host:8000");
manager 1. addEnpl oyee(programmerl);

manager 1. addEnpl oyee(programer2);

/'l create a nmnager to nmnage the nmanager
VManager manager2 = new VManager ("Doug", "I ocal host:8000");
manager 2. addEnpl oyee(managerl);

/1 tell the top nanager to work harder
manager 2. wor kHar der () ;

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 81

5 Fundamental ORB Features

Interfaces

The need often arises for afunction that can operate on either alocal object or aremote object.
Voyager allows you to create such a function with Java interfaces. When you process a class
using vcc, al interfacesimplemented by the original class are also implemented by the virtua
class, enabling variables having those interface types to accept an instance of the original class
or itsvirtual class.

Thel nterfacel. j ava example program defines an interface Cal cul at or and aclass
Cal cul at or I npl that implements Cal cul at or . Because VCal cul at or | npl also
implements Cal cul at or , thefunctioncal cul at e() can bewritten to accept either alocal
reference or aremote reference.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compilethel nt er f acel. j ava example program:

vce Cal cul at or | npl
javac Cal culatorlnpl.java VCalculatorlnpl.java Interfacel.java

Start a server on port 8000 in one window, and thenrun | nt er f acel. cl ass inasecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

construct calculator

Window 2

A ava exanpl es.orb.Interfacel \
construct calculator
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1154
use local calculator...

2+ 3 =5
2 -3=-1
use remote calculator...
2+3=5
2 -3=-1

2 J

ObjectSpace Voyager Core Technology User Guide 82

5 Fundamental ORB Features

Interface voyagerl.0.0\examples\orb\Calculator.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;
public interface Cal cul ator

i{nt add(int x, int y);

int subtract(int x, int y);

}
Class voyagerl.0.0\examples\orb\CalculatorImpl.java
/1 Copyright(c) 1997 bject Space, Inc.

package exanpl es. orb;

public class Cal cul atorlnpl inplenments Cal cul at or

{
public Cal cul atorlnpl ()
{
Systemout.println("construct calculator");
}
public int add(int x, int y)
{
return x + vy,
}
public int subtract(int x, int y)
{
return x - vy;
}

}

ObjectSpace Voyager Core Technology User Guide 83

5 Fundamental ORB Features

Application voyagerl1.0.0\examples\orb\Interfacel.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Interfacel

{
public static void main(String args[])
{
try
{
Cal cul ator cal culatorl = new Cal cul atorlnpl ();
Cal cul ator cal culator2 = new VCal cul ator| npl (" ocal host: 8000");
Systemout.println("use local calculator.)
calculate(calculatorl); // calculate usi ng I ocal cal cul at or
Systemout.println("use renote calculator...") ;
calculate(calculator2); // calcul ate usi ng renote cal cul at or
Voyager . shut down() ;
}
catch(Exception exception)
{
Systemout. println(exception);
}
}
static void cal cul ate(Cal cul ator cal cul ator)
{
Systemout.printin("2 + 3 =" + calculator.add(2, 3));
Systemout.println("2 - 3 =" + calculator.subtract(2, 3));
}

}

ObjectSpace Voyager Core Technology User Guide 84

5 Fundamental ORB Features

Exceptions with Interfaces

Thevcc utility must automatically detect when a class implements an interface with methods
that do not declare Voyager Except i on intheir t hr ows clauses. For the virtual classto
implement the interface, Voyager cannot add Voyager Except i on to thet hr ows clause of
these methods. Instead, vcc generates the classin such away that this type of method throws
each Voyager-related exception wrapped in aVoyager Runt i neExcept i on. If desired, use
the - r option of vcc to make all methods throw run-time exceptions.

The rationale behind this approach is that many times an interface, like the Runnabl e
interface, declares only one or two methods. The vcc utility makes all methods use the safe
(not the run-time) exception policy except for those methods that must be used to implement
the interface. Even these methods are safe if devel opers catch Voyager run-time exceptions
when invoking them.

Sometimes an interface is written with distributed computing in mind, and the interface
methods declare Voyager Except i on intheirt hr ows clauses. Voyager facilitates doing so
withthevcc - o option, which instructs vcc to generate an interface containing the public
methods of a class. These methods declare Voyager Except i on intheir t hr ows clauses.
Asaresult, developers can program to both local and remote implementations of the interface
without sacrificing the safety of compile-time exceptions. See“ The vec Utility” on page 47 for
more details on the - o option.

ObjectSpace Voyager Core Technology User Guide 85

5 Fundamental ORB Features

Life Spans and Garbage Collection

V oyager object life spans come in two varieties: life spans that depend on the existence of
references and those that do not. By default, a simple remote object has a reference-based life
span—it is garbage-collected when al itslocal and virtual references have been destroyed—
and an agent has afixed life span—it lives for one day and is then garbage-collected.
However, agent-enhanced distributed computing requires flexibility. Y ou might want to create
an agent that lives forever or asimple object that lives until it is explicitly told to die. Voyager
provides arich set of functions for controlling the life span of an object and implements these
functions in a manner well-suited for mobile, distributed systems.

Reference-Based Life Spans

A simple object has areference-based life span by default because, by default, it calls

di eWhenNoRef er ences() . Reference-based life spans use a keep-alive strategy that is
well-suited for mobile, distributed computing. References to aremote object are responsible
for keeping it alivein one of two ways. Thefirst way is by sending messages. Messages alone
(without extra heartbeats or pings) are intelligent enough to keep the object from dying
because Voyager uses Smar t Messenger objects to deliver messages. The second way of
keeping an object alive is by sending heartbeats. A virtual reference automatically pulses
one-way heartbeat messages to its remote object every 60 seconds, but only if the referenceis
not being used to send messages to the object. Thus, in practice, heartbeat traffic is
minimized. When avirtual reference goes out of scope, it ceasesto keep its remote object
alive.

While avirtual reference sends messages or heartbeats to its remote object, the Voyager
program containing the remote object verifiesthat its objects should still be alive. Periodically,
each remote object is asked to check if it has recently received a message—either anormal
program message or a heartbeat message. If not, the object is sent di eNow() , which
deregistersit from the naming service and allows it to be reclaimed by the Java virtual
machine. Normally, an object that has not received a message or heartbeat within 90 seconds
issent di eNow() .

To make an object die after a specific period of inactivity, send di eWhenl nacti veFor () to
the object, specifying the period in milliseconds. The di eNow() messageis sent to the object
if the object does not receive a message within the specified period of time.

Thedi eNow() method generates an Cbj ect Event . DYl NG event before completing. If an
object needs to perform a cleanup operation, it can listen for this event and take the necessary
action. See Chapter 7, “Events, Listeners, and Assistants,” for more information.

Send beconmeWeak () to avirtual reference to disable its heartbeat pulse. This method turns
the virtual reference into aweak reference; that is, the virtual reference can access its remote
object aslong asit isalive, but the reference does not prevent the remote object from being
garbage-collected.

ObjectSpace Voyager Core Technology User Guide 86

5 Fundamental ORB Features

Fixed Life Spans

Although reference-based garbage collection isimportant for programs that create and share
transient remote objects, many applications require remote objectsto live regardless of
associated virtual references. For example, reference-based garbage collection usually works
poorly for service applications, such as weather services, streaming video services, and
electronic stores. For these kinds of applications, Voyager allows you to fix an object’ s life

span.

An agent has afixed, one-day life span by default because, by default, it callsdi eAf ter ().
To prevent aremote object from ever being garbage-collected, senditl i veFor ever () .
References to such an object generate no heartbeat traffic. To make such an object die, send

the di eNow() message.

To make an object die after a specific time period has elapsed, send the di eAf t er () message
to the object, specifying the time period in milliseconds. Thedi eNow() messageis sent to the
object after the specified period of time passes regardless of whether or not the object has been
receiving messages, so its virtual references do not generate heartbeat traffic.

To make an object die at a particular point in time, send the object the di eAt () message,
specifying the date the object should die, that is, aninstance of j ava. uti | . Dat e.
References do not send heartbeats to objects with fixed die times.

Dynamic Reference Updating

When an object’ s life span changes, the new value is propagated to all of the object’ s virtual
references via an efficient update-on-demand technique. Every time avirtual reference sendsa
message to its remote object, the message is tagged with the reference’ s current understanding
of the remote object’ s life span. When the message arrives, the life span information is
compared to the remote object’ s actual life span information. If the information differs, the
new information is either piggy backed onto the message return value (for synchronous and
future messages) or returned to the virtual reference by an explicit message (for one-way
messages, like heartbeats).

Scalability of the Garbage Collection Model

Voyager’s hybrid distributed garbage collection mechanism is well-suited for distributed
computing, not only because of its flexibility, but also because of its scalability. Pure
lease-based or heartbeat-based systems generate more network traffic than this hybrid
approach because, with Voyager, aremote object generally falls into one of two categories:

e A remote object is created to perform relatively few tasks and is never used again. In this
scenario, the object’ s virtual reference is accessed fairly frequently and then destroyed, so
no heartbeat traffic is generated.

e A remoteobject is created to service other virtual references that connect to the object via
awell-known alias or trading service. Such an objectissent | i veFor ever () . Inthis
scenario, the object’ svirtual references know they are connected to animmortal object and
do not generate heartbeat traffic.

ObjectSpace Voyager Core Technology User Guide 87

5 Fundamental ORB Features

Therefore, heartbeats are generated only when aremote object is created with a short or
medium life span, and the object is not sent frequent messages. In practice, this scenariois
rare, so the amount of heartbeat traffic isrelatively small.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compiletheLi f espanlA. j ava and Li f espanlB. j ava example programs:

vcc Submari ne
javac Submarine.java VSubnarine.java LifespanlA java LifespanlB.java

Start aserver on port 8000 in onewindow and runLi f espanlA. cl ass inasecond window.
A few seconds later, runLi f espaniB. cl ass inathird window. Li f espanl1B waitsafew
moments, and then kills the submarine being pinged by Li f espanl1A. When Li f espanlA
attempts to send a message to the dead submarine, an Gbj ect Not FoundExcepti on is
thrown.

Window 1

>voyager 8000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

ping!

Window 2

/;Eava exanpl es. orb. Li fespanlA i\\

create the red october

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1156

tell the red october to live forever...

sleep for 10 seconds...

ping red october...

sleep for 100 seconds...

ping red october. ..

COM.objectspace.voyager .ObjectNotFoundException:

237-131-214-136-204-109-241-21-28-248-72-134-111-72-159-192
thrown remotely from 208.6.239.200:8000

X)

Window 3

>j ava exanpl es. orb. Li f espanlB

hunt for the red october...

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1158

sleep for 20 seconds...

kill the red october. ..

>

ObjectSpace Voyager Core Technology User Guide 88

5 Fundamental ORB Features

Class voyagerl1.0.0\examples\orb\Submarine.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

public class Submarine

{

public void ping()
{
Systemout.println("ping!'");
}

}

ObjectSpace Voyager Core Technology User Guide 89

5 Fundamental ORB Features

Class voyagerl.0.0\examples\orb\LifespanlA.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class LifespanlA
{
public static void main(String args[])
{
try
{

Systemout.println("create the red october");

VSubmari ne submari ne = new VSubmarine("I ocal host: 8000/ Red");
Systemout.printin("tell the red october to live forever...");
submarine. liveForever();

Systemout.println("sleep for 10 seconds...");

try
{
Thr ead. sl eep(10000);
caich(I nterrupt edExcepti on exception)
{
}

Systemout.println("ping red october...");
submari ne. pi ng();
Systemout.println("sleep for 100 seconds...");

try
{
Thr ead. sl eep(100000);
caich(I nterruptedExcepti on exception)
{
}

Systemout.println("ping red october...");
submari ne. pi ng();
Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemout.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 90

5 Fundamental ORB Features

Class voyagerl.0.0\examples\orb\LifespanlB.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class LifespanlB

{
public static void main(String args[])
{
try
{
Systemout.println("hunt for the red october...");
VSubmari ne submarine =
(VSubmari ne) VObject.forCbjectAt("local host: 8000/ Red");
Systemout.println("sleep for 20 seconds...");
try{ Thread. sl eep(15000); } catch(InterruptedException exception) {}
Systemout.printin("kill the red october...");
submari ne. di eNow() ;
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemout.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 91

5 Fundamental ORB Features

ThelLi f espan2. j ava example program demonstratesthe di eAf t er () and di eAt ()
messages. From the\ voyager 1. 0. 0\ exanpl es\ or b directory, use the following
commands to compileLi f espan2. j ava:

javac Lifespan2.java

Start a server on port 8000 in one window, and then run Li f espan2. cl ass inasecond
window.

Window 1

/é;oyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
ping!
ping!
ping!
ping!

\Jiing! 4//

Window 2

/éﬁava exanpl es. or b. Li f espan2 ‘\\
create the red october
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1160
tell the red october to die after 10 seconds...
ping red october...
sleep for 3 seconds...
ping red october. ..
sleep for 3 seconds...
ping red october...
sleep for 3 seconds...
ping red october...
sleep for 3 seconds...
ping red october. ..
sleep for 3 seconds...
ping red october...
COM.objectspace.voyager .ObjectNotFoundException:
126-140-221-153-165-196-35-131-
162-205-72-134-111-72-159-192
thrown remotely from 208.6.239.200:8000
tell blue to die on Mar 12, 1998, at 7:00am...

\ /

ObjectSpace Voyager Core Technology User Guide 92

5 Fundamental ORB Features

Application voyagerl1.0.0\examples\orb\Lifespan2.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

import java.util.Cal endar;
i mport COM obj ect space. voyager. *;

public class Lifespan2

{
public static void main(String args[])
{
try
{
Systemout.println("create the red october");
VSubmari ne submarinel = new VSubnarine("l ocal host: 8000/ Red");
Systemout.println("tell the red october to die after 10 seconds...");
submari nel. di eAfter(10000); // die in 10 seconds tine.
try
{
while(true) // loop until the submarine dies
{
Systemout.println("ping red october...");
submari nel. pi ng();
Systemout.println("sleep for 3 seconds...");
try{Thread. sl eep(3000);} catch(InterruptedExcepti on exception) {}
}
cat ch(nj ect Not FoundExcepti on exception)
{
Systemout.println(exception);
}
VSubmari ne submarine2 = new VSubmarine("l ocal host: 8000/ Bl ue");
Cal endar cal endar = Cal endar. getl nstance();
cal endar.set(1998, Cal endar. MARCH, 12, 7, 0);
Systemout.println("tell blue to die on Mar 12, 1998, at 7:00am..");
submari ne2. di eAt (cal endar.getTime());
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemout. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 93

5 Fundamental ORB Features

Properties

With Voyager, you can add and remove arbitrary key/value pairs, called properties, to and
from an object viaavirtual reference. Voyager’ s publish/subscribe mechanism, described in
Chapter 15, “Space: Scalable Group Communication,” demonstrates one use of this feature.

The VObj ect classincludes the following methods for manipulating an object’ s properties:
e void addProperty(Object key, Object value)

Add the specified key/value pair to the object’s property map.
e voidputProperty(Cbject key, Object value)

Add the specified key/value pair to the object’ s property map, replacing the first key/value
with amatching key if one already exists.

e voidrenoveProperty(Object key)
Remove every matching key/value pair.
e voidrenoveProperty(Object key, Object value)
Remove every matching key/value pair. Both the key and the value must match.
e (bject getProperty(Object key)
Return the value of the first matching key/value pair.
e \Vector getProperties(Object key)
Return the values of all matching key/value pairs.
e \Vector getPropertyPairs()

Return clones of the key/value pairs. Every element of the vector isan Qbj ect [], the
first of which isthe key and the second of which isthe value.

TheProperti es. j ava example program demonstrates the use of these methods. Use the
following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to prepare and
compile Properti es. j ava.

vcce Consuner
javac VConsumer.java Consuner.java Properties.java

ObjectSpace Voyager Core Technology User Guide 94

5 Fundamental ORB Features

Now run Pr operti es. cl ass:

Window 1

/;gava exanpl es. orb. Properties ﬂ\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1162
initial, property list =
put subscribe, property list

subscribe -> sports.bulls
put subscribe, property list

subscribe -> sports.lakers
add age and subscribe, property list =

subscribe -> sports.lakers

age -> 34

subscribe -> sports.bulls

subscribe -> sports.mavericks
first subscribe -> sports.lakers
all subscribe -> [sports.lakers, sports.bulls, sports.mavericks]
remove sports._bulls, property list =

subscribe -> sports.lakers

age -> 34

subscribe -> sports.mavericks
remove subscribe, property list =

age -> 34

\ J

Class voyagerl.0.0\examples\orb\Consumer.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.orb

public class Consuner

{
}

Application voyager1.0.0\examples\orb\Properties.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.orb

import java.util.Vector;
i mport COM obj ect space. voyager. *;

public class Properties
{
public static void main(String args[])
{
try
{

VConsuner consuner = new VConsuner("l ocal host");

ObjectSpace Voyager Core Technology User Guide 95

5 Fundamental ORB Features

display("initial", consuner.getPropertyPairs());

consuner. put Property("subscribe", "sports.bulls");
di spl ay("put subscribe", consuner.getPropertyPairs());

consuner. put Property("subscribe", "sports.|akers");
di spl ay("put subscribe", consuner.getPropertyPairs());

consuner. addProperty("age", new Integer(34));

consuner . addProperty("subscribe", "sports.bulls");

consuner . addProperty("subscribe", "sports.mavericks");

di spl ay("add age and subscribe", consuner.getPropertyPairs());

System out . printl n(

"first subscribe -> " + consuner.getProperty("subscribe"));
System out . println(

"all subscribe -> " + consuner.getProperties("subscribe"));

consuner.renoveProperty("subscribe", "sports.bulls");
di splay("renove sports. bulls", consuner.getPropertyPairs());

consuner. renoveProperty("subscribe");
di spl ay("renove subscribe", consuner.getPropertyPairs());

Voyager . shut down() ;

}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
public static void display(String pronpt, Vector pairs)
{
Systemout.println(pronpt + ", property list =");
for(int i =0; i < pairs.size(); i++)
{
ohject[] pair = (Object[]) pairs.elementAt(i);
Systemout.println(" " + pair[O] +" ->" +pair[1]);
}
}

ObjectSpace Voyager Core Technology User Guide 96

6

Advanced Messaging

This chapter describes the advanced messaging features of the ObjectSpace Voyager™ Core
Technology (Voyager). By default, Voyager constructors and messages are synchronous and
never time out. Greater flexibility is often needed in many applications, however, so VVoyager
provides complete control over timeout values and message characteristics.

97

6 Advanced Messaging

Timeouts

Though most programs should wait as long as necessary for acommand to complete, some
programs require remote invocations to fail if not completed within a given time period. To
change the timeout value for messages sent via a virtual reference, send the virtual reference
theset MessageTi neout () message. Subsequent messages sent using the virtual reference
use the new timeout value. Operations that take longer to compl ete than the new timeout
period cause aTi meout Except i on to be thrown.

To get the current timeout value for a message sent through a given reference, invoke
get MessageTi neout () on thereference. A value of zero, the default value, indicates
messages sent via that reference never time out.

TheTi meout 1. j ava example program usesaTi mer object to produce a predictable
message delay and demonstrate dynamic timeouts. Use the following commands from the
\ voyager 1. 0. O\ exanpl es\ or b directory to prepare and compile Ti neout 1. j ava:

vce Timer
javac Timer.java VTinmer.java Timeoutl.java

Start a server on port 8000 in one window, and then run Ti meout 1. cl ass in asecond
window.

Window 1

A/oyager 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
Construct Timer
start countdown(65000)
start countdown(65000)
finish countdown(65000)

\finish countdown(65000)

Window 2

/;iava exanpl es. orb. Ti meout 1 <\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1163
default timeout is Oms
changing to 60000ms
invoke timer.countdown(65000)
COM.objectspace.voyager .TimeoutException: 60000ms elapsed
change timeout to 80s
new timeout is 80000ms
invoke timer.countdown(65000)
Done

N /

ObjectSpace Voyager Core Technology User Guide 98

6 Advanced Messaging

Class voyagerl.0.0\examples\orb\Timer.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

public class Tinmer

{
int Xx;
int vy;

public Tiner()
{

Systemout.println("Construct Tiner");

}

public Tiner(int delay)
{

Systemout.println("construct(" + delay + ")");
try{ Thread.sleep(delay); } catch(InterruptedException exception) {}
Systemout.println("finish construct");

}

public String countdown(int delay)

{

Systemout.printin("start countdown(" + delay + ")");

if(delay < 0)
throw new || | egal Argunent Exception("delay cannot be | ess than Ons");

try{ Thread.sleep(delay); } catch(InterruptedException exception) {}

Systemout.printin("finish countdown(" + delay + ")");
return "Done";

}

static public String waitFor(int delay)
{

Systemout.printin("start waitFor(" + delay + ")");
try{ Thread.sleep(delay); } catch(InterruptedException exception) {}

Systemout.printin("finish waitFor(" + delay + ")");
return "Done";

}

ObjectSpace Voyager Core Technology User Guide 99

6 Advanced Messaging

Application voyager1.0.0\examples\orb\Timeoutl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;
i mport COM obj ect space. voyager. *;

public class Tinmeoutl
{
public static void main(String args[])
{
try
{

VTimer timer = new VTiner("local host: 8000");
System out . printl n(
"default timeout is " + timer.getMessageTineout() + "ns");

Systemout. println("changing to 60000ns");
timer.set MessageTi neout (60000);
try

{

/1l force a tinmeout to occur
Systemout.println("invoke tinmer.countdown(65000)");
String string = timer.countdown(65000);
Systemout.println(string);
}

catch(Exception exception)
{

Systemout. println(exception);

}

System out. println("change tinmeout to 80s");
timer.set MessageTi neout (80000);
Systemout.println("new tinmeout is "+tiner.get MessageTi neout () +"ns");

try
{

/1 a timeout will not occur now
Systemout. println("invoke timer.countdown(65000)");
String string = timer.countdown(65000);
Systemout.println(string);
}

catch(Exception exception)
{

Systemout. println(exception);

}

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 100

6 Advanced Messaging

Asdemonstrated in the Ti meout 2. j ava example program, you can override the default
timeout for a constructor by adding the required timeout value after the address parameter. The
virtual reference created inherits the timeout value from the constructor.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to
compile Ti neout 2. j ava:

javac Ti nmeout 2. java

Start a server on port 8000 in one window, and then run Ti meout 2. cl ass in asecond
window.

Window 1

Aloyager 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
construct(65000)
construct(65000)
finish construct
finish construct
start countdown(65000)

(inish countdown(65000)

Window 2

/;Eava exanpl es. or b. Ti meout 2 i\\
construct with 60s timeout
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1165
COM.objectspace.voyager.TimeoutException: 60000ms elapsed
construct with timeout of 80s
ok
inherited timeout is 80000
invoke countdown(65000)
countdown(65000) = Done

N J

ObjectSpace Voyager Core Technology User Guide 101

6 Advanced Messaging

Application voyagerl1.0.0\examples\orb\Timeout2.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Timeout?2

{
public static void main(String args[])
{
try
{
/1l force a tinmeout to occur
Systemout.println("construct with 60s tinmeout");
VTimer timer = new VTiner(65000, "Iocal host:8000", 60000);
Systemout. println("ok");
}
catch(Exception exception)
{
Systemout. println(exception);
}
try
{
Systemout.println("construct with tineout of 80s");
VTimer timer = new VTiner(65000, "Iocal host:8000", 80000);
Systemout.println("ok");
Systemout.println("inherited timeout is "+tiner.getMessageTi neout ()
)
System out. println("invoke countdown(65000)");
String string = timer.countdown(65000);
Systemout. println("countdown(65000) =" + string);
}
catch(Exception exception)
{
Systemout. println(exception);
}
Voyager . shut down() ;
}
}

ObjectSpace Voyager Core Technology User Guide 102

6 Advanced Messaging

TheTi meout 3. j ava example program demonstrates that you can override the default
timeout for aremote static method call by adding the required timeout val ue after the address
parameter. Use the following command from the\ voyager 1. 0. 0\ exanpl es\ orb
directory to compile the Ti meout 3. j ava example program:

javac Ti nmeout 3. j ava
Start a server on port 8000 in one window, and then run Ti meout 3. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

start waitFor(65000)

finish waitFor(65000)

start waitFor(65000)

finish waitFor(65000)

Window 2

>j ava exanpl es. orb. Ti meout 3

invoke waitFor(65000) with no timeout

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1167

Done

invoke waitFor(65000) with timeout of 20s
COM.objectspace.voyager.TimeoutException: 20000ms elapsed
>

ObjectSpace Voyager Core Technology User Guide 103

6 Advanced Messaging

Application voyager1.0.0\examples\orb\Timeout3.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Timeout3

{
public static void main(String args[])

{

try
{
Systemout.println("invoke waitFor(65000) with no timeout");
String string = VTinmer.waitFor(65000, "Iocal host:8000");
Systemout.println(string);
}

catch(Exception exception)
{
Systemout. println(exception);
}

try
{
System out.println("invoke waitFor(65000) with timeout of 20s");
String string = VTi mer.waitFor(65000, "Iocal host:8000", 20000);
Systemout.printin(string);
}

catch(Exception exception)
{
Systemout. println(exception);
}

Voyager . shut down() ;
}

ObjectSpace Voyager Core Technology User Guide 104

6 Advanced Messaging

Thread Management

A Voyager messenger often requires athread of its own. Because creating anew Javathread is
expensive, Voyager reuses threads when possible. When V oyager needs athread to perform an
operation, it attempts to reuse athread from itsinternal pool. If the pool is not empty, Voyager
takes a thread from the pool, usesit to perform the operation, and then, if the pool is not full,
returnsit to the pool. If the pool is empty, Voyager creates anew thread, usesit to perform the
operation, and, if the pool is not full, places the thread in the pool for future reuse.

Usually, the size of the thread pool stabilizes after a short time, after which Voyager rarely
needs to create new threads. The maximum size of the thread pool can be set with the

set Pool Si ze() method to optimize Voyager for agiven platform. More powerful servers
might need alarge thread pool for rapid allocation of threads, and less powerful servers might
need a smaller thread pool for memory conservation. The default thread pool sizeis 30.

A user can leverage Voyager' s thread management functionality in code by invoking one of
thespawnThr eadFor () methods on Voyager and providing a Runnabl e. In thisway,
Voyager can track user threads and users can invoke new threads efficiently.

ObjectSpace Voyager Core Technology User Guide 105

6 Advanced Messaging

Smart Messengers

By default, Voyager messages are synchronous, but VV oyager supports other message types.
Y ou can initiate remote operations and immediately continue without waiting for return
results. Y ou can send afuture message if you want to get the result of the operation at alater
time, or you can send a one-way message if you do not need the result at all. You can use a
one-way multicast message to send a one-way message to a group of objectsinstead of a
single object, and you can use a one-way multicast message with selectors to send a one-way
message to a set of objects that satisfy a selection criterion.

In traditional distributed computing architectures, a remote message istypically sent in
on-the-wire format to the destination program, at which point a preinstalled message router
decodes the message and performs the upcall to the target object.

V oyager, on the other hand, delivers messages using smart messengers. autonomous
mini-agents that encode messages and intelligently deliver them to remote objects. Smart
messengers can navigate multiprotocol networks, resend periodically when network
connections are down, and take specia actions if messages cannot be delivered successfully.
Featurestraditionally supplied as add-ons to object request brokers, such as store and forward,
can be embedded directly in smart messengers.

Two important consequences of the smart messenger architecture are listed below:

e Messengers carry built-in capabilities as they move around a network, thus you need not
install special software at each nodeto get featureslike store and forward and fault-tol erant
messaging.

e Userscan create and use custom messengers without modifying the underlying distributed
computing architecture.’

Voyager includes a hierarchy of four messenger classes that support future, one-way, one-way
multicast, and synchronous messaging.

Smar t Messenger (implements Messenger)
Future
OneVay
OneVayMul ti cast
Sync

Thevcc utility generates two versions of every remote method—one that uses a Sync
messenger and one that allows devel opers to append a default-constructed instance of the
reguired messenger to the message argument list. Messengers can be used only once; after
delivering a message, a messenger isirrevocably modified such that it cannot deliver another

message.
The next few sections describe how to use one-way, future, and synchronous messengers.

Information about using one-way multicast messengersis presented in Chapter 15, “ Space:
Scalable Group Communication.”

Tt Voyager sourceis currently restricted to source licensees. Contact info@objectspace.com for more
information.

ObjectSpace Voyager Core Technology User Guide 106

6 Advanced Messaging

One-Way Messengers

A message sent using a OneWay messenger immediately returns. A OneWay messenger
performs “fire-and-forget” messaging—it allocates itself a thread from the V oyager thread
pool, delivers the message to the remote object, and discards the reply.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to
compilethe OneWay1. j ava example program:

javac OneWayl. | ava

Start a server on port 8000 in one window, and then run OneWay1. cl ass in asecond
window.

Window 1

/éaoyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct Timer

start countdown(10000)

start countdown(10000)

start countdown(10000)

finish countdown(10000)

finish countdown(10000)

(inish countdown(10000) /

Window 2

>j ava exanpl es. orb. OneVay1

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1170

>

ObjectSpace Voyager Core Technology User Guide 107

6 Advanced Messaging

Application voyagerl1.0.0\examples\orb\OneWay1l.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class OneWayl

{
public static void main(String args[])
{
try
{
VTimer Timer = new VTiner("local host: 8000");
Ti mer. count down(10000, new OneWay());
Ti mer. count down(10000, new OneWay());
Ti mer. count down(10000, new OneWay());
/1 allow two seconds for the messages to | eave this program
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemout. println(exception);
}
}
}

Future Messengers

A message sent using a Fut ur e messenger immediately returnsa Resul t object, whichisa
placeholder for the subsequent return value. A Fut ur e messenger allocates itself athread
from the Voyager thread pool, delivers the message to the remote object, and then sends the
return value to the waiting Resul t object.

Usei sAvai | abl e() to determine whether aResul t hasreceived its return value.

Toread thereturn value from aResul t , usethe appropriate version of r ead() . The message
blocks until either the return value isreceived or the timeout period is exceeded. If theresultis
not received within the message’ s timeout period, aTi meout Except i on isthrown. The
timeout countdown startswhenr ead() is called, not when the message is actually sent.

If aremote exception occurs and you attempt to read the return value using r ead() , the
exception is automatically rethrown. If the exceptionisaRunt i neExcept i on or
Voyager Except i on, it isrethrown directly; otherwise, it iswrapped inside a

User Except i on and rethrown. You can usei sExcept i on() to determine whether a
Resul t contains an exception and, if so, you can use get Excepti on() to get the
exception.

ObjectSpace Voyager Core Technology User Guide 108

6 Advanced Messaging

If the return value of a Fut ur e messenger is unimportant, send ki | | () totheResul t
object. The Fut ur e messenger is sent a specia remote message that tells the messenger to
discard the return value instead of sending it across the network, thereby reducing network
traffic.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to
compilethe Fut ur el. j ava example program:

javac Futurel.java

Start a server on port 8000 in one window, and then run Fut ur el. cl ass in asecond
window.

Window 1

/;;oyager 8000 ﬁ\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct Timer

start countdown(5000)

finish countdown(5000)

start countdown(35000)

start countdown(-1)

start countdown(25000)

finish countdown(35000)

finish countdown(25000)

Window 2

//;java exanpl es. orb. Futurel \\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1172
about to send countdown(5000)
available = false
result = Done
available = true
exception = false
setting message timeouts to be 30000ms
about to send countdown(35000)
timer.countdown(35000) -> COM.objectspace.voyager.TimeoutException:
30000ms elapsed
about to send countdown(-1)
timer.countdown(-1) -> java.lang.lllegalArgumentException: delay cannot
be less than Oms
at examples.orb.Timer.countdown(Timer.java:27)
thrown remotely from 208.6.239.200:8000
about to send countdown(25000)
telling future not to send reply...

\> J

ObjectSpace Voyager Core Technology User Guide 109

6 Advanced Messaging

Application voyagerl1.0.0\examples\orb\Futurel.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Futurel

{
public static void main(String args[])
{
try
{
VTimer timer = new VTiner("local host: 8000");
try
{

System out.println("about to send countdown(5000)");
Result result = tiner.countdown(5000, new Future());

Systemout.println("available =" + result.isAvailable());
String string = (String) result.readObject();
Systemout.println("result =" + string);
Systemout.println("available = " + result.isAvailable());
Systemout.println("exception =" + result.isException());
}

catch(Exception exception)
{
Systemout.println("timer.countdown(5000) -> " + exception);
}

try
{

Systemout.println("setting nessage tineouts to be 30000ns");
timer.set MessageTi neout (30000);
Systemout.println("about to send countdown(35000)");
Result result = tiner.countdown(35000, new Future());
String string = (String) result.readObject();
Systemout.println("result =" + string);
}

catch(Exception exception)
{

Systemout.println("timer.countdown(35000) -> " + exception);

}

try
{
Systemout.println("about to send countdown(-1)");
Result result = tiner.countdown(-1, new Future());
String string = (String) result.readObject();

Systemout.println("result =" + string);
}

catch(Exception exception)
{

Systemout.println("timer.countdowmn(-1) -> " + exception);

ObjectSpace Voyager Core Technology User Guide 110

6 Advanced Messaging

}

Systemout.println("about to send countdown(25000)");
Result result = tiner.countdown(25000, new Future());
Systemout.printin("telling future not to send reply...");
result.kill();

/1 allow two seconds for the nessages to | eave this program
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}
}

Y ou can be notified when a future result arrives through the standard Java event/listener
mechanism. When aresult arrives, the Resul t sendsr esul t Recei ved() witha

Resul t Event object to every Resul t Li st ener that was either added to the Fut ur e
object prior to sending the message or added to the Resul t object after the message was sent.

From the\ voyager 1. 0. 0\ exanpl es\ or b directory, use the following command to
compilethe Fut ur e2. j ava example program:

javac Future2.java
Start a server on port 8000 in one window, and then run Fut ur e2. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct Timer

start countdown(5000)

finish countdown(5000)

ObjectSpace Voyager Core Technology User Guide 111

6 Advanced Messaging

Window 2

/;Eava exanpl es. or b. Future2 i\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1175
about to send countdown(5000)
listener gets result event
event source = UnicastResult(Reference(
208.6.239.200:8000/28-9-183-127-103-248-88-161-196-40-72-134-111-72-159-
192, 60, 872629366))
object = Done
exception = false
source address =
208.6.239.200:8000/28-9-183-127-103-248-88-161-196-40-72-134-11
1-72-159-192
listener gets result event
event source = UnicastResult(Reference(
208.6.239.200:8000/28-9-183-127-103-248-88-161-196-40-72-134-111-72-159-
192, 60, 872629366))
object = Done
exception = false
source address =
208.6.239.200:8000/28-9-183-127-103-248-88-161-196-40-72-134-111-72-
159-192

2 J

ObjectSpace Voyager Core Technology User Guide 112

6 Advanced Messaging

Application voyagerl1.0.0\examples\orb\Future2.java

/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Future2

{

public static void main(String args[])

{
try
{

VTimer Timer = new VTiner("local host: 8000");

Systemout. println("about to send countdown(5000)");

Future future = new Future();

MyResul tLi stener listenerl = new MyResultListener();

future. addResul tListener(listenerl); // add prior to nmessage send

Result result

= Ti mer. count down(5000, future);

MyResul tLi stener listener2 = new MyResul tListener();
result.addResultListener(listener2); // add after sendi ng nessage

}

cat ch(Voyager Exception exception)

{

Systemerr.println(exception);

}
}
}

cl ass MyResul tListener inplenents ResultlListener

{

static int count = O;

public void resul t Recei ved(ResultEvent event)

{

System out .
System out .
System out .

Syst em out

i f(++count

println(
println(
println(

.println(
System out .

println(

::2)

"“listener gets result event");

"event source = " + event.getSource());

"object =" + event.getChject());

"exception = " + event.isException());

"source address = " + event. get SourceAddress());

Voyager . shut down() ;

}
}

ObjectSpace Voyager

Core Technology User Guide 113

6 Advanced Messaging

More than one thread can invoker ead() onaResul t . Whenthe Resul t receivesthe
return value, all blocked threads are awakened and sent the value.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to
compilethe Fut ur e3. j ava example program:

javac Future3.java

Start a server on port 8000 in one window, and then run Fut ur e3. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct Timer

start countdown(5000)

finish countdown(5000)

Window 2

/éﬁava exanpl es. orb. Future3 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1177
about to send countdown(5000)
waiting. ..
waiting. ..
reader thread gets Done
reader thread gets Done

\ J

Application voyager1.0.0\examples\orb\Future3.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;
i mport COM obj ect space. voyager. *;

public class Future3
{
public static void main(String args[])
{
try
{
VTimer Timer = new VTiner("local host:8000");
Systemout.println("about to send countdown(5000)");
Result result = Tiner.countdown(5000, new Future());
Thread threadl = new Reader Thread(result);
threadl. start();
Thread thread2 = new Reader Thread(result);

ObjectSpace Voyager Core Technology User Guide 114

6 Advanced Messaging

thread2.start();

try
{
threadl.join();

thread2.join();

}
catch(InterruptedException exception)
{
}
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}
cl ass Reader Thread extends Thread
{
Result result;
Reader Thread(Result result)
{
this.result = result;
}
public void run()
{
Systemout.println("waiting...");
try
{
Systemout.println("reader thread gets "
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}

}

Synchronous Messengers

+ result.readObject());

A message sent using a Sync messenger returnsaResul t object only after the return value
has been received. A Sync usesthe current thread to deliver the message to the remote object,

and then sends the reply to the waiting Resul t object.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ or b directory to

compilethe Sync1l. j ava example program:

javac Syncl.java

ObjectSpace Voyager

Core Technology User Guide 115

6 Advanced Messaging

Start a server on port 8000 in one window, and then run Sync 1. cl ass in asecond window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct Timer

start countdown(5000)

finish countdown(5000)

Window 2

>j ava exanpl es. orb. Syncl

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1179

read object. ..

countdown(5000) = Done
>

Application voyager1.0.0\examples\orb\Syncl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Syncl

{
public static void main(String args[])
{
try
{
VTimer Timer = new VTiner("local host:8000");
Sync sync = new Sync();
Result result = Tiner.countdown(5000, sync);
Systemout.println("read object...");
System out.println("countdown(5000) =" + result.readObject());
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 116

6 Advanced Messaging

Dynamic Invocation

Thevcc utility’ s dual-method-version approach (discussed in “ Smart Messengers’ on page
106) facilitates sending messages to a remote object using a smart messenger, but does not
enabl e constructing and sending arbitrary messages dynamically. To do so, construct an
instance of the required smart messenger, use set Si gnat ur e() to set the message
signature, usethewr i t e() functionsto add the message arguments, and then use one of the
send() methods of VObj ect to send the message.

The message signature must be written in standard Java virtual machine method format, as
shown:

set Si gnat ure("methodName(argument types) [return value type] ")

where argument types is a non-delimited list of one or more of the following codes and return
value type, an optional argument, is one of the following codes.

Type Code
bool ean Z
char C
doubl e D
fl oat F
i nt I

| ong J
short S
voi d \Y
object L<full class name>;

array of type [<type>

TheDynani cl. j ava example program uses the dynamic invocation feature to create and
send three instance messages and one class message to an Adder . Use the following

commands from the\ voyager 1. 0. 0\ exanpl es\ or b directory to prepare and compile
the program:

vcc Adder
javac Adder.java VAdder.java Dynam cl.java

Start a server on port 8000 in one window, and then run Dynami c1. cl ass in asecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Construct Adder

ObjectSpace Voyager Core Technology User Guide 117

6 Advanced Messaging

Window 2

>j ava exanpl es. orb. Dynami cl1

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1181

adder _sum(5000, 2000) = 7000

adder.sum("Math", "Man"™) = MathMan
MyAdder.sum(5, 2) = 7

Adder.subtract(5, 2) = 3

>

Class voyagerl.0.0\examples\orb\Adder.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

import java.util.Vector;

public class Adder

{
publ i c Adder ()

{
Systemout.println("Construct Adder");
}
public int sun(int x, int y)
{
return x +vy;
}
public String sum String s1, String s2)
{
return sl1 + s2;
}
public static int subtract(int x, int y)
{
return x - vy;
}

}
Application voyager1.0.0\examples\orb\Dynamicl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;
i mport COM obj ect space. voyager. *;
public class Dynam cl

{

public static void main(String args[])

{

ObjectSpace Voyager Core Technology User Guide 118

6 Advanced Messaging

try
{
VAdder adder = new VAdder("I ocal host: 8000/ MyAdder");

/1 execute sum() using a virtual reference and a sync

Sync syncl = new Sync();

syncl. set Signature("sum(l1)");

syncl.writelnt(5000);

syncl.writelnt(2000);

Result synclResult = adder.send(syncl);

Systemout. println("adder.sun(5000, 2000) = "+synclResult.readlnt()

/1 execute sum() using a virtual reference and a future

Future futurel = new Future();

futurel. setSignature("sum(Ljava.lang. String;Ljava.lang.String;)");
futurel.witeQoject("Math");

futurel.witeQoject("Man");

Result futureResult = adder.send(futurel);

hject result = futureResult.readject();

Systemout.println("adder.sun{ \"Math\", \"Man\") =" + result);

/1 execute sum() using a static nmethod in VObject and a sync
Sync sync2 = new Sync();
sync?2. set Signature("sum(l1)");
sync2.writelnt(5);
sync2.writelnt(2);
Result sync2Result =
VQbj ect . send(sync2, "l ocal host: 8000/ MyAdder", 1000);
Systemout.println("MyAdder.sun(5, 2) =" + sync2Result.readlnt());

/1 execute substract() using a static nethod in VObject and a sync
Sync sync3 = new Sync();
sync3. set Signature("subtract(l1)");
sync3.writelnt(5);
sync3.writelnt(2);
Result sync3Result =
VQbj ect . send("exanpl es. orb. Adder", sync3, "l ocal host:8000", 10000);
Systemout. println("Adder.subtract(5, 2) = "+sync3Result.readlnt());

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}
}

The Test Schedul er . j ava example program demonstrates the simplicity of creating a
powerful utility using the dynamic invocation feature.

The Schedul er classalows you to request that a named message be sent to an object at a
specified time. The main program, Test Schedul er . j ava, creates an agent and asks it to

ObjectSpace Voyager Core Technology User Guide 119

6 Advanced Messaging

move to aremote program. The program then tells Schedul er to send ther enot e()
message to the agent after 10 seconds elapse. When the agent arrives at the remote program,
the program tells Schedul er to sendthel ocal () message to the agent after five seconds
elapse, and then the program allows its thread to terminate.

Beforel ocal () issent to the agent, the agent has no allocated thread. Therefore, the
technique described above is useful when an agent needs to become inactive, give up its
thread, and become active again at a particular time. Mobility and agents are described in more
detail in Chapter 8, “Mobility,” and Chapter 9, “ Agents.”

Note: Thisimplementation of Schedul er israther unsophisticated. A commercial-quality
version of Test Schedul er . j ava would maintain an ordered list of entries. Instead of
awaking every second to check the entire list, the agent would wait until the next entry to
check.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compile the Test Schedul er. j ava program:

vcc Test Agent
javac Schedul er.java Test Agent.java VTest Agent.java Test Schedul er. java

Start a server on port 8000 in one window, and then run Test Schedul er. cl ass ina
second window.

Window 1

ﬁvoyager 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000

arrived

send local() to me after 5s

my thread terminates but 1 do not die...
local!

remote!

\now I die...

Window 2

>j ava exanpl es. orb. Test Schedul er

construct local TestAgent

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1183

move to localhost:8000

send remote() to remote agent after 10s

>

ObjectSpace Voyager Core Technology User Guide 120

6 Advanced Messaging

Class voyagerl.0.0\examples\orb\Scheduler.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

import java.util.Date;
import java.util.Vector;
i mport COM obj ect space. voyager. *;

public class Schedul er inplenents Runnabl e

{

static Schedul er schedul er = new Schedul er();
private Vector entries = new Vector();

public static void i nvokeAfter(int seconds, Cbject object, String callback)

t hrows Voyager Excepti on

{

schedul er. addEntry(Voyager.getTi me() + seconds, object, callback);

}

public static void invokeAt(Date date, Object object, String callback)

t hrows Voyager Excepti on

schedul er. addEntry((int) (date.getTine() / 1000), object, callback);

}

private Schedul er()
{
Thread thread = new Thread(this);
t hr ead. set Daenmon(true);
thread.start();

}
public void run()
{
while(true) // loop every second
{
try
{
checkEntries();
}
cat ch(Voyager Exception exception)
{
System out. println(exception);
}

try{ Thread. sl eep(1000); } catch(InterruptedException exception) {}

}
}

private void addEntry(int time, Object object, String callback)
t hrows Voyager Excepti on

{
Entry entry = new Entry();

ObjectSpace Voyager Core Technology User Guide

6 Advanced Messaging

entry.tinme = tinme;
entry. cal | back = cal |l back;

/1 obtain a renote reference to the specified object
i f(object instanceof VQObject)

entry.vobject = (VObject) object; // already a renote reference
el se

entry.vobject = VObject.forCbject(object);

entries. addEl enment (entry);

}

private void checkEntries() throws VoyagerException

{

int index = 0;

while(index < entries.size())

{
Entry entry = (Entry) entries.elenentAt(index);

/1 if the time has conme, send the call back

i f(Voyager.getTinme() >= entry.time)
{
OneVay oneway = new OneWay(); // create smart oneway nessenger
oneway. set Si gnature(entry.callback + "()"); // set signature
entry. vobject.send(oneway); // send
entries.renoveEl enent At(index); // renpbve fromli st

}

el se
{
++i ndex;
}
}
}
}

class Entry
{
int time; // when the call back shoul d be sent
VObj ect vobject; // renote reference to the call back target
String call back; // the name of the call back

}

ObjectSpace Voyager Core Technology User Guide 122

6 Advanced Messaging

Class voyagerl1.0.0\examples\orb\TestAgent.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Test Agent extends Agent

public void go(String address) throws Voyager Exception
{

Systemout.println("nove to " + address);
nmoveTo(address, "arrived");

}

public void arrived() throws Voyager Exception

{

Systemout.println("arrived");
Systemout.println("send local () to me after 5s");

Schedul er. i nvokeAfter(5, this, "local"); // local callback
Systemout.println("ny thread termnates but | do not die...");
}
public void | ocal ()
{
Systemout.println("local!");
}
public void renmote() throws Voyager Exception
{
Systemout.println("renmote!");
Systemout.println("now | die...");
di eNow() ;
}

ObjectSpace Voyager Core Technology User Guide 123

6 Advanced Messaging

Application voyager1.0.0\examples\orb\TestScheduler.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;

public class Test Schedul er

{
public static void main(String args[])
{
try
{
Systemout.println("construct |ocal TestAgent");
VTest Agent agent = new VTest Agent("l ocal host");
agent.go("l ocal host:8000");
Systemout.println("send renpte() to renpbte agent after 10s");
Schedul er. i nvokeAfter(10, agent, "remote"); // renote call back
}
cat ch(Voyager Exception exception)
{
Systemout.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 124

6 Advanced Messaging

Virtual References to Remote Results

By default, Fut ur e and Sync messengers return copies of method results. If aresult islarge,
undesirable network traffic can occur. V oyager allows amessenger to return avirtual reference
to aresult, thereby greatly reducing the amount of network traffic. If the result is not
serializable, returning avirtual reference obviates the need for serialization, thus allows the
method to be invoked successfully. The life span of the remote result is set with

di eWhenNoRef er ences(), so, until destroyed, the virtual reference to the result keeps the
remote result alive.

To request that a messenger return avirtual reference to aresult, useset Vi rt ual () . If the
remote program has not used the virtual class before, the program attempts to load the class
from the local program. Ensure that the local program has dynamically linked the virtual class
before attempting to retrieve a virtual reference of that class type.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ or b directory to
prepare and compile the Ref er encel. j ava example program:

vce java.util. Vector

vcc MultiplicationTable

javac MultiplicationTable.java VMUl tiplicationTabl e.java Referencel.java
Wect or. java

Start a server on port 8000 in one window, and then run Ref er encel. cl ass inasecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

return a vector of size 10000

return a vector of size 10000

Window 2

@ ava exanpl es. orb. Ref erencel \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1185
copy took 3190ms
last element = 1000000
virtual reference took 660ms
last element = 1000000

\ /

ObjectSpace Voyager Core Technology User Guide 125

6 Advanced Messaging

Class voyagerl.0.0\examples\orb\MultiplicationTable.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

import java.util.Vector;

public class MiultiplicationTable

{
public Vector getTable(int n)
{
Vector table = new Vector();
for(int i =1; i <=n; i++)
tabl e. addEl enent (new Integer(i * i));
Systemout.println("return a vector of size " + n);
return table;
}
}

ObjectSpace Voyager Core Technology User Guide 126

6 Advanced Messaging

Application voyager1.0.0\examples\orb\Referencel.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. orb;

i mport COM obj ect space. voyager. *;
import java.util.Vector;

import java.util.Date;

i mport Wect or;

public class Referencel
{
public static void main(String args[])
{
try
{

/1l Create renpte nultiplication table.
VMul tiplicationTable table = new
VMul tiplicationTabl e("l ocal host: 8000");

/1 Cbtain a copy of the result vector and display |ast val ue.

long start = (new Date()).getTime();

tabl e. set MessageTi meout (300000); // allow up to 300 seconds

Vector |ocal Tabl e = tabl e. get Tabl e(10000);

long stop = (new Date()).getTinme();

Systemout.println("copy took " + (stop - start) + "ms");
Systemout.printin("last element = " + |ocal Table.elenentAt(999));

/1 Since the renpte program hasn't seen exanpl es.orb. Wector, it wll

/1 ask this programfor the class. The next |line of code nakes sure

/1 that this program has dynamcally |inked exanpl es.orb. Wector prior
/1 to receiving this request. If exanples.orb.VWector had al ready been
/1 used before this point in the program the next line of code would
/1l have been unnecessary.

Wector dummy = new Wector(); // create null virtual reference

/1 Ootain a virtual reference to the result vector

/1 and display |ast val ue.

Sync sync = new Sync();

sync.setVirtual (true); // return a virtual reference

start = (new Date()).getTinme();

Result result = table.getTabl e(10000, sync);

Wector renoteTable = (VWector) result.readject();

stop = (new Date()).getTinme();

Systemout.printin("virtual reference took " + (stop - start) + "ms");
Systemout.printin("last element = " + renoteTable.elementAt(999));

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}
}

ObjectSpace Voyager Core Technology User Guide 127

v

Events, Listeners, and Assistants

ObjectSpace Voyager™ Core Technology (Voyager) follows the standard JavaBeans™ event
model for event and listener syntax and semantics. VVoyager’ s event reporting subsystem
allowsfor general notification of most system- and object-level incidents. These events can be
extremely useful to developers. Following are example applications of the event mechanism:

e Monitoring of system throughput by watching all message traffic

e Intelligent analysis of and corrective action for system-level exceptions that have not been
handled

e Creation of object and agent audit trails

e Monitoring of agent movement patterns for security, performance optimization, and
tracking purposes

e Useof assistants, listenersthat are persisted and moved as the objects they are attached to
are persisted and moved

Three event classes (Syst enEvent , Obj ect Event , and SubspaceEvent) and two
listener classes (Syst enli st ener and Obj ect Li st ener) alow developersto add these
and many other features to their systems.

128

7 Events, Listeners, and Assistants

Listening to an Object

Every object is a potential source of events. Just as VQbj ect transparently adds methods to
remote-enabled objects for movement, persistence, and life spans, VObj ect aso adds
methods for adding and removing Obj ect Li st ener objects. If an object addsitself asan
oj ect Li st ener to another object, then that listener receives each event that the object
generates. If an object has no listeners, then it does not generate any events.

An Obj ect Li st ener can get notification of the object events for all objectsin aVoyager
program by adding itself asan Qbj ect Li st ener to VVoyager viathe static method
Voyager . addQbj ect Li st ener () . If Voyager has no object listeners, the system
generates no object events.

Note: To prevent aninfiniteloop, Voyager does not allow addition of avirtual reference asan
bj ect Li st ener.

Object Events

Object events are events associated with a particular object. Each object event, or instance of
the Obj ect Event class, has the following.

e A sourcethat isretrievable by the get Sour ce() method. This sourceisthe object that
generated theevent. Thesourcefieldinj ava. uti | . Event Obj ect isdeclaredtransient;
therefore, if an Obj ect Event issent between virtual machines, the source informationis
lost.

e Avirtual referenceto the sourcethat isretrievable by theget Ref er ence() method. This
virtual reference is stored in a nontransient field to enable remote listening. That is, a
listener can use this reference when it is necessary to interact with the remote source.

e A codethat identifiesthetype of event andisretrievableby theget Code() method. These
codes are static members of the Obj ect Event class.

e Three argumentsthat areretrievable by theget Arg1(), get Arg2(),and get Arg3()
methods.

All Voyager object event codes and associated arguments are described below.

SAVI NG Generated before the source is saved to persistent
store. All three arguments are null.

LOADED Generated after the source isloaded into memory from
persistent store. All three arguments are null.

FLUSHI NG Generated before the source is flushed from memory
and into persistent store. All three arguments are null.

REMOVI NG Generated before the source is removed from
persistent store. All three arguments are null.

DYl NG Generated before the source is deregistered from the

Voyager program. All three arguments are null.

MOVI NG Generated before the source moves. ArglisaSt ri ng
object that contains the address to which the sourceis
moving. Arg2 and Arg3 are null.

ObjectSpace Voyager Core Technology User Guide 129

7 Events, Listeners, and Assistants

DROPPI NG_FORWARDER

MOVE_FAI LED

ARRI VED

BEGA N_MESSAGE

END_MESSAGE

BEGA N_ENCOUNTER

END_ENCOUNTER

UNHANDLED_COBJECT_EXCEPTI ON

HEARTBEAT

Generated before the source drops aforwarder. Argl is
aSt ri ng object that contains the address to which the
forwarder sends messages. Arg2 and Arg3 are null.

Generated after the sourcetriesto move and fails. Argl
is the thrown exception that causes the move to fail.
Arg2 and Arg3 are null.

Generated after the source arrivesin a Voyager
program. Argl isa St r i ng object that contains the
Voyager program address the source came from. Arg2
isaStri ng object that contains the VV oyager program
address the source moved to. Arg3 isnull.

Generated before a message isinvoked on the source.
Argl isthe messenger delivering the message. Arg2
and Arg3 are null.

Generated after amessage isinvoked on the source.
Argl isthe messenger delivering the message. Arg2
and Arg3 are null.

Generated when an object moves to the source, before
the callback isinvoked. Argl isavirtua referenceto
the source and Arg2 isavirtual reference to the moved
object. Sometimes these virtual references are null; for
instance, they might be null if the virtual classes have
not yet been loaded from the network or if the
underlying objects have not been processed with vcec.
Arg3isnull.

Generated when an object moves to the source, after
the callback isinvoked. Argl isavirtual reference to
the source and Arg2 isavirtual reference to the moved
object. Sometimes these virtual references are null; for
instance, they might be null if the virtual classes have
not yet been loaded from the network or if the
underlying objects have not been processed with vcec.
Arg3isnull.

Generated after the source throws an exception that is
not caught by the program. Argl is the thrown
exception. Arg2 and Arg3 are null.

Note: Thisevent merely aerts developers that an
exception was thrown; the Voyager run time catches
the exception.

Generated after the source receives a heartbeat pulse.
All three arguments are null.

ObjectSpace Voyager

Core Technology User Guide 130

7 Events, Listeners, and Assistants

Listening to the System

The system is also a potential source of events. A Syst enEvent isgenerated when Voyager
has at least one Syst enli st ener and asystem-level incident of interest occurs.

System Events

System events are events associated with the system as awhole, not particular objects. Each
system event, or instance of the Syst enEvent class, has the following.

A sourcethat isretrievable by the get Sour ce() method. This sourceisthe address

St ri ng of the Voyager program that generated the event. The sourcefield in

java. util.Event Syst emisdeclared transient; therefore, if aSyst enEvent issent
between virtual machines, the source address is lost.

A string to the source that isretrievable by the get Addr ess() method. Thisstringis
stored in anontransient field to enable remote listening. That is, alistener can retrieve this
string when it is necessary to determine the remote V oyager program.

A codethat identifiesthetype of event and isretrievableby theget Code() method. These
codes are static members of the Syst enEvent class.

Three arguments that are retrievable by the get Ar g1(), get Arg2(), and get Ar g3()
methods.

All Voyager system event codes and associated arguments are described below.

PULSE Generated before the system instructs each reference

in the virtual machine to pulse a heartbeat to its
remote object if necessary. Argl isan| nt eger
object that contains the number of virtual references
held by objectsin the virtual machine. Arg2 and Arg3
arenull.

CLEANUP Generated before the system checks both the virtual

machine and its persistent store for objects with
expired life spans. Argl isan | nt eger object that
contains the number of virtual objectsin the virtual
machine. Arg2 and Arg3 are null.

UNHANDLED SYSTEM EXCEPTI ON Generated after a system-level exception occurs that

is not caught by the program. Argl is the thrown
exception. Arg2 and Arg3 are null.

Note: Thisevent merely alerts developers that an
exception was thrown; the Voyager run time catches
the exception.

ObjectSpace Voyager Core Technology User Guide 131

7 Events, Listeners, and Assistants

LOAD_CLASS | NTO _FI LESYSTEM Generated before Voyager copies aclassinto thefile

LOAD_CLOSURE_FROM REMOTE

LOAD_CLASSES_FROM REMOTE

LOAD_CLOSURE_FROM CODEBASE

LOAD_CLOSURE_FOR_APPLET

SENDI NG

system. Argl isa St ri ng object that contains the
fully qualified name of the class being loaded. Arg2 is
the complete file name in which the classis being
saved. Arg3isnull.

Generated before V oyager |oads the closure of aclass
from aremote virtual machine. ArglisaStri ng
object that contains the fully qualified name of the
class whose closure is loaded from the remote
program. Arg2 isa St r i ng object that contains the
Voyager program addressin which the closure is
loaded. Arg3 isnull.

Generated before Voyager loads a set of classes (the
classes that must be moved across the network as a
result of loading the closure for aclass) from aremote
virtual machine. Argl isaVect or object that
contains St r i ng objects, which, inturn, each contain
the fully qualified name of one of the classes |oaded
from the remote program. Arg2 isa St ri ng object
that contains the remote program address in which the
classes are loaded. Arg3 isnull.

Generated before V oyager |oads the closure of aclass
from codebase. Argl isaSt r i ng object that contains
the fully qualified name of the class whose closureis
loaded from codebase. Arg2 isa St ri ng object that
contains the information that tells the Voyager
program what the codebase is. Arg3 isnull.

Generated before V oyager |oads the closure of aclass
for an applet. Argl isa St ri ng object that contains
the fully qualified name of the applet class whose
closureisloaded. Arg2 isa St ri ng object that
contains the information that tells the V oyager
program what the codebase is. Arg3 isnull.

Generated before VVoyager sends a messenger or reply
to another VVoyager program. Argl isaRunnabl e
object that is the sent messenger or reply. Arg2 isa
St ri ng object that contains the program address to
which the messenger or reply is sent. Arg3 isthetota
number of bytes sent.

ObjectSpace Voyager

Core Technology User Guide 132

7 Events, Listeners, and Assistants

RECEI VED

FORWARDED

SERVER_SOCKET_EXCEPTI ON

SOCKET_EXCEPTI ON

VOYAGER_SHUTDOWN

Generated after VVoyager receives a messenger or
reply from another VVoyager program. Argl isa
Runnabl e object that is the received messenger or
reply. Arg2 isa St ri ng object that contains the
program address from which the messenger or reply is
received. Arg3 isthe total number of bytes received.

Generated after amessenger isforwarded to a
Voyager program. Argl is the forwarded messenger,
which is configured with the new destination. Arg2
and Arg3 are null.

Generated when the creation of a server socket results
in an exception. Argl is the thrown exception. Arg2
and Arg3 are null.

Note: Thisevent merely aerts developersthat an
exception was thrown; the VVoyager run time catches
the exception.

Generated when the creation or use of a nonserver
socket resultsin an exception. Argl isthe thrown
exception. Arg2 and Arg3 are null.

Note: Thisevent merely alerts developers that an
exception was thrown; the VVoyager run time catches
the exception.

Generated before Voyager shuts down. All three
arguments are null.

ObjectSpace Voyager

Core Technology User Guide 133

7 Events, Listeners, and Assistants

Listening to a Subspace

A subspace is another potential source of events. A SubspaceEvent isgenerated when a
subspace has at least one Obj ect Li st ener and a subspace-level incident of interest occurs.

Subspace Events

The SubspaceEvent object extends Obj ect Event and thusinheritsthe get Code(),
get Sour ce(), get Ref erence(), and thethreeget Ar g() methods.

All Voyager subspace event codes and associated arguments are described below.

ADD Generated after avirtual reference to an object is
added to asubspace. Argl isthe added reference.
Arg2 and Arg3 are null.

REMOVE Generated after avirtual reference to an object is
removed from a subspace. Argl is the removed
reference. Arg2 and Arg3 are null.

Note: No event is generated if the removal occurs
because of purging.

CONNECT Generated after aneighbor is connected to a subspace.
Argl isavirtual reference to the connected neighbor.
Arg2 and Arg3 are null.

DI SCONNECT Generated after a neighbor is disconnected from a
subspace. Argl isavirtual reference to the
disconnected neighbor. Arg2 and Arg3 are null.

Note: No event is generated if the disconnect occurs
because of purging.

To listen for subspace events, implement the Obj ect Li st ener interface and add the
listening object as alistener or as an assistant to either the subspace or the Voyager server.
Because the subspace event isreceived inthe obj ect Event () method, the event istyped as
an bj ect Event . Because an object event is received by the listener, thei nst anceof
operator should be used to identify those object events that are subspace events. For example:

public void objectEvent(ObjectEvent event)
{
bool ean i sSubspaceEvent = event instanceof SubspaceEvent;
i f(isSubspaceEvent && (event.get Code() == SubspaceEvent. ADD)
Systemout.println("A reference was added to the subspace.");

}

ObjectSpace Voyager Core Technology User Guide 134

7 Events, Listeners, and Assistants

System Tracing

ThelLi st ener 1. j ava example program demonstrates how to write atrace facility that
dumps alog of all significant activity to Syst em out . The program uses a Syst enSpy
object, an Cbj ect Spy object, and the familiar V\Vect or object.

Fromthe\ voyager 1. 0. O\ exanpl es\ | i st ener s directory, use the following
commands to prepare and compileLi st ener 1. j ava:

vcec java.util. Vector
javac Wector.java SystentBpy.java Obj ect Spy.java Listenerl.java

Now run Li st ener 1. cl ass.

//;iava exanpl es. listeners. Listenerl ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1220

event = ObjectEvent(end message Sync(
addObjectListener(LCOM.objectspace.voyager _ObjectListener;)V,
208.6.239.200:1220/1217097227 ->
208.6.239.200:1220/215-66-102-157-73-100-196-41-188-63-72-134-111-72-132-6
8)
[208.6.239.200:1220/215-66-102-157-73-100-196-41-188-63-72-134-111-72-132-
68])

event = ObjectEvent(begin message Sync(addElement(Ljava.lang.Object;)V,
208.6.239.200:1220/-387061123 ->
208.6.239.200:1220/215-66-102-157-73-100-196-41-188-63-72-134-111-72-132-6
8)
[208.6.239.200:1220/215-66-102-157-73-100-196-41-188-63-72-134-111-72-132-

68])

vector = [hello, goodbye]

event = SystemEvent(pulse 5 references [208.6.239.200:1220])
event = SystemEvent(pulse 5 references [208.6.239.200:1220])
event = SystemEvent(pulse 5 references [208.6.239.200:1220])
event = SystemEvent(cleanup 6 objects [208.6.239.200:1220])
event = SystemEvent(pulse 3 references [208.6.239.200:1220])

>

- J

ObjectSpace Voyager Core Technology User Guide 135

7 Events, Listeners, and Assistants

Class voyagerl1.0.0\examples\listeners\SystemSpy.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;

public class SystenSpy inplenents Systenlistener

public void systenEvent(SystenEvent event)

{

[lprint out all system events
Systemout.println("event =" + event);
}

}

Class voyagerl1.0.0\examples\listeners\ObjectSpy.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es.listeners;

i mport COM obj ect space. voyager. *;

public class ObjectSpy inplenents CbjectlListener, java.io.Serializable

{

public void objectEvent(ObjectEvent event)
{
[lprint out all object events
Systemout.println("event = " + event);
}

}

ObjectSpace Voyager Core Technology User Guide 136

7 Events, Listeners, and Assistants

Application voyager1.0.0\examples\listeners\Listenerl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Listenerl
{
public static void main(String[] args)
{
try
{
/lcreate a systemlistener that just prints out events
Syst enBpy systenBpy = new SystentSpy();
Voyager . addSyst enli st ener (systentSpy);

//create an object and add an object |istener
//that just prints out events

Wect or vector = new Wector("local host");
hj ect Spy obj ect Spy = new hj ect Spy() ;

vect or. addoj ect Li st ener (obj ect Spy);

vect or. addEl emrent ("hel l 0");
Systemout.println("vector =" + vector);

//turn off object listening
vector.renmoveQj ect Li st ener (obj ect Spy);
vect or. addEl enent ("goodbye");
Systemout.println("vector =" + vector);

try{ Thread. sl eep(20000); } catch(InterruptedException exception) {}
Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 137

7 Events, Listeners, and Assistants

System Tracing with the Monitor

Because logging system activity to aconsole is such acommon debugging technique, V oyager
includesaMoni t or object that implements Cbj ect Li st ener and Syst enLi st ener and
dumps most significant activity to Syst em out , much as the spy objectsin the

Li st ener 1. j ava example do. Enable monitoring for a VVoyager program by using the —t
option from the command line:

voyager 8000 —t
Three options for the—t switchareo, ¢, and h.

0 Instructs Voyager to trace object events.

¢ Instructs Voyager to trace communication system events, that is,
Syst emEvent . SENDI NGand Syst enEvent . RECEI VI NG

h Instructs Voyager to trace housekeeping system events, that is all system events except
Syst emEvent . SENDI NGand Syst enEvent . RECEI VI NG

For example, the following line of code instructs Voyager to log object and housekeeping
system events only.

voyager 8000 —toh
By default, all events are monitored; hence, - t isequivalent to—t ohc.

To turn on monitoring in your programs, create a new monitor object and add it as a system
listener to VVoyager, as an object listener to Voyager, or both.

Monitor monitor = new Monitor();
Voyager . addSyst enli stener(nonitor);
Voyager . addObj ect Li stener(nonitor);

As asystem listener, the monitor can print all generated system events. As an aobject listener,
the monitor prints all object events generated by all objects, excluding the

oj ect Event . END_IESSACE event. (Because the Obj ect Event . BEG N_MESSAGE
event is printed, printing the Obj ect Event . END_MESSAGE event is unnecessary and would
be distracting.)

The Moni t or class has two methods useful to programmers:

public void nonitorCommunications(boolean flag) and

public void monitorHousekeepi ng(bool ean flag). These methods are
equivalent to the—t optionsc and h. If f | ag istrue for either of these methods, then
associated events are printed to Syst em out . If f | ag isfalse, printing of associated events
is suppressed. By default, all system events are printed.

When monitoring is enabled, you might receivethe[vi rt ual cl ass not avai | abl e]
message. Y ou might get this message if an argument is intended to be avirtual referenceto an
object whose class has not been processed with vcc. You also might receive this message
when events are generated as aresult of an operation that depends on class loading to get the
associated virtual classes. Because the class loading has not yet occurred, the virtual classes
are not yet available. In both cases, the message is common and no cause for concern.

ObjectSpace Voyager Core Technology User Guide 138

7 Events, Listeners, and Assistants

Use the following command from the voyager 1. 0. 0\ exanpl es\ | i st ener s directory
to compiletheLi st ener 2. j ava example program:

javac Listener2.java

Note: This command works only if you have already prepared and compiled the
VWWect or . j ava example program, as shown in “System Tracing” on page 135.

Now run Li st ener 2. cl ass.

//;java exanpl es. | i steners. Li stener?2 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997

ObjectEvent(begin message Sync(setAlias(Ljava.lang.String;)V,
208.6.239.200:1221/556401104 ->
208.6.239.200:1221/76-28-192-102-44-35-103-33-9-127-72-134-111-72-132-69

)
[208.6.239.200:1221/76-28-192-102-44-35-103-33-9-127-72-134-111-72-132-69]

)
ObjectEvent(begin message Sync(liveForever()V,

208.6.239.200:1221/-458271365 ->
208.6.239.200:1221/76-28-192-102-44-35-103-33-9-127-72-134-111-72-132-69

)
[208.6.239.200:1221/76-28-192-102-44-35-103-33-9-127-72-134-111-72-132-69]

)
address = 208.6.239.200:1221

\-/ector = [hello, goodbye]

SystemEvent(pulse 5 references [208.6.239.200:1221])
SystemEvent(pulse 5 references [208.6.239.200:1221])
SystemEvent(pulse 5 references [208.6.239.200:1221])

SystemEvent(cleanup 6 objects [208.6.239.200:1221])

SystemEvent(pulse 3 references [208.6.239.200:1221])

\Z J

ObjectSpace Voyager Core Technology User Guide 139

7 Events, Listeners, and Assistants

Application voyager1.0.0\examples\listeners\Listener2.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;

i mport COM obj ect space. voyager. util. Mnitor;

i mport Wect or;

public class Listener2

{
public static void main(String[] args)
{
try
{
/lcreate a nonitor that nonitors both system and object events
Monitor nonitor = new Mnitor();
Voyager . addObj ect Li stener(nonitor);
Voyager . addSyst enli stener(nonitor);
//create a vector and send it nessages to see what events are generated
Wect or vector = new Wector("local host");
vect or. addEl enent ("hell 0");
vect or. addEl ement (" goodbye");
Systemout.println("vector =" + vector);
try{ Thread. sl eep(20000); } catch(InterruptedException exception) {}
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

When using the monitor to listen to object events, be aware that many events showing internal
Voyager mechanisms are printed. For instance, when an object moves to aremote program,

V oyager sends messages back and forth as part of the move-handshake process. Voyager sends
other messages during lookup and garbage collection, identifiable by two leading underscores
in such method names, like __acti vate() and __ack().

ObjectSpace Voyager Core Technology User Guide 140

7 Events, Listeners, and Assistants

Assistants

Listener applications yield surprisingly powerful results. For instance, a developer can create
an Qbj ect Li st ener that listens for ARRI VED events. Because developers can use listeners
to modify and enhance the behavior of objectsin any way desired, the application possibilities
are endless.

In the JavaBeans model, however, collections of listeners are transient variables. This limits
the functionality of listenersin VVoyager programs because Voyager objects often move from
one program to another and they often persist themselves to disk storage. In both cases,
transient variables are lost.”

For nontransient listening, Voyager has a special kind of listener, an assistant. When you
attach an assistant to an object, the assistant is persisted when the object is persisted and the
assistant moves with the object as the object moves.

Y ou can add an assistant to an object in two ways, both using theaddAssi st ant () method.
Use the following code to add an assistant and specify a key for the assistant.

public void addAssistant(String key, CbjectListener |istener)

The key is stored and can be used later to remove the assistant. Several assistants can share a
key, so removing by key resultsin removing all assistants associated with the key.

If key uniqueness is necessary in a program, use the following code to add an assistant.

public String addAssi stant(CbjectlListener |istener)
A globally unique key is returned. This key is used for the assistant.

TheAssi st ant 1. j ava example program demonstrates adding aRepl i cat or listener as
an assistant. A Repl i cat or listensfor END_MESSAGE object events and replicates the
messages to another object. The replicator isfirst configured with aMessageSel ect or
object that allows the replicator to filter messages for only those methods in whichitis
interested. For example, areplicator could be used to keep two or more objectsin sync; the
replicator could filter all object events and forward only messages changing the state of the
object to the other abjects in the replicated group.

Use the following command from thevoyager 1. 0. 0\ exanpl es\ | i st ener s directory
to compile Assi st ant 1. j ava:
javac MethodSel ector.java Replicator.java Assistantl.java

Start a server on port 8000 in one window, and then run Assi st ant 1. cl ass inasecond
window.

T Read the Java Serialization specification for more information on transient variables.

ObjectSpace Voyager Core Technology User Guide 141

7 Events, Listeners, and Assistants

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Window 2

/>j ava exanpl es.listeners. Assistantl \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1074
original = [clubs, diamonds, spades, hearts]
mirror = [clubs, diamonds, spades, hearts]
original = [spades, hearts]
mirror = [spades, hearts]

\ /

ObjectSpace Voyager Core Technology User Guide 142

7 Events, Listeners, and Assistants

Class voyagerl.0.0\examples\listeners\MethodSelector.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

import java.util.*;
i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager. util.*;

/**

* MethodSel ector is a selector that selects an object if it
* | s a Messenger whose sighature is in my signature set.

*/

public class MethodSel ector inplements Sel ector

{

private Vector signatures = new Vector();

publ i ¢ Met hodSel ect or ()
{
/1 Construct nyself with an enpty set of signatures.

}

public void addSignature(String signature)
{
/1 Add the specified signature to ny set of signatures.
si gnat ur es. addEl enent (signature);

}

public void renoveSi gnature(String signature)
{
/' Renove the specified signature fromny set of signatures.
si gnatures. renoveEl enent (signature);

}

public bool ean sel ect(Object object)
{
/I Return true if the specified object is a
/I Messenger that matches ny signature set.
return object instanceof Messenger &&
signatures. contains(((Messenger) object).getSignature());
}
}

ObjectSpace Voyager Core Technology User Guide 143

7 Events, Listeners, and Assistants

Class voyagerl1.0.0\examples\listeners\Replicator.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager. util.*;

public class Replicator inplenents java.io.Serializable, bjectlListener
{
//the object | amkeeping in sync with the event source
private VQObject reference;

/1 obj ect that deci des what nmessages to replicate
private Sel ector selector;

public Replicator(VObject reference)
{

this(reference, null);

}

public Replicator(VObject reference, Selector selector)
{
this.reference = reference;
this.selector = selector;

}

public void objectEvent(ObjectEvent event)
{
/lreplicate after the nessage conpl etes
i f(event.getCode() == bject Event. END_MESSAGE)
{

Messenger nessenger = (Messenger) event.get Argl();

if(selector == null || selector.select(nmessenger))

{

try
{
/lreplicate the nessage
Messenger replica = reference. newDef aul t Messenger () ;
replica. set Si gnature(nessenger.getSignature());
replica. set Argunment s(nessenger. get Argurments());
ref erence. send(replica);

}

catch(Exception exception)

ObjectSpace Voyager Core Technology User Guide 144

7 Events, Listeners, and Assistants

Application voyager1.0.0\examples\listeners\Assistantl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es.listeners;

i mport COM obj ect space. voyager. *;
i mport Wector;

public class Assistantl
{
public static void main(String[] args)
{
try
{

//create a local vector and a renote mirror of it
Wector original = new Wector("local host");
Wector mrror = new Wector("l ocal host: 8000");

/lcreate a nethod selector that will select only nethods
//that change the state of the vector

Met hodSel ect or sel ector = new Met hodSel ector();

sel ect or. addSi gnat ure("addEl ement (Lj ava. | ang. Obj ect;) V");

sel ector. addSi gnature("renoveEl enent (Lj ava. | ang. Obj ect;)Z");

/1the replicator assistant takes the mirror and the selector
Replicator replicator = new Replicator(mrror, selector);
//add the assistant to the original vector

origi nal . addAssi stant(replicator);

//add el ements to the vector

origi nal . addEl emrent ("cl ubs");
origi nal . addEl emrent (" di anmonds") ;
origi nal . addEl emrent ("spades");
original.addEl ement("hearts");

/lverify the vectors have the sane el enents
Systemout.println("original =" + original);
Systemout.println("mrror =" + mrror);

//remove el enents fromthe vector
original.renoveEl enent ("di anonds");
original.renoveEl enment ("clubs");

[lverify the vectors have the sanme el enents
Systemout.println("original =" + original);

Systemout.println("mrror = + mrror);

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 145

7 Events, Listeners, and Assistants

The Assi st ant 2. j ava example program demonstrates how an object can monitor itself.
The program uses an instance of the MyAgent class. The agent moves from one virtual
machine to another and receives each event it generates.

Use the following commands from the voyager 1. 0. 0\ exanpl es\ | i st ener s directory
to prepare and compile My Agent :

vcc MyAgent

javac MyAgent.java VMyAgent.java Assistant?2.java

Start a server on port 8000 in one window, and then run Assi st ant 2. cl ass inasecond
window.

Window 1

//gboyager 8000 ‘\\\

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000

MyAgent event = ObjectEvent(begin encounter target [virtual class not
available], requestor
208.6.239.200:8000/208-246-46-240-30-134-225-153-241-17-72-134-111-72-132-
72
[208.6.239.200:8000/208-246-46-240-30-134-225-153-241-17-72-134-111-72-132

=721)

MyAgent event = ObjectEvent(end encounter target [virtual class not
available], requestor
208.6.239.200:8000/208-246-46-240-30-134-225-153-241-17-72-134-111-72-132-

72
[208.6.239.200:8000/208-246-46-240-30-134-225-153-241-17-72-134-111-72-132
-721)

Window 2

/égava exanpl es. |l i steners. Assi stant 2 ﬂ\\

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1224

MyAgent event = ObjectEvent(source: examples.listeners.MyAgent(
231-212-71-239-

193-83-108-83-206-38-217-134-111-217-132-211), begin message Sync(go(V,
208.6

-239.89:1107/-372373224 ->
208.6.239.89:1107/231-212-71-239-193-83-108-83-206-38
-217-134-111-217-132-211))

moving to 8000

MyAgent event = ObjectEvent(source: examples.listeners._MyAgent(

231-212-71-239-

193-83-108-83-206-38-217-134-111-217-132-211), end encounter target

[virtual cl

ass not available], requestor

208.6.239.89:8000/231-212-71-239-193-83-108-83-206
\\:§8—217—134—111—217—132—211) 4//

ObjectSpace Voyager Core Technology User Guide 146

7 Events, Listeners, and Assistants

Class voyagerl1.0.0\examples\listeners\MyAgent.java
/1 Copyright(c) 1997 bject Space, Inc.

package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;

public class MyAgent extends Agent inplenents CbjectlListener
{

String hone;

public MyAgent ()
{
/llisten for any event | generate
addAssistant(this);

}

public void go() throws Voyager Exception
{
/I move around and see what events | generate
home = Voyager. get Address();
Systemout.println("noving to 8000");
noveTo("I ocal host:8000", "at8000");

}

public void at8000() throws Voyager Exception
{

// move back and see what events | generate
Systemout. println("at8000, going home");
moveTo(hone, "atHome");

}
public void at Honme()
{

Systemout.println("at home");

/11 could execute clean-up code when | get the DYI NG event. ..

di eNow() ;
}

public void objectEvent(ObjectEvent event)
{
//just print out all objects events
Systemout.println("M/Agent event = " + event);
}

}

ObjectSpace Voyager Core Technology User Guide 147

7 Events, Listeners, and Assistants

Application voyager1.0.0\examples\listeners\Assistant2.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Assistant?2

{

public static void main(String[] args)
{
try
{

/lcreate an agent that listens to itself
VMyAgent agent = new VMyAgent("l ocal host");

//move it around and see what gets printed out
agent. go();

cat ch(Voyager Exception exception)

{
Systemerr.println(exception);
}
}
}

The Assi st ant 3A. j ava and Assi st ant 3B. j ava example programs demonstrate a
powerful application of assistants. This two-phase example uses the Aut osaver object. An
autosaver is an assistant that, like the replicator, is configured to listen to END_NMVESSAGE
object events. The autosaver uses a method selector to filter those messagesin whichiitis
interested and throws away therest. When an END_MESSAGE event is generated for amessage
that interests the autosaver, the autosaver saves its associated object. In general, an autosaver,
like areplicator, can be configured to listen for messages that modify the state of an object.
After such amessage is invoked, the object is saved to disk.

ObjectSpace Voyager Core Technology User Guide 148

7 Events, Listeners, and Assistants

In the first phase of this example, Assi st ant 3A. j ava createsaVect or object with an
autosaver assistant and sends the vector messages that modify its state. In the second phase,
the virtual machines are shut down and restarted. Assi st ant 3B. cl ass isthen run, causing
the vector to be loaded from disk. Y ou can verify that the vector has been autopersisted after
each change.

Phase 1

Use the following command from the voyager 1. 0. 0\ exanpl es\ | i st ener s directory
to compile the example programs:

javac Aut osaver.java Assistant 3A. java Assistant3B.java

Note: This command works only if you have already prepared and compiled the
VWWect or . j ava and Met hodSel ect or . j ava example programs, as shown in “ System
Tracing” on page 135 and in “Assistants’ on page 141.

Start aserver on port 8000 in onewindow. This server must be started with a database to verify
that the autosaver saves the changes made. Choose any database name, and then run
Assi st ant 3. cl ass in asecond window.

Window 1

>voyager 8000 -d saver.db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 0 objects, O classes

Window 2

>j ava exanpl es. | i steners. Assi stant 3A
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1102

vector = [spades, hearts]

>

Phase 1 of thisexample is now complete. Notice that Window 2 shuts down automatically, but
Window 1 remains active.

ObjectSpace Voyager Core Technology User Guide 149

7 Events, Listeners, and Assistants

Phase 2

Shut down the Voyager server by pressing Ctrl+C in Window 1. Then restart the database used
in Phase 1 of thisexamplein Window 1. Finally, run Assi st ant 3B. cl ass in Window 2.
Verify that the vector created in Assi st ant 3A was saved appropriately.

Window 1

>voyager 8000 -d saver.db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 1 object, 0 classes

Window 2

(")

>j ava exanpl es. |l i steners. Assi stant 3B
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1104

vector = [spades, hearts]

>

- J

ObjectSpace Voyager Core Technology User Guide 150

7 Events, Listeners, and Assistants

Class voyagerl.0.0\examples\listeners\Autosaver.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager. util.*;

public class Autosaver inplenents java.io. Serializable, bjectlListener
{
/1 object that deci des what nmessages to initiate saving
private Sel ector selector;

publ i c Autosaver ()

{
}

publ i c Autosaver(Sel ector selector)
{

this.selector = selector;

}

public void objectEvent(ObjectEvent event)
{
i f(event.getCode() == bject Event. END_MESSAGE)
{
/lsave after the nessage conpl etes
Messenger nessenger = (Messenger) event.get Argl();

try
{
if(selector == null || selector.select(nessenger))
{
/lsave the object that generated the event
if(event.getReference() !'= null)
event . get Ref erence() . saveNow() ;
}
}
cat ch(Voyager Exception exception)
{
Voyager Except i on. unhandl edExcepti on(exception);
}
}
}
}

ObjectSpace Voyager Core Technology User Guide 151

7 Events, Listeners, and Assistants

Application voyager1.0.0\examples\listeners\Assistant3A.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Assistant3A
{
public static void main(String[] args)
{
try
{

/lcreate a vector at a name we can use to get to it later
Wect or vector = new Wector("l ocal host: 8000/ MyVector");
vector.liveForever();

//sel ect messages that change the state of the vector

Met hodSel ect or sel ector = new Met hodSel ector();

sel ect or. addSi gnat ure("addEl enent (Lj ava. | ang. Obj ect;) V");
sel ector. addSi gnature("renoveEl ement (Lj ava. |l ang. Obj ect;)Z");

/lcreate and add a listener that will save the vector each tine
/1 one of the above nessages is sent to it

Aut osaver aut osaver = new Aut osaver(selector);

vect or. addAssi st ant (aut osaver);

[/ modify the vector

vect or. addEl ement ("cl ubs");

vect or . addEl ement ("di anonds");
vect or. addEl ement ("spades");
vector. addEl enent ("hearts");

vect or. renoveEl enent ("di anonds");
vect or. renoveEl enent ("cl ubs");

[lprint out the vector. ..
//conpare this to what is printed out in Assistant3B
Systemout.println("vector =" + vector);

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 152

7 Events, Listeners, and Assistants

Application voyager1.0.0\examples\listeners\Assistant3B.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.|listeners;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Assistant3B

{
public static void main(String[] args)
{
try
{
//load the vector fromthe previ ous exanple
VWWect or vector =
(Wector) VQOoject.forObjectAt("local host: 8000/ MyVector");
/lprint and verify all changes nade to the vector were autosaved
Systemout.println("vector =" + vector);
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 153

8

Mobility

Any object that has avirtual class and implementsthej ava. i 0. Seri al i zabl e interface
can be moved, even while it is receiving remote messages. There are at |east two reasons why
object mobility is useful:

e Objects that exchange large numbers of messages can be moved closer to each other to
reduce network traffic and increase throughput. A local message is often at least 1,000
times faster than its remote equivalent. Thistechnique is known as load balancing.

e A program can move objects into a mobile device so that the program can remain with the
device after the device has been disconnected from the network.

To move an object in ObjectSpace Voyager™ (Voyager) Core Technology, use moveTo()
with the move destination as the first parameter. If you want the object to continue executing
after the move completes, you can specify an optional callback function with an optional
callback argument. The optional callback argument can be an object of any type.

There are two kinds of destination:

e Program Destination. If the destination is aprogram address, the object ismoved from its
current program to the destination program. If the moveis successful and a callback
function is specified, the public method whose name matches the callback functionis
executed on the object with the optional callback argument.

e Object Destination. If the destination is either the address of or avirtual reference to
another object, the object is moved from its current program to the destination object’s
program. If the move is successful and a callback is specified, the public method whose
name matches the callback argument is executed on the moved object. The callback
contains alocal Java™ reference to the destination object and the optional callback
argument. The object that moved and the destination object cannot be moved by other
objects until the callback completes.

When an object receives moveTo() , it first allows all remote messages currently in progress
to complete. The object then enters a frozen state in which all incoming remote messages are
suspended until the move is complete. A copy of the object isthen moved to its destination.

If the move is successful, the original object leaves behind a special object called aforwarder
that forwards messages from the old location to the new location. The original object isthen
destroyed, and the copy becomes the new “original.” Remote messages suspended at the
original location are resumed and forwarded to the new location. If a callback was specified,

154

8 Mobility

the callback is executed using a new thread allocated from the Voyager thread pool. Note that
nmoveTo() returnsimmediately when the move is complete and does not wait for the separate
callback thread to finish executing.

If an error occurs during the move process, the copy is destroyed, the original object is
unfrozen, remote messages suspended at the original location are resumed, and an exceptionis
thrown to the caller of noveTo() .

An object’ s new location is automatically propagated to all its virtual references using an
efficient update-on-demand technique. A forwarded remote message remembers that it has
been forwarded. When aforwarded message arrives, the remote object’ s new location is either
piggybacked onto the message return value (for synchronous and future messages) or sent
back to the virtual reference by an explicit message (for one-way messages).

Thelife span and persistence of aforwarder isinherited from the original object. For example,
if an object is programmed to die at a particular point in time, its forwarders also die at that
time. Similarly, if an object is programmed to die when there are no remote referencesto it, its
forwarders will aso die when there are no remote references to them. A heartbeat sent viaa
forwarder keeps the forwarder alive and also causes an update of the virtual reference’s
knowledge of the new location. When an object’ s virtual references are updated with the
object’s new location, the object’ s forwarders no longer receive heartbeats and thus are
garbage-collected.

When a moved object dies, it sends aone-way di eNow() message to each of its forwarders.

ObjectSpace Voyager Core Technology User Guide 155

8 Mobility

Performance Benefits of Mobility

Test programs were run to demonstrate the performance benefits of mobility. A client program
used a server program to perform 5,000 calculations using three different modes of
communication: sending remote messages viaavirtual reference, sending local messagesviaa
virtual reference, and sending local messages via araw Javareference. The following table
summari zes the tests result, with time shown in milliseconds.

Communications Mode Time to Move C-glrcr:]jlgze Total Time
Remote messages via virtual reference n/a 28,141 28,141
Local messages viavirtual reference 611 3,455 4,066
Loca messages viaraw Javareference 631 10 641

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ nobi | i t y directory
to prepare and compile the programs for this example.

vcc Cient Server
javac Cient.java VOient.java Server.java VServer.java
javac Renpte.java Local .java Raw. java

Start a server on port 8000 in one window, and then run Renot e. cl ass, Local . cl ass,
and Raw. cl ass in succession in a second window.

Note: Although you do not explicitly runCl i ent . cl ass and Ser ver . cl ass inthis
example, you remote-enable and compiled i ent . j ava and Ser ver . j ava before
compiling the main example programs. Thisis because the client and server programs are used
within the other three programs.

Window 1

//;Qoyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000

construct Server(one)

construct Server(two)

time to move Client(two) = 611ms

total time = 4066ms

construct Server(three)

time to move Client(three) = 631ms

total time = 641ms

.)

ObjectSpace Voyager

Core Technology User Guide 156

8 Mobility

Window 2

/;Eava exanpl es. nobility. Renote i\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1198
construct Client(one)
total time = 28141ms
>j ava exanples.mobility. Loca
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1200
construct Client(two)
>j ava exanpl es. nobility. Raw
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1203

construct Client(three)
>

o J

Class voyagerl.0.0\examples\mobility\Client.java

/1 Copyright(c) 1997 hjectSpace, Inc.
package exanpl es.nobility;

import java.util.Date;
i mport COM obj ect space. voyager. *;

public class dient inplenents java.io. Serializable
{
static final int LOOPS = 5000;
String nane;
long created = (new Date()).getTinme(); // creation tine
VServer vserver; // renpote reference to server

public Cient(String nane, VServer vserver)
{
thi s. nane = nane;
this.vserver = vserver;
Systemout.println("construct " + this);

}
public String toString()
{
return "Cient(" + name + ")"
}
public void |l ongCal cul ation() throws Voyager Exception
{
for(int i =0; i <6; i++)
{
Systemout.println(this +" cube(" +i +") =" + vserver.cube(i));
try{ Thread. sl eep(1000); } catch(InterruptedException exception) {}
}

ObjectSpace Voyager Core Technology User Guide 157

8 Mobility

}

public void cal cul ate()
{
try
{
for(int i =0; i < LOOPS; i++)
vserver.square(i);

long total = (new Date()).getTime() - created;
Systemout.printin("total tine =" + total + "ns");
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

public void atProgram)
{
long time = (new Date()).getTine() - created;
Systemout.println("tinme to nove " + this +" =" + tine + "nms");
calcul ate();

}

public void atServer(Server server)
{
long time = (new Date()).getTine() - created;
Systemout.println("time to nove " + this + " "+ time + "ns");

for(int i =0; i < LOOPS; i++)
server.square(i);

long total = (new Date()).getTime() - created;
Systemout.printin("total time =" + total + "ns");
}

}

ObjectSpace Voyager Core Technology User Guide 158

8 Mobility

Class voyagerl.0.0\examples\mobility\Server.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. nobility;

public class Server inplenents java.io.Serializable

{

String nane;

public Server(String nane)
{

thi s. nane = nane;
Systemout.println("construct " + this);

}

public String toString()
{

return "Server(" + name + ")";

}

public int square(int x)

{

return x * Xx;

}

public int cube(int x)

{

Systemout.printin(this + " receives cube(" + x + ")");
return x * x * x;

}

public void atProgram)
{

Systemout.println(this + " arrives at new program');

}

public void atProgram(String nmessage)
{

Systemout.println(this +" " + nessage);

}
}

ObjectSpace Voyager Core Technology User Guide 159

8 Mobility

Application voyager1.0.0\examples\mobility\Remote.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. nobility;

i mport COM obj ect space. voyager. *;

public class Renote

{
public static void main(String args[])
{
try
{
VServer server = new VServer("one", "local host:8000");
VCient client = new VOient("one", server, "local host");
/1l performrenote cal cul ation
client.calculate();
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemout. println(exception);
}
}
}

Application voyager1.0.0\examples\mobility\Local.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es.nobility;

i mport COM obj ect space. voyager. *;

public class Local

{
public static void main(String args[])
{
try
{
VServer server = new VServer("two", "local host: 8000");
VCient client = new Vdient("two", server, "local host");
/1 move, performlocal calculation
client.moveTo(server.get ProgramAddress(), "atProgram');
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemout. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 160

8 Mobility

Application voyagerl.0.0\examples\mobility\Raw.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. nobility;

i mport COM obj ect space. voyager. *;

public class Raw
{
public static void main(String args[])
{
try
{

VServer server = new VServer("three", "local host:8000");
VCient client = new VCient("three", server, "local host");

/1 move to server, performcal culation using raw Java reference
client.moveTo(server, "atServer");
Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemout. println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 161

8 Mobility

Invoking a Callback

When a callback is specified and a callback argument is provided, Voyager triesto invoke the
most specific callback possible. Thisis consistent with Java signature mapping rules, but
identifying the appropriate callback method is not always intuitive and is sometimes
impossible within the scope of Java's mapping rules. For example, identifying an appropriate
callback method isimpossible when there is no method with a signature that matches the
signature implied by the callback and callback argument. Sometimes the Java mapping rules
cannot limit the set of possible methods to only one method. Both the nonexistent and
ambiguous cases result in aMet hodNot Found exception.

Use the following commands from the\ voyager 1. 0. O\ exanpl es\ nobi | i t y directory
to compilethe Cal | back1l. j ava example program:

vce Tar get
javac VTarget.java Target.java Cal |l backl.java

Start a server on port 8000 in one window, and then run Cal | backl. cl ass inasecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000

No arg version of callback() invoked

String version of callback() invoked with: callback argument
String version of callback() invoked with: callback argument

Window 2

/:;ava exanpl es. nobi lity. Cal | backl ﬂ\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1206
COM.objectspace.voyager -MethodNotFoundException:
examples.mobility.Target.nonexi
stent_callback()

thrown remotely from 208.6.239.89:8000
COM.objectspace.voyager .MethodNotFoundException: callback ambiguity
between [pub
lic void examples.mobility.Target.callback(java.lang.Object), public void
exampl
es.mobility.Target.callback(java.lang.Runnable), public void
examples.mobility.T
arget.callback(jJava.io.Serializable)]

thrown remotely from 208.6.239.89:8000

\2 J

ObjectSpace Voyager Core Technology User Guide 162

8 Mobility

Class voyagerl.0.0\examples\mobility\Target.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. nobility;

import java.io.Serializable;

public class Target inplenents Runnable, Serializable

{
public Target()
{
}
public void callback()
{
Systemout.println("No arg version of callback() invoked");
}
public void callback(String string)
{
System out . println(
"String version of callback() invoked with: " + string);
}
public void call back(Object object)
{
System out . printl n(
"bj ect version of callback() invoked with: " + object);
}

/11f callback() is invoked with a Target, both of the foll ow ng nmethods
/lare suitable, so the Java Mapping rul es cannot narrow down the set of
// possible nethods to a unique choice. This results in anbiguity.
public void callback(Runnable runnable)

{
System out . printl n(
"Runnabl e version of callback() invoked with: " + runnable);
}
public void callback(Serializable serializable)
{
System out . printl n(
"Serializable version of callback() invoked with: " + serializable);
}

/I needed to inplenent Runnable
public void run()

{

}
}

ObjectSpace Voyager Core Technology User Guide 163

8 Mobility

Application voyagerl1.0.0\examples\mobility\Callbackl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. nobility;

i mport COM obj ect space. voyager. *;

public class Callbackl
{
public static void main(String args[])
{
try
{
VTarget object = new VTarget("local host");

/I move, invoke call back with no argunent
obj ect. noveTo("l ocal host: 8000", "callback");

/1 move, invoke callback with a String argument
obj ect . moveTo("l ocal host", "callback", "callback argument");

//move, this seens like it will call the object version, but Java
/1 mapping rules dictate that the string version be called
obj ect. moveTo("| ocal host : 8000", "cal | back", (Obj ect) "cal | back argurment");

try
{
/1 move, invoke nonexistent call back, should throw exception
obj ect. nmoveTo("local host", "nonexistent_call back");
//since the move failed, the object is still renote

}

cat ch(Voyager Exception exception)
{

Systemout. println(exception);

}

try
{
/I move, since Target inplenents both Runnable and Serializable,
/1this callback is anbi guous
obj ect. noveTo("l ocal host: 8000", "callback", new Target());
//since the move failed, the object is still renote

/1 Uncomrent the follow ng code and try to conpile. This verifies that
/I Refl ectionis hiding the fact that invocation of callback() with a
/| Target object is considered anbi guous.

/*

Target one = new Target();
Target two = new Target();
one. cal | back(two);

*/

}

cat ch(Voyager Exception exception)

{

ObjectSpace Voyager Core Technology User Guide 164

8 Mobility

Systemout. println(exception);

}

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)

{

Systemout. println(exception);

}
}

ObjectSpace Voyager Core Technology User Guide 165

8 Mobility

Loading a Class

When an object is moved to a different program, classes that the object directly or indirectly
references from its source code are immediately loaded into the destination program, if not
already there.

This classloading feature is designed to work well under intermittent network connectivity. If
Voyager were designed to load remote classes only when they are first used by an object, a
network interruption could cause problems. For example, an object could be moved into a Java
telephone, become disconnected from the network, and then be asked to perform atask
requiring remote class loading from the original program.

One consequence of Voyager's load-on-move design is that objects can become quite
heavyweight if you are not careful. If an object that references 20 large classes is moved
around a network, a potentially large amount of class loading could occur if some of the
programs do not already contain those classes.

An easy way to accidentally incur significant class loading is to move an object to another
object and declare a callback function in the moving object’s class that takes an instance of the
destination object’s class as its parameter. This coupling between classes means that the class
of the destination object isloaded into every program the moving object visits. The
client/server example program on page 156 has this problem. The d i ent classis coupled to
the Ser ver class because the callback function at Ser ver () takesaSer ver asits
argument.

Javainterfaces allow you to avoid thiskind of coupling. Create an interface for the destination
object’s class and define the callback to accept any argument that implements that interface.
The moving object is then coupled to the lightweight interface rather than to the heavyweight
implementation. In the program on page 156, you could define a Ser ver interface that is
implemented by the Ser ver | npl class. Then, the callback function could be defined to take
aSer ver asanargument rather than a Ser ver | npl . The librarian example on page 183 of
Chapter 9, “Agents,” uses this approach.

ObjectSpace Voyager Core Technology User Guide 166

8 Mobility

Moving an Active Object

It is safeto move an object even when it is actively receiving remote messages. When aremote
message arrives at an object, the message prevents the object from moving until its thread has
finished executing. Each move operation on that object blocks until al the object’s remote
messages have completed.

It is unsafe to move an object if local Javareferences point to it from outside the context of
Voyager or if the object has one or more threads not associated with a remote message.

TheLoadBal ancer . j ava example program shows how Voyager’'s mohility features allow
creation of asimple load balancer. LoadBal ancer . j ava usesthe variation of moveTo()
that allows an additional callback argument to be specified. A server object is moved between
programs as it receives requests from two different client objects.

Use the following command from the\ voyager 1. 0. 0\ exanpl es\ nobi | i t y directory
to compile LoadBal ancer . j ava:

javac LoadBal ancer.java

Start a server on port 8000 in one window, and then run LoadBal ancer . cl ass inasecond
window.

Window 1

/é;oyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000
construct Server(one)
construct Client(two)
Server(one) receives cube(0)
Server(one) receives cube(0)
Client(two) cube(0) =0
)
)

Server(one) receives cube(1
Server(one) receives cube(1

Client(two) cube(1) =1
Client(two) cube(2) = 8
Client(two) cube(3) = 27

Server(one) moved again
Server(one) receives cube(4)
Client(two) cube(4) = 64
Server(one) receives cube(4)
Server(one) receives cube(5)
Client(two) cube(5) = 125
Server(one) receives cube(5)

- /

ObjectSpace Voyager Core Technology User Guide 167

8 Mobility

Window 2

/éiava exanpl es. nobi lity.
construct Client(one)

LoadBal ancer

~

Client(one) cube(0) =0
Client(one) cube(1) =1
Server(one) moved once
Server(one) receives cube(2)
Server(one) receives cube(2)
Client(one) cube(2) = 8
Server(one) receives cube(3)
Server(one) receives cube(3)
Client(one) cube(3) = 27
Server(one) receives cube(4)
Client(one) cube(4) = 64
Server(one) receives cube(4)
Client(one) cube(5) = 125

From the Voyager 8000 Server
construct Server(one)
construct Client(two)

2

Server(one) receives cube(0)
Server(one) receives cube(0)
Client(two) cube(0) =0
Server(one) receives cube(1)
Server(one) receives cube(1)
Client(two) cube(1) =1
Client(two) cube(2) = 8
Client(two) cube(3) = 27
Client(two) cube(4) = 64
Server(one) moved again
Server(one) receives cube(5)
Server(one) receives cube(5)
Client(two) cube(5) = 125

ObjectSpace Voyager

Core Technology User Guide

168

8 Mobility

Application voyager1.0.0\examples\mobility\LoadBalancer.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. nobility;
i mport COM obj ect space. voyager. *;

public class LoadBal ancer

{
public static void main(String args[])
{
try
{
VServer server = new VServer("one", "local host:8000");
VCient clientl = new VCdient("one", server, "local host");
VCient client2 = new Vdient("two", server, "local host:8000");
/1 spawn two threads, one for each client
clientl.1ongCal cul ati on(new OneVay());
client2.1ongCal cul ati on(new OneVay());
/1 move the server every two seconds
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}
server. noveTo(Voyager.get Address(), "atProgrant, "moved once");
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}
server. nmoveTo("l ocal host: 8000", "atPrograni, "noved again");
/1 Allowtinme for conpletion
try{ Thread. sl eep(10000); } catch(InterruptedException exception) {}
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 169

8 Mobility

Move Exceptions

A move can fail for several reasons, including the following:

e The address of the destination program is specified in anillegal format.
e A network connection to the destination program cannot be established.
e Thedestination is an object that cannot be found.

e A network communications error occurs during the move.

e Theobject to be moved is not serializable.

e Anerror occurs during object serialization.

e The callback function does not exist or is hot public.

e Theobject’s class was not processed by thevcc utility.

If any of these exceptions occur during acall to noveTo() , the moveis aborted and an
exception is thrown.

If amove completes successfully and the object throws an uncaught exception in the callback,
then the Voyager destination virtual machine catches the exception and generates an
hj ect Event . UNHANDLED EXCEPTI ON event.

TheExcepti ons. j ava example program demonstrates many of these exception conditions.
Use the following command from the\ voyager 1. 0. 0\ exanpl es\ mobi | i ty directory
to compile the example:

javac Exceptions.java

Start a server on port 8000 in one window, and then run Except i ons. cl ass inasecond
window.

Window 1

>voyager 8000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

ObjectSpace Voyager Core Technology User Guide 170

8 Mobility

Window 2

>j ava exanpl es. nobi l i ty. Excepti ons

construct a server in localhost

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.89:1196

construct Server(Thomas)

square(3) =9

move to illegal address localhost:xxx

COM.objectspace.voyager. Inval idAddressException: Illegal port in address
thrown remotely from 208.6.239.89:1196

move to nonexistent object localhost/Fred

COM.objectspace.voyager .ObjectNotFoundException: Fred
thrown remotely from 208.6.239.89:1196

move server to localhost:8000 with bad callback

COM.objectspace.voyager .MethodNotFoundException:

examples.mobility.Server_nonexi

stent()
thrown remotely from 208.6.239.89:8000

move server to nonexistent localhost:9000

COM.objectspace.voyager.TransportException: java.net.ConnectException:

Connectio

n refused

square(4) = 16

> /

Application voyager1.0.0\examples\mobility\Exceptions.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es.nobility;
i mport COM obj ect space. voyager. *;

public class Exceptions

{
public static void main(String args[])
{
try
{
Systemout.println("construct a server in local host");
VServer server = new VServer("Thonmas", "local host");
Systemout.println("square(3) =" + server.square(3));
try
{
Systemout.println("nove to illegal address |ocal host:xxx");
server. noveTo("l ocal host: xxx");
}
catch(I nvali dAddressException exception)
{
Systemout. println(exception);
}

ObjectSpace Voyager Core Technology User Guide 171

8 Mobility

try
{
Systemout.println("nove to nonexi stent object |ocal host/Fred");
server. moveTo("l ocal host/Fred");
}

cat ch(nj ect Not FoundExcepti on exception)
{

Systemout. println(exception);

}

try
{

Systemout. println("nove server to | ocal host: 8000 with bad cal | back");
server. nmoveTo("l ocal host: 8000", "nonexistent");

cat ch(Met hodNot FoundExcepti on exception)
{

Systemout. println(exception);

}

try
{

System out.println("nove server to nonexistent |ocal host:9000");
server. moveTo("l ocal host: 9000");

}
catch(Transport Exception exception)
{
Systemout. println(exception);
}
/1 show that the object is still ok after all the exceptions
Systemout.println("square(4) =" + server.square(4));
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

ObjectSpace Voyager Core Technology User Guide 172

8 Mobility

Message Forwarding

Y ou may disable message forwarding using set For war di ng() . If set Forwar di ng() is
settof al se, an object does not drop a forwarder when moved. Messages sent to the object’s
old location cause an bj ect Not FoundExcept i on to be thrown.

Use the following command from the\ voyager 1. 0. O\ exanpl es\ nobi | i t y directory
to compile the For war di ng. j ava example program:

javac Forwarding.java

Start a server on port 8000 in one window, and then run For war di ng. cl ass inasecond
window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Server(Server) arrives at new program

Window 2

//;java exanpl es. nobi i ty. Forwar di ng ‘\\
construct server in local program
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1228
construct Server(Server)
square(3) =9
disable forwarding...
move server to program on port 8000
request a calculation from the moved server...
COM.objectspace.voyager .ObjectNotFoundException:
27-142-14-250-1-149-14-4-10-128
-72-134-111-72-132-76

thrown remotely from 208.6.239.200:1228

\ J

ObjectSpace Voyager Core Technology User Guide 173

8 Mobility

Application voyagerl1.0.0\examples\mobility\Forwarding.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. nobility;

i mport COM obj ect space. voyager. *;

public class Forwarding
{
public static void main(String args[])
{
try
{
Systemout.println("construct server in |local progrant);
VServer server = new VServer("Server", "local host");
Systemout.println("square(3) =" + server.square(3));
Systemout.println("disable forwarding...");
server. set Forwardi ng(false);
Systemout.println("nmove server to programon port 8000");
server. nmoveTo("l ocal host: 8000", "atPrograni);

try
{
Systemout.println("request a calculation fromthe noved server...");
Systemout.println("square(3) =" + server.square(3));

catch(nj ect Not FoundExcepti on exception)
{

Systemout. println(exception);

}

Voyager . shut down() ;
}

cat ch(Voyager Exception vexception)
{
System out. println(vexception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 174

9

Agents

An ObjectSpace Voyager™ Core Technology (Voyager) agent can be moved like all simple
objectsin Voyager; however, unlike a simple object, aVVoyager agent can move itself and
continue to execute. Autonomy is useful for many reasons.

If atask must be performed independently of the computer that launches the task, amobile
agent can be created to perform this task. Once constructed, the agent can move into the
network and complete the task in aremote program.

If aprogram needs to send alarge number of messages to objectsin remote programs, an
agent can be constructed to visit each program in turn and send the messageslocally. L ocal
messages are often between 1,000 and 1,000,000 times faster than remote messages.

If you want to partition your programs to execute in parallel, you can distribute the
processing to several agents, which migrate to remote programs and communicate with
each other to achieve the final goal.

If periodic monitoring of aremote object is required, creating an agent that meets the
remote object and monitorsit locally is more efficient than monitoring the device acrossthe
network.

If a series of operations must be performed inside a consumer device that is only
occasionally connected to a network, such as a Java™ phone or Java pager, then an agent
can move into the device, perform its task, and move back into the network only when
necessary.

It isimportant to avoid “force-fitting” agent technology into a program. Voyager’s remote
messages are adequate for many applications, and simple object mobility is often enough to
close the gap between two objects communicating on a network. However, as you become
familiar with the power of agents and the ease of creating them, you will find many waysto
agent-enhance your current and future programs.

175

9 Agents

Creating an Agent

To create an agent, extend COM obj ect space. voyager . Agent . You do not haveto
define or override any special methods. All agents are automatically serializable and have a
default life span of one day.

Moving to a Program

All rules associated with moving a simple object, described in Chapter 8, “Mobility,” also
apply to moving an agent. However, an agent can a so independently move to a program by
sending itself the noveTo() message.

A successful call to moveTo() conceptually causes the thread of control to stop in the agent
before it moves and to resume from the callback function in the agent after it moves.
Therefore, only exception-handling code should follow amoveTo() . However, thereis no
Java mechanism to prevent a developer from following acall to noveTo() with additional
source code. In this situation, after moving, the agent continues to execute the code at its
original location, which is clearly incorrect.

When the callback function completes, the agent does not die—it simply becomes inactive
until it receives another message. Therefore, after an agent has performed its duties, it can park
while awaiting further instructions.

Inthe Launch. j ava and Di smi ss. j ava example programs, the Launch program creates
a Sal esPer son agent that movesto each program in itsitinerary and then parks. The

Di smi ss. j ava program contacts the parked Sal esPer son and tellsit to die. Note that the
Di smi ss. j ava program can connect to the Sal esPer son viaits original home address
because the Sal esPer son |leaves forwarders behind.

Fromthe\ voyager 1. 0. O\ exanpl es\ agent s directory, use the following commands to
prepare and compile Launch. j ava and Di smi ss. j ava:

vcc Sal esPerson
javac Sal esPerson.java VSal esPerson.java Launch.java Dism ss.java

Start a server on each of ports 7000, 8000, and 9000 in three separate windows. In afourth
window, first run Launch. cl ass to launch the agent, and then, when Launch. cl ass
completes, run Di smi ss. cl ass in the same window.

Window 1

>voyager 7000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

visiting 208.6.239.200:7000 for 3s

moving to localhost:8000

ObjectSpace Voyager Core Technology User Guide 176

9 Agents

Window 2

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

visiting 208.6.239.200:8000 for 3s

moving to localhost:9000

Window 3

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

visiting 208.6.239.200:9000 for 3s

parking at 208.6.239.200:9000

dismiss

Window 4

ﬁ ava exanpl es. agent s. Launch \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1307
moving to localhost:7000
SalesPerson is at 208.6.239.200:7000
SalesPerson is at 208.6.239.200:7000
SalesPerson is at 208.6.239.200:8000
SalesPerson i1s at 208.6.239.200:8000
SalesPerson i1s at 208.6.239.200:9000
>j ava exanpl es. agents. Di smi ss
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1313
>

N J

Class voyagerl.0.0\examples\agents\SalesPerson.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. agents;

i mport COM obj ect space. voyager. *;
import java.util.Vector;

public class Sal esPerson extends Agent

{

Vector itinerary = new Vector(); // vector of applications to visit
int index; // index of current application

public void addToltinerary(String address)

ObjectSpace Voyager Core Technology User Guide 177

9 Agents

{
itinerary. addEl ement (address);
}
public void launch()
{
next () ;
}
private void next()
{
if(index < itinerary.size())
{

String destination = (String) itinerary.elenentAt(index++);
Systemout.println("noving to " + destination);

try
{

moveTo(destination, "atProgram');

}

cat ch(Voyager Exception exception)

{

System out . printl n(exception);

}
}

el se

{
Systemout.println("parking at " + Voyager.get Address());

}
}

public void atProgram)

{
Systemout.println("visiting " + Voyager.getAddress() + " for 3s");

try{ Thread.sleep(3000); } catch(InterruptedException exception) {}

next ();

}

public void dismss() throws Voyager Exception
{
Systemout.println("dismss");
dieNow(); // kill nyself and all ny forwarders
}
}

ObjectSpace Voyager Core Technology User Guide 178

9 Agents

Application voyagerl.0.0\examples\agents\Launch.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. agents;

i mport COM obj ect space. voyager. *;

public class Launch

{
public static void main(String args[])
{
try
{
VSal esPerson person = new VSal esPerson("l ocal host/Fred");
person. addTol ti nerary("l ocal host: 7000");
person. addTol ti nerary("l ocal host: 8000");
person. addTol ti nerary("l ocal host: 9000");
person. launch(); // send the agent on its way
for(int i =1; i <=5; i++) // show progress of the agent
{
String address = person. get ProgranmAddress();
Systemout.println("Sal esPerson is at " + address);
try{ Thread. sl eep(2000); } catch(lnterruptedException exception) {}
}
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 179

9 Agents

Application voyager1.0.0\examples\agents\Dismiss.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. agents;
i mport COM obj ect space. voyager. *;

public class Dismss
{
public static void main(String args[])
{
try
{
VSal esPerson person =
(VSal esPerson) Vnhject.forObjectAt("local host: 7000/ Fred");
person. di sm ss();
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 180

9 Agents

Moving to Another Object

In addition to the capability of moving itself to a program, an agent can also use the
nmoveTo() message to move itself to aremote object.

Thisfunction causes the agent to moveinto the same program as the remote object—following
forwardersif necessary to find the object’ s new location—and then execute a callback with a
native Java reference to the remote object and the optional callback argument, if supplied. As
with simple objects, if one or more agents move to a remote object, the remote object cannot
move until all callbacks have completed.

TheBr owse. j ava example program createsali br ar i an agent that movestoali brary
to select all book titles comprised of exactly five characters. After storing all relevant titles, the
Li br ari an moves home, displays thetitles, and then dies. To reduce the class coupling
discussed on page 166, the Li br ar i an defines the move callback to accept aLi brary
interface rather than aLi br ar yl npl class.

Fromthe\ voyager 1. 0. 0\ exanpl es\ agent s directory, use the following commands to
prepare and compile Br owse. j ava:

vce Libraryl npl

vce Librarian

javac Librarylnpl.java VLibrarylnpl.java Librarian.java VLi brarian.java
javac Browse.java

Start aserver on port 8000 in one window, and then run Br owse. cl ass in asecond window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

constructing a library with 1000 titles

at library, searching thru titles...

26 titles selected

moving home. ..

Window 2

/;iava exanpl es. agent s. Browse

construct library

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1318

move to library and then browse titles...

leaving 208.6.239.200:1318, moving to library...

arrived back home...

selected titles: [brtkf, judib, zxgwz, tmolz, wpdec, ipkce, ioryo, rzpjz,
kcsuu, ktokd, vpskv, uvvkj, wgfvn, kpigw, thzri, zxiht, usfzc, qvidf,
jcgxx, nkfxa, bhgx, luqqd, cihku, htdqv, chupk, ecdeo]

o)

ObjectSpace Voyager Core Technology User Guide 181

9 Agents

Interface voyagerl.0.0\examples\agents\Library.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. agents;
i mport COM obj ect space. voyager. *;
public interface Library
{String getTitle(int i);
i nt get BookCount ();
}

Class voyagerl.0.0\examples\agents\Librarylmpl.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. agents;

import java.util.*;

public class Librarylnpl inplenments Library

{
static final int TITLES = 1000; // nunber of titles in the library

Vector titles = new Vector();

public Librarylnmpl ()
{
Systemout.println("constructing a library with " + TITLES + " titles");
Random random = new Random();

[l fill the library with randomtitles
/1 the length of each title ranges from1 thru 50
for(int i =0; i < TITLES; i++)

{

int length = Math. abs(randomnextint()) %50 + 1;
StringBuffer title = new StringBuffer();

for(int j =0; j <length; j++)
{

int ascii = Math.abs(randomnextint()) %26 + (int) 'a';
title.append((char) ascii);

titles.addEl ement (title.toString());

}
}
public String getTitle(int i)
{
return (String) titles.elementAt(i);
}

public int getBookCount ()

ObjectSpace Voyager Core Technology User Guide 182

9 Agents

{

return titles.size();
}
}
Class voyagerl.0.0\examples\agents\Librarian.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. agents;

import java.util.Vector;
i mport COM obj ect space. voyager. *;

public class Librarian extends Agent

{
String hone; // address of hone
Vector selection; // selected titles

public void browse(VLibrarylnpl library) throws Voyager Exception

{
Systemout.println("nove to library and then browse titles...");
hone = Voyager. get Address();
Systemout.println("leaving " + home + ", noving to library...");
moveTo(library, "atLibrary");
}
public void atLibrary(Library library) throws Voyager Exception
{
Systemout.println("at library, searching thru titles...");

sel ection = new Vector();

i nt count I'ibrary. get BookCount () ;
for(int i =0; i <count; i++)

{

String title = library.getTitle(i);

if(title.length() ==5)
sel ection. addEl enent (title);

}
Systemout.println(selection.size() + " titles selected");
System out.println("noving home...");
moveTo(hone, "atHome");
}
public void atHone() throws Voyager Exception
{
Systemout.println("arrived back hone...");
Systemout.println("selected titles: " + selection);
di eNow() ;
}

ObjectSpace Voyager Core Technology User Guide 183

9 Agents

Application voyagerl1.0.0\examples\agents\Browse.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. agents;

i mport COM obj ect space. voyager. *;

public class Browse

{
public static void main(String args[])
{
try
{
Systemout.println("construct library");
VLi brarylnmpl library = new VLi brarylmpl ("I ocal host: 8000");
l'ibrary.liveForever(); // prevent garbage collection
VLi brarian librarian = new VLi brarian("l ocal host");
librarian.browse(library);
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 184

9 Agents

Moving to a Moving Object

An agent follows forwarders as it tries to move to a moving object. When the agent arrives at
the moving object, the agent prevents the object from further movement until the callback
completes.

The Cat Chase. j ava example program uses a cat to chase a moving mouse. Note that even
though the mouse tries to move after four seconds, it is prevented from actually moving
because the cat catches the mouse and plays with it for eight seconds. When the cat finishes
playing with the mouse and moves home, the mouse is released and thus free to move.

Fromthe\ voyager 1. 0. O\ exanpl es\ agent s directory, use the following commands to
prepare and compile Cat Chase. j ava:

vcc Cat Muse
javac Cat.java VCat.java Muse.java VMuse.java Cat Chase.j ava

Start a server on each of ports 8000 and 9000 in two separate windows, and then run
Cat Chase. cl ass in athird window.

Window 1

/é;oyager 8000 ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

mouse at localhost:8000

mouse resting 4 seconds before running...

cat catches mouse and plays with it

squeak!

cat rests for 8 seconds...

mouse tries to run to localhost:9000...

\\iét lets mouse go, moves home

Window 2

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

mouse escapes to localhost:9000!

ObjectSpace Voyager Core Technology User Guide 185

9 Agents

Window 3

/;gava exanpl es. agent s. Cat Chase

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1298

mouse running to localhost:8000...

cat waiting 2 seconds until chase...

cat chases mouse at
208.6.239.200:1298/216-90-198-113-118-139-169-66-130-16-72-1
34-111-72-133-146

cat arrived home

-

~

Class voyagerl1.0.0\examples\agents\Cat.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. agents;

i mport COM obj ect space. voyager. *;

public class Cat extends Agent

{

String hone;

public void chase(VMbuse npuse) throws Voyager Exception
{
honme = Voyager. get Address(); // renmenber where | came from
Systemout.println("cat waiting 2 seconds until chase...");

try{ Thread.sleep(2000); } catch(InterruptedException exception) {}
Systemout.println("cat chases nouse at "+npuse. getLast Cbj ect Address()

moveTo(nouse, "at Mouse");

}

public void at Mouse(Muse mouse) throws Voyager Exception
{
Systemout.println("cat catches nmouse and plays with it");
nmouse. pl ay();
Systemout.println("cat rests for 8 seconds...");

try{ Thread.sleep(8000); } catch(InterruptedException exception) {}

Systemout.println("cat |ets nouse go, nobves home");
moveTo(hone, "atHome");

}

public void atHone() throws Voyager Exception
{
Systemout.println("cat arrived hone");
di eNow() ;
}

}

ObjectSpace Voyager Core Technology User Guide 186

9 Agents

Class voyagerl.0.0\examples\agents\Mouse.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. agents;

i mport COM obj ect space. voyager. *;

public class Muse extends Agent

public void hide() throws Voyager Exception

{
System out. println("nouse running to |ocal host:8000...");
moveTo("I ocal host:8000", "at8000");
}
public void at8000() throws Voyager Exception
{
System out.println("nouse at |ocal host:8000");
Systemout.println("nouse resting 4 seconds before running...");
try{ Thread.sleep(4000); } catch(InterruptedException exception) {}
Systemout.println("nouse tries to run to |ocal host:9000...");
moveTo("l ocal host:9000", "at9000");
}
public void play()
{
Systemout. println("squeak!");
}
public void at9000() throws Voyager Exception
{
System out.println("nouse escapes to | ocal host:9000!");
di eNow() ;
}

}

ObjectSpace Voyager Core Technology User Guide 187

9 Agents

Application voyagerl.0.0\examples\agents\CatChase.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. agents;

i mport COM obj ect space. voyager. *;

public class Cat Chase

{
public static void main(String args[])
{
try
{
VMouse mouse = new VMouse("l ocal host");
nmouse. hi de();
VCat cat = new VCat("local host");
cat.chase(nouse);
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 188

9 Agents

Releasing an Object Early

To release a destination object before a callback has completed, an agent must send itself

rel easebj ect () . Once an object isreleased, it isfree to move. At this point, the callback
argument is astale reference and should not be used by the agent, because that object can
move from the current program at any time.

The DogChase. j ava example program uses a dog to chase a moving mouse. When the dog
(who is nicer than the cat) moves to the mouse, the dog immediately rel eases the mouse so that
the mouse can continue to move.

Fromthe\ voyager 1. 0. O\ exanpl es\ agent s directory, use the following commands to
prepare and compile DogChase. j ava:

vce Dog
javac Dog.j ava VDog.java DogChase.java

Start a server on each of ports 8000 and 9000 in two separate windows, and then run
DogChase. cl ass in athird window.

Window 1

ﬂvoyager 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

mouse at localhost:8000

mouse resting 4 seconds before running...

dog catches mouse and plays with it

squeak!

dog lets mouse go...

mouse tries to run to localhost:9000...

Qog moves home

Window 2

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

mouse escapes to localhost:9000!

Window 3

ﬁava exanpl es. agent s. DogChase \
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1298

mouse running to localhost:8000...

cat waiting 2 seconds until chase...

cat chases mouse at
208.6.239.200:1298/216-90-198-113-118-139-169-66-130-16-72-1
34-111-72-133-146

@t arrived home /

ObjectSpace Voyager Core Technology User Guide 189

9 Agents

Class voyagerl.0.0\examples\agents\Dog.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. agents;
i mport COM obj ect space. voyager. *;
public class Dog extends Agent

{

String hone;

public void chase(VMbuse mouse) throws Voyager Exception

{
honme = Voyager. get Address(); // remenber where | came from
Systemout.println("dog waiting 2 seconds until chase...");

try{ Thread.sleep(2000); } catch(InterruptedException exception) {}
Systemout. println("dog chases nobuse at "+npbuse. get Last Cbj ect Address()

moveTo(nouse, "at Mouse");

}

public void at Mouse(Muse nouse) throws Voyager Exception
{
System out.println("dog catches mouse and plays with it");
mouse. pl ay();
Systemout.println("dog | ets nouse go...");
rel easeoject(); // allow the nouse to nove
try{ Thread.sleep(8000); } catch(InterruptedException exception) {}
Systemout. println("dog noves home");
moveTo(hone, "atHome");

}

public void atHone() throws Voyager Exception
{
Systemout.println("dog arrived hone");
di eNow() ;
}

}

ObjectSpace Voyager Core Technology User Guide 190

9 Agents

Application voyagerl1.0.0\examples\agents\DogChase.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. agents;

i mport COM obj ect space. voyager. *;

public class DogChase

{
public static void main(String args[])
{
try
{
VMouse nouse = new VMouse("l ocal host");
nouse. hi de();
VDog dog = new VDog("l ocal host");
dog. chase(nouse);
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 191

10

Applets

An applet is aprogram that is stored on a server and executed remotely in a client browser.
This chapter describes the process for creating V oyager-enabled applets by examining three
examples. Each example is more complex than the preceding one.

e A calculator applet performs calculations using aremote calculator stored in aserver. The
process for running an applet either in your local machine or from aWeb server is
explained.

e A chat applet demonstrates applet messaging and applet-to-applet communications.

e A shopper applet shows how agents can be launched from applets and can communicate
with applets as they move.

Note: All ObjectSpace Voyager™ Core Technology applets are considered nontrusted and are
fully restrained by Java’ s sandbox model. Future versions of Voyager will fully support signed
applets and more liberal security policies.

192

10 Applets

Calculator Example — Getting Started

Thefirst example is a simple calculator applet that uses Voyager’s object request broker
features. The applet is pictured below.

i Applet Viewer: CalcApplet.class M =]

Applet
-

When you enter a number into the first two text fields and select the = button, the result is
displayed in the third text field.

i Applet Viewer: CalcApplet. class M=l
Applet

[z + [a0 ﬂ|42

The architecture of the applet is simple. The server program executes on port 6000 and creates
an instance of Cal cul at or with the alias MyCal cul at or . When the applet begins, it
connects to the remote calculator. When the user selects the = button, add() issent to the
remote cal culator, the calculator returns the result, and the result displays. Because the server
is multithreaded, it can support many simultaneous applet requests.

applet

’

3+4=7

applet 34+45="7

32+47="7

’

applet

’

ObjectSpace Voyager Core Technology User Guide 193

10 Applets

In general, aVoyager-enabled applet must be associated with a VVoyager program that acts as
its server; however, many applets can share the same server. A server provides a
V oyager-enabled applet with two important services.

e Performs network class loading on behalf of the applet, thereby automatically installing
classesin the applet’ s codebase (by fetching them from the network) and creating the
appropriate classfilesin the applet’ s file system.

e Actsasasoftware router for messages and objects that want to move from the applet to
another applet or to an arbitrary program. This routing is necessary because a hontrusted
applet can establish only a network connection to its server.

For an example of the software routing capability of an applet server, see the chat example on
page 201.

The calculator application is comprised of the following example program files.
e Calculator.java

The calculator. This program is straightforward and does not contain any code that is
specific to applet programming.

e CalcServer.java

The program that creates the calculator and makes it available to applets. This program
looks like atypical VVoyager program except it passes an extra argument to

Voyager . st art up() . All programs that serve an applet must do this. The extra
argument specifies the root directory of all Web pages on the Web server. The specified
root directory is used by the server to perform network class loading on behalf of an
applet. If you wish to run an applet on your local machine without a Web server, set the
root directory to backslash (\) in Windows and to forward slash (/) in UNIX. Rather than
hardcoding these values, pass them as command line arguments so you can execute the
same program with or without a Web server.

e Cal cApplet.java

The applet that uses the remote calculator on the server. A Voyager-enabled applet is
similar to a standalone Voyager program except the applet must initialize itself using
either startup(Appl et applet) or

startup(Applet applet, int port).Eachofthesestartup routinescausesthe
appl et to establish a network connection with its associated server program. All applets
must initialize themselvesin thisway, typically asthefirst lineof i ni t (). To connect to
the remote calculator, the calculator applet gets the address of its server program using
Voyager . get Ser ver Addr ess(), which in turn gets the information from

Cal culator. htm .

ObjectSpace Voyager Core Technology User Guide 194

10 Applets

e Calculator.htnl

The HTML code that describes the applet and its associated server. This program contains
the information required by the Web browser and the applet to run the program. It uses
standard HTML tagsto specify the following information.

+ Thetitle of the applet.

+ The codebase of the applet. If omitted, the codebase of the applet is the same as the
directory that containsthe . ht m file. In this example, the calculator program is not
stored in a package, so the codebase can be defaulted to the location of
Cal cul ator. htm .

«+ The path to the class that defines the applet, relative to the codebase.

« Anoptional list of . j ar filestoload before the applet. The archive paths are relative to
the codebase. Voyager appletstypically havevoyager 1. 0. 0. j ar inthislist of Java
archives.

+ Theinitia width and height of the applet.

In addition, each . ht ml filethat declares aVVoyager applet must set the V oyager-specific
server property to the port number of the applet’s server program. The following example
uses port 6000.

The preferred format for downloading applets over the Web isthe Java™ archive (jar) format.
A .jar fileisacollection of . cl ass filesarchived into one file for easy Web distribution.
The following examples demonstrate applets using Voyager packaged ina. j ar file. These
examples assume that the voyager 1. 0. 0. j ar fileislocated in adirectory named\ i b
relative to the codebase.

Compiling the Programs

Fromthe\ voyager 1. 0. 0\ exanpl es\ appl et s\ cal cul at or directory, usethe
following commands to compile the cal culator programs.

vce Cal cul ator
javac *.java

Running the Applet from a Local Machine

To run the applet on your local machine without a Web server, first start the calculator server
in one window.

Window 1

>j ava Cal cServer 6000 \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:6000

ObjectSpace Voyager Core Technology User Guide 195

10 Applets

Note: Set the Web root to a backslash (\) in Windows and aforward slash (/) in UNIX,
because the applet is running from alocal machine rather than on a Web server.

Now run the client appletinthe. ht m filein asecond window by invoking the applet viewer
or aJDK 1.1-enabled browser from the directory
\voyager 1. 0. 0\ exanpl es\ appl et s\ cal cul at or.

Window 2

>appl et vi ewer Cal cul ator. htm
voyager(tm) 1.0.0, copyright objectspace 1997
address = 127.0.0.1:6000;127.0.0.1:1052

Running the Applet from a Web Server

TorunaVoyager applet from aWeb server, first install the Voyager core package on the Web
server. There are many different ways to organize appletsin a server, including the preferred
approach described in this section.

First, make a note of the directory your Web server treats as the root for all Web pages. For
example, the ObjectSpace Web server named pul sar stores Web pagesin the\ webpages
directory.

Next, create a directory structure in your user account under the Web root. This directory
structure should mirror the structure from your local machine and should copy across the
contents of thebi n and | i b directories. You need not copy the vcc executable files because
they are required for development purposes only. Add the\ bi n directory to your path setting
on the Web server. The directory structure can be created in any subdirectory of the Web root.
For example, if your account isrooted in\ webpages\ ggl ass onpul sar, you might create
the following directory structure on pul sar :

\ webpages
\ ggl ass
\voyager1.0.0
\bin Voyager executable files
\lib voyager1.0.0.jar

When your directory structure isin place, you are ready to install specific applets on the Web
server. Toinstall an applet, copy across the directory structure that contains the applet code,
and then copy acrossthe applet’s. ht M and. cl ass files. You need not copy the. j ava
files.

ObjectSpace Voyager Core Technology User Guide 196

10 Applets

For example, to install the calculator applet on the pul sar Web server, add the directories
and files highlighted below.

\ webpages
\ ggl ass

\voyager1.0.0
\bin
\examples

\applets
\calculator Cadculator. htm andall. cl ass files

\lib

Y ou can now run the applet. Open awindow in the Web server, moveto thecal cul at or
directory, and use the following command to start the calculator server:

Window 1

>j ava Cal cServer 6000 \webpages
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:6000

where webpages is your Web server’sroot. To run the applet from your local machine, open a
second window and invoke the appletviewer or browser with the path name of the applet’s
. ht i filerelative to the Web root.

Window 2

>appl et vi ewer
htt p: / / pulsar/gglass/ voyager 1. 0. 0/ exanpl es/ appl et s/ cal cul ator/ Cal cul at or. ht m

where pulsar/gglass is the name of your Web server and the path of your user account.

ObjectSpace Voyager Core Technology User Guide 197

10 Applets

Class voyagerl.0.0\examples\applets\calculator\Calculator.java
/1 Copyright(c) 1997 hject Space, Inc.

public class Cal cul ator

{

public int add(int x, int y)
{
return x + vy,
}

}

Class voyagerl.0.0\examples\applets\calculator\CalcServer.java
/1 Copyright(c) 1997 bject Space, Inc.
i mport COM obj ect space. voyager. *;

public class Cal cServer

{
public static void main(String args[])
{
try
{
int port = Integer.parselnt(args[O]); // port to serve
String root = args[1]; // root of server's visible directory tree
Voyager.startup(port, root); // serve applets
/] create immortal cal cul ator
VCal cul ator cal cul ator = new VCal cul ator("l ocal host/M/Cal cul ator");
calculator.liveForever();
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 198

10 Applets

Applet voyagerl.0.0\examples\applets\calculator\CalcApplet.java
/1 Copyright(c) 1997 hject Space, Inc.

i mport java. applet.*;

i mport java.awt.*;

i mport java.awt.event.*;

i mport COM obj ect space. voyager. *;

public class Cal cAppl et extends Appl et

{

Text Fi el d operandl = new TextField("", 3);
Label plus = new Label ("+");

Text Fi el d operand2 = new TextField("", 3);
Button add = new Button("=");

TextField result = new TextField("", 3);

VCal cul at or cal cul at or;

public void init()

{

try
{
Voyager.startup(this); // startup in applet node
set Layout (new Fl owLayout ());
add(operandl);
add(plus);
add(operand2);
add(add);
add(result);
add. addAct i onLi st ener (new Acti onLi stener()
{ public void actionPerforned(ActionEvent event) { add(); } });
String address = Voyager. get Server Address() + "/MCal cul ator";
/1 connect to rempte calculator in server
calculator = (VCal cul ator) VObject.forCbjectAt(address);

}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
voi d add()
{
int x = Integer. parselnt(operandl.getText());
int y = Integer.parselnt(operand2.getText());
try
{
result.setText(Integer.toString(calculator.add(x, y)));
}

cat ch(Voyager Exception exception)

result.setText("Error");

}
}

ObjectSpace Voyager Core Technology User Guide 199

10 Applets

HTML voyagerl.0.0\examples\applets\calculator\Calculator.html

<title>Cal cul ator Applet</title>

<hr >

<appl et code="Cal cAppl et.class" archive="../../../lib/voyager.jar" w dt h=300
hei ght =50>

<par am nane=Server val ue=6000>

</ appl et >

<hr >

ObjectSpace Voyager Core Technology User Guide 200

10 Applets

Chat Example — Applet Communications

This section presents a chat applet that allows you to enter a chat room and communicate with
the occupants. After staring the applet, enter your name in the Name field and the address of
the desired chat room in the Server field. The names of the chat room occupants display in the
Occupants field. Then enter a message in the Speak field and press Enter to send it to all chat
room occupants. The Speak field clears when you send the message. All messages exchanged
in the current chat room display in the Transcript field. To leave the current chat room, close the
chat applet or enter the address of another chat room.

The picture below shows a chat applet after Stella enters the chat room at gglass:7001/Chatter
and is about to send the message hello boys! to the other two occupants.

1 Applet Viewer: examples. applets.chat ChatApplet.class [H[=] B3
Applet
Mame Istella
Sarvar |gg|ass:?DD1IChaﬂer
graham
Occupants |P1@1"
stella
enter gglass: 7001/ Chatter ;l
Transcript
<] ;I_I
Speak |he|lnbws!

ObjectSpace Voyager Core Technology User Guide 201

10 Applets

Pictured below is the chat applet after Stella sends the hi boys! message, and Graham sends
back a hi mum! message.

1 Applet Yiewer: examples. applets.chat. ChatApplet.class [H[=] B3
Applet
Mame Istella
Sarver |gg|ass:?DD1IChaner
graham
Qccupants hair
stella
enter gglass: 7001/ Chatter ;l
stella: hello haoys!
araham: hi mum!
Transcript
<] _'I_I
Speak I

ObjectSpace Voyager Core Technology User Guide 202

10 Applets

The architecture of the chat application uses direct applet-to-applet communication. When an
applet connects to a chat room, the applet asks the chat room for a hash table of its occupants.
The hash tabl e associates the name of an occupant with avirtual reference to that occupant’s
applet. A copy of the hash table isthen cached in the applet. The applet sendsto the chat room
theent er () message with the name of the new occupant and avirtual reference to the new
applet. The chat room in turn updates each of its occupant’s applets using the ent er ed()
message. This mechanism keeps the occupant caches of each chat applet current. The

| eave() and| eaved() messages are used in asimilar way to update the occupant caches
when someone leaves a chat room. The following diagram illustrates the message flow that
occurs when appl et 2 joinsthe chat room.

applet 1
— entered()
entered()
/ enter()
applet 2
[

mEmm A cached map of the chat room occupants

When text is entered in the Speak field, the applet uses its cached map of the chat room
occupantsto send speak () directly to each of the occupant’ s applets. Hence, the chat roomis
used only for tracking the occupants of the chat room and is not involved in the chat room
conversations. The diagram below shows the message flow when appl et 2 sends a message
to each of the other appletsin the chat room.

applet 2
— mmmm A cached map of the chat room occupants

Two features of Voyager support easy implementation of this architecture.

e Voyager allows an applet to be processed using vcc so that remote messages can be sent
directly to an applet.

e Voyager alows messages to be sent directly between applets or from an applet to any
program.

ObjectSpace Voyager Core Technology User Guide 203

10 Applets

Preparing an Applet for Remote Messaging

There are two ways to process an applet class using vcc so that the applet can receive remote
messages. Assume your applet class myPackage. MyAppl et hasthe following class
derivation:

j ava. |l ang. Obj ect
j ava. awt . Conponent
j ava. awt . Cont ai ner
j ava. awt . Panel

j ava. appl et . Appl et
nyPackage. MyAppl et
To send any message to your applet, including messages defined in its superclasses, first run
vcc on each of the standard j ava. * classesin turn, starting withj ava. awt . Conponent .
Use the - p option to place the virtual classes into the same package as your program.

vce -p nyPackage java. awt. Component java. awt. Contai ner java.awt . Panel
j ava. appl et . Appl et

Note: For the chat example, runvcc from\ voyager 1. 0. 0\ exanpl es\ appl et s\ chat .

Then run vce on your applet class using the - moption, which places the applet’ s superclass
j ava. appl et . Appl et into myPackage.

vce -mjava. appl et. Appl et nyPackage myPackage. MyAppl et

If you want to send only your applet the messages that are defined in My Appl et , avoid
processing thej ava. * classes by running vcc on the applet class using the - e option with
j ava. | ang. Qbj ect . Thisoption processes your applet class asif it extended

java. |l ang. Obj ect .

vcec -e java.lang. Obj ect myPackage. MyAppl et

In the chat example, the only applet methods invoked remotely areent er ed() , speak(),
and | ef t (), which aredefined in Chat Appl et . Thevirtual version of Chat Appl et is
therefore created using the - e option.

Network Routing

For security reasons, an applet can open only adirect network connection to its server.
However, the architecture of the chat program requires that an applet be able to send a
message directly to another applet and to an arbitrary chat room program. V oyager supports
thislevel of flexibility by allowing an applet’s server program to function as arouter. The
routing mechanism is based on two simple rules.

e Thefull address of an applet is atwo-stage address with the format
server address; applet address. For example, if an applet’saddressisggl ass: 1456 and
its server addressisggl ass: 7000, the full address of the applet is
ggl ass: 7000; ggl ass: 1456. When amessage or abject is sent to an applet, it travels
to the first stage of the address first and then completes the journey to the second stage.

e Whenamessage or object issent from an applet, it alwaystravelsto the applet’ sserver first,
regardless of itsfinal destination. When the message or object arrives at the server, it
awakens and continues on its journey.

ObjectSpace Voyager Core Technology User Guide 204

10 Applets

When these two rules are combined, the result is a powerful, multistage routing system. The
following diagram shows the logical and physical network traffic between some applets and

programs.
applet ?
,,,,,,,,,,,,, applet . .
applet server logical = physical
& - \\\\i
applet < » program

<“— |Logical message path
<« Pphysical message path
The chat application is comprised of the following files:
e Chat Room j ava

Allows one or more chat rooms to be created. This program maintains a hash tabl e that
tracks all occupants in the chat room and updates each occupant as other occupants enter
and leave. It definesamai n() function that allows creation of anew chat room on the
local host with a specified port and alias.

e Chat Appl et.java

Allows a user to enter achat room. Thisprogram usesst art up(Appl et) to
initialize itself. When it enters a chat room, it sends the chat room the name of the
occupant together with avirtual reference to the applet so the chat room can communicate
back to the applet at a future time.

e Chat.htni

Describes the applet and its associated server in HTML code. This program defines the
applet codebase as three directory levels above itself because the applet is stored in a
packagethat isrelativeto\ voyager 1. 0. 0 on the Web server. For the chat example, the
applet’s server program is assigned to port 7000.

ObjectSpace Voyager Core Technology User Guide 205

10 Applets

Compiling the Programs

To compile the chat example programs, use the following commands from the
\ voyager 1. 0. 0\ exanpl es\ appl et s\ chat directory:

vcc -e java.lang. Ooject Chat Appl et
vce Chat Room
javac *.java
Running the Applet from a Local Machine

To run the chat applet on your local machine without a Web server, first open awindow and
run the applet server from any location.

Window 1

>voyager 7000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

Then, from\ voyager 1. 0. 0\ exanpl es\ appl et s\ chat , start achat room named
Chat t er on port 7001 in a second window. Each chat room must have a unigue port number
and name.

Window 2

>j ava exanpl es. appl ets. chat. Chat Room 7001 Chatter
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7001

Note: You could start as many additional chat rooms as you want in this fashion; however,
only one additional chat room is started in this example.

To start the chat applet, run appletviewer or aJDK 1.1-enabled browser on Chat . ht ml from
the\ voyager 1. 0. 0\ exanpl es\ appl et s\ chat directory.

Window 3

>appl et vi ewer Chat. htni
voyager(tm) 1.0.0, copyright objectspace 1997
address = 127.0.0.1:7000;127.0.0.1:1059

ObjectSpace Voyager Core Technology User Guide 206

10 Applets

When the applet starts, enter your unique user name in the Name field. Enter the name of your
local machine followed by :7001/Chatter, the address of the chat room, in the Server field. You
are then connected to the specified chat room. Any text entered in the Speak field appearsin
the Transcript field of each chat applet, preceded by your unique user name.

Running the Applet from a Web Server

To runthe chat applet from aWeb server, first install the chat program on the server by adding
the directories and files highlighted below.
\ webpages
\ ggl ass
\voyager1.0.0
\bin
\ exanpl es
\appl ets
\chat Chat.htnl anddl.cl ass files
\lib

Note: As before, this assumes your account isrooted in\ webpages\ ggl ass.

To start an applet server that provides network class |oading and message routing for the chat
applets, type the following command in awindow on the Web server from the
\'voyager 1. 0. 0\ exanpl es\ appl et s\ chat directory.

Window 1

>voyager 7000 -r \webpages
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

where webpages is your Web server’ s root.

Then, start a chat room named Chat t er on port 7001 by opening a second window and
typing the following command from\ voyager 1. 0. O\ exanpl es\ appl et s\ chat onthe
Web server.

Window 2

>j ava exanpl es. appl et s. chat. Chat Room 7001 Chatter
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7001

ObjectSpace Voyager Core Technology User Guide 207

10 Applets

To run achat applet from your local machine, open athird window and invoke the
appletviewer or JDK 1.1-enabled browser with the path name of the applet’s. ht m file
relative to the Web root.

Window 3

>appl et vi ewner
htt p: / / pulsar/gglass/ voyager 1. 0. 0/ exanpl es/ appl et s/ chat/ Chat . ht m

where pulsar/gglass is the name of your Web server and the path of your user account.

When the applet starts, enter your unique user name in the Name field and enter the name of
your Web server followed by :7001/Chatter in the Server field. Y ou are connected to the specified
chat room. Any text entered in the Speak field appearsin the Transcript field of each chat applet.

Application voyager1.0.0\examples\applets\chat\ChatRoom.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. appl ets. chat;

i mport java.util.Hashtabl e;
import java.util.Enuneration;
i mport COM obj ect space. voyager. *;

public class Chat Room
{

Hasht abl e occupants = new Hashtable(); // name->appl et mapping

public static void main(String args[])
{
try
{

int port = Integer.parselnt(args[0]); // port for chat room
String alias = args[1]; // alias for chat room
Voyager.startup(port);

/] construct chat room
VChat Room r oom = new VChat Room("l ocal host/" + alias);
roomliveForever(); // inhibit garbage collection

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

public void enter(String nane, VChatApplet applet)
t hrows Voyager Excepti on

{

ObjectSpace Voyager Core Technology User Guide 208

10 Applets

/1 soneone has entered this chat room
occupants. put (name, applet); // add to map
Enuneration enunerati on = occupants. el ements();

whi | e(enuner ati on. hasMoreEl enents()) // notify all occupants
((VChat Appl et) enuneration. nextEl ement()).entered(name, applet);

}

public void leave(String nane) throws Voyager Exception

{

/'l someone has left this chat room
Enunerati on enunerati on = occupants. el ements();

whi | e(enuneration. hasMoreEl enents()) // notify all occupants
((VChat Appl et) enuneration.nextElenment()).left(nane);

occupants. renove(nane); // renove from nmap

}
publ i ¢ Hasht abl e get Cccupant s()
{
return occupants;
}

}
Applet voyager1.0.0\examples\applets\chat\ChatApplet.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. appl ets. chat;

i mport java. applet.*;

i mport java.awt.*;

import java.awt.event.*;

import java.util.Hashtabl e;
import java.util.Enumeration;

i mport COM obj ect space. voyager. *;

public class Chat Appl et extends Appl et

{

Label nameLabel = new Label ("Name");

TextField naneField = new TextField("", 15);

Label roonliabel = new Label ("Server");

TextField roonField = new TextField("", 25);

Label occupantslLabel = new Label ("Cccupants");

Li st occupantsList = new List(4, true); // allow nultiple
Label textLabel = new Label ("Transcript");

Text Area text Area = new Text Area(10, 35);

Label speakLabel = new Label ("Speak");

Text Fi el d speakField = new TextField("", 35);

VChat Room room // renote reference to current chat room
VChat Appl et self; // renote reference to nyself

Hasht abl e occupants; // cache of room occupants

public void init()

ObjectSpace Voyager Core Technology User Guide 209

10 Applets

—_ —~—

ry

{

Voyager.startup(this); // startup in applet node

self = (VChat Applet) Vbject.forObject(this); // reference to nyself
self.liveForever(); // don't generate heartbeats

set Layout (new Fl owLayout ());

Panel panel 1 = new Panel ();
panel 1. add(naneLabel);
panel 1. add(naneField);
add(panell);

Panel panel 2 = new Panel ();

panel 2. add(roonlLabel);

panel 2. add(roonField);

roonti el d. addAct i onLi st ener (new Acti onLi stener ()

{ public void actionPerforned(ActionEvent event) { connect(); } });
add(panel 2);

Panel panel 3 = new Panel ();
panel 3. add(occupant sLabel);
panel 3. add(occupantsList);
add(panel 3);

Panel panel 4 = new Panel ();
panel 4. add(textLabel);

text Area. setEditabl e(false);
panel 4. add(textArea);

add(panel 4);

Panel panel 5 = new Panel ();

panel 5. add(speakLabel);

panel 5. add(speakField);

speakFi el d. addAct i onLi stener (new Acti onLi st ener ()

{ public void actionPerforned(ActionEvent event) { speak(); } });
add(panel 5);

cat ch(Voyager Exception exception)

{

Systemerr.println(exception);

}
}

public void destroy()

{
| eaveChat Room() ;

}

voi d connect ()

{
String address = roonfFiel d. get Text ();

try
{

ObjectSpace Voyager Core Technology User Guide 210

10 Applets

| eaveChat Room(); // leave old chat room

/] connect to new room

room = (VChat Room) VQObject.forhjectAt(address);
addText ("enter " + address);

occupants = room get Cccupants(); // cache room occupancy
room enter(naneFiel d. get Text(), self); // enter room
updat eCccupant s(); // display occupancy

}
catch(Exception exception)
{
addText ("could not connect to " + address);
}

}

voi d updat eCccupant s()
{

occupant sLi st.removeAl I (); // clear list
Enunerati on enunerati on = occupants. keys();

whi | e(enunerati on. hasMor eEl enents()) // build new list
occupantsLi st.add((String) enuneration.nextEl enment());

}
voi d addText(String text)
{
text Area. append(text + "\n");
}

voi d speak()
{

Enuneration iterator = occupants. el enents();

whil e(iterator.hasMreEl enents())
{
try
{

/1 get associated applet and send it the speak text
VChat Appl et applet = (VChat Applet) iterator. nextEl ement();
appl et . speak(naneFi el d. get Text (), speakFiel d.getText());

}
catch(Exception exception)
{
}
}
speakFi el d.setText(""); // clear speak area
}
voi d | eaveChat Room()
{
if(room!= null)
{
try
{

ObjectSpace Voyager Core Technology User Guide 211

10 Applets

room | eave(naneField.getText()); // leave room

room= null;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}
public void speak(String nane, String text)
{
/1 the occupant with the specified nane said somnething
addText(name + ": " + text);
}

public void entered(String name, VChatApplet applet)
{
/1 somebody entered the room
occupants. put (name, applet);
updat eCccupant s();
}

public void left(String nane)
{
/1 somebody left the room
occupants. renove(nane);
updat eCccupant s();
}

HTML voyager1.0.0\examples\applets\chat\Chat.html

<title>Chat Applet</title>

<hr >

<appl et codebase="../../.." code="exanpl es. appl ets. chat. Chat Appl et . cl ass"
archive="1ib/voyager.jar" w dt h=400 hei ght =400>

<par am nane=Ser ver val ue=7000>

</ appl et >

<hr >

ObjectSpace Voyager Core Technology User Guide 212

10 Applets

Shopper Example — Applets and Agents

The third example is an applet version of the shopping example presented in Chapter 3,

“Guided Tour.” When you start the shopper applet, a pull-down menu is populated with a list
of al products available from stores at the mall.

i Applet Yiewer: examples. applets. shopper.ShopperApplet.class
Applet

Marme FProducts Istellargics v| Find |

Transcript

" o

To create and launch an agent to find the best price for aparticular product, enter your namein
the Name field, select the product from the Products pull-down menu, and select the Find button.
The agent moves into the mall, getsalist of all stores, and then visits each storein turn. The
agent continually sends its status to the shopper applet aslong asthe applet is open. The status
displaysin the Transcript field. After visiting each store, the agent moves back to the mall,
sendsthe best price to the applet, and dies. If the applet is closed before the agent completesits
task, the agent waits at the mall until an applet with your name is reopened; the agent then
sends the results.

Note: You can launch new agents without waiting for the previous agent to complete its task.

ObjectSpace Voyager Core Technology User Guide 213

10 Applets

Pictured below is an applet opened by Graham after he tells his agent to search for the best
price on power blades and the agent finds two stores offering power blades, delivers the name
of the store offering the best price, and dies.

i Applet Yiewer: examples. applets. shopper.ShopperApplet.class
Applet

Marme graham FProducts Ipnwerblades v| Findl

powerblades shapper: moving ta mall ;l
powerblades shapper: at mall

powerblades shopper: at divax, price is 60

powerblades shopper: at circumplex, price is a0

povwerblades shopper: back at mall

Transcript powerblades shopper: hest price is 50 from circumplesx, die. .

" o

The architecture of the shopper application uses a Voyager program to double as the mall and
the applet server. The mall program contains a single instance of Mal | with the aliasMal | .
Each store program creates a single instance of St or e and registersit with the mall. The mall
also keeps alist of al products sold by each store.

When a shopper applet is started and the user’s name is entered in the Name field, the applet
registersitself with the mall by sending it ent er ed() , enabling the mall to track all applets
currently connected to it. When the Find button is selected, a Shopper agent is constructed
with its user name, avirtual reference to the applet, and a virtual reference to the mall. The

fi nd() message causesthe agent to moveto the mall, get alist of all stores, and then moveto
each store in turn. The agent uses the virtual reference to the applet to send it regular status
messages. If at any point a message cannot be delivered to the applet, the agent assumes the
applet has been closed and stops sending status messages.

After the Shopper agent visits each store, it moves back to the mall and tries to locate the
applet associated with its user name. If the applet is open, the agent sends the best price to the
applet and dies. If the applet is not open, the agent waits at the mall until notified by the mall
that the applet has become available.

ObjectSpace Voyager Core Technology User Guide 214

10 Applets

The following diagram shows the path of the Shopper agent:

=\

applet

The shopper application is comprised of the following files:

Store.javaandStorel npl.java

The interface and implementation of the store. These programs define a store and are
straightforward, containing no special applet-related code.

Mal | .javaandMal | I npl . j ava

The interface and implementation of the mall. These programs define amall. Because
Mal | I mpl . j ava isaprogram that services an applet, it uses the special version of
startup() that takesaWeb root asits second argument. Mal | | npl . j ava contains
data structures to track all stores, products, applets, and waiting shopper agents.

Storel.javaandStore2.java

The programs that create and stock each store. These simple programs each create, stock,
and register asingle instance of St or el npl . Each program requires the port number of
the mall as its command line argument.

Shopper. j ava

The program that defines the maobile shopping agent. It usesinterfaces to communicate
with a store and amall so that its class closure does not include the code for the
Storelnpl.classandMal | | npl . cl ass.

Shopper Appl et . j ava

The program that defines the shopping applet. It usesthe variation of st art up() that
takes an applet argument to initializeitself. It isarelatively simple applet that registers or
deregisters with the mall and accepts callbacks from the shopping agents that it launches.

Shopper . ht m

The HTML code that describes the applet and its associated server. This program defines
the applet codebase as three directory levels above itself because the applet is stored in a
packagerelativeto\ voyager 1. 0. 0 on the Web server. For the shopper example, the
applet’s server application is assigned to port 8000.

ObjectSpace Voyager Core Technology User Guide 215

10 Applets

Compiling the Programs

Use the following commands from the\ voyager 1. 0. 0\ exanpl es\ appl et s\ shopper
directory to prepare and compile the shopper programs:

vcec -e java.lang. Ooj ect Shopper Appl et
vcc Malllnpl Shopper Storelnpl
javac *.java
Running the Applet from a Local Machine

To run the shopper applet on your local machine without a Web server, first open awindow
and start the mall server on port 8000.

Window 1

>j ava exanpl es. appl et s. shopper. Mal | I npl 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

Then, in second and third windows, create the two stores.

Window 2

>java Storel 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1064

Build divax

stock poloscope @ $50

stock powerblades @ $60

stock stellargics @ $65

Window 3

>j ava exanpl es. appl et s. shopper. St ore2 8000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1066

Build circumplex

stock powerblades @ $50

stock trollkit @ $60

ObjectSpace Voyager Core Technology User Guide 216

10 Applets

In afourth window, start a shopper applet.

Window 4

>appl et vi ewer Shopper. ht m
voyager(tm) 1.0.0, copyright objectspace 1997
address = 127.0.0.1:8000;127.0.0.1:1068

When the appl et starts, enter aunique name in the Name field, select adesired product from the

Products pull-down menu, and select the Find button. The shopper agent displaysits statusin the
Transcript field.

Running the Applet from a Web Server

To run the shopper applet from aWeb server, first install the shopper application on the server
by adding the directories and files highlighted below.
\ webpages
\ ggl ass
\voyager1.0.0
\bin
\ exanpl es
\appl ets

\shopper Shopper. htm andal . cl ass files
\lib

To start the mall server that provides the mall, network class |oading, and message routing for
the shopper applets, open awindow and type the following command from the
\ voyager 1. 0. O\ exanpl es\ appl et s\ shopper directory.

Window 1

>j ava exanpl es. appl ets. shopper. Mal | I npl 8000 -r \webpages
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

where webpages is your Web server’s root.

Then, in second and third windows, create the two stores.

ObjectSpace Voyager Core Technology User Guide 217

10 Applets

Window 2

>j ava exanpl es. appl et s. shopper. Storel 8000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1356

Window 3

>j ava exanpl es. appl et s. shopper. St ore2 8000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:2156, root = \

To run a shopper applet from your local machine, open afourth window and invoke the
appletviewer or JDK 1.1-enabled browser with the path name of the applet’'s. ht M file
relative to the Web root.

Window 4

>appl et vi ewer
htt p: / / pulsar/gglass/ voyager 1. 0. 0/ exanpl es/ appl et s/ shopper / Shopper . ht m

where pulsar/gglass is the name of your Web server and the path of your user account.
Interface voyager1.0.0\examples\applets\shopper\Store.java

/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. appl ets. shopper;

import java.util.Vector;

public interface Store
{
void stock(String product, int price);
int getPrice(String product);
voi d purchase(String product) throws |l egal Argument Excepti on;
Vect or get Products();

}

ObjectSpace Voyager Core Technology User Guide 218

10 Applets

Class voyagerl.0.0\examples\applets\shopper\Storelmpl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. appl ets. shopper;

inmport java.util.Hashtable; // utilize a JDK Hashtable
import java.util.Vector;
import java.util.Enumeration;

public class Storelnpl inplenents Store

{
String nane;
Hasht abl e products = new Hashtable(); // contains product->price pairs

public Storelnpl(String nane)
{

this. name = nane;
Systemout.printin("Build " + this);

}
public String toString()
{
return nane;
}

public void stock(String product, int price)
{
Systemout.printin("stock " + product + " @$" + price);
products. put(product, new Integer(price)); // add product to stock

}

public int getPrice(String product)
{
Integer integer = (Integer) products.get(product); // get price
return integer == null ? 0 : integer.intValue(); // zero if not in stock
}

public void purchase(String product) throws Il egal Argunent Exception
{

int price = getPrice(product);

if(price ==0)
throw new ||| egal Argurment Excepti on("product " + product + " not found");

Systemout.println("purchase " + product + " @$" + price);

}

public Vector getProducts()
{

Vector vector = new Vector();
Enuneration enuneration = products. keys();

whi | e(enuner ati on. hasMor eEl enents())
vect or. addEl ement (enuner ati on. next El enent ());

ObjectSpace Voyager Core Technology User Guide 219

10 Applets

return vector;

}
}

Interface voyager1.0.0\examples\applets\shopper\Mall.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. appl ets. shopper;

import java.util.Vector;

public interface Mll
{
void register(Store store);
Vect or get Products();
void enter(String name, VShopperApplet applet);
void | eave(String name);
VShopper Appl et get Shopper Appl et (String nanme);
voi d wait(Shopper shopper);
Vector getStores();
}

Application voyager1.0.0\examples\applets\shopper\Malllmpl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. appl ets. shopper;

import java.util.Vector;
i mport java.util.Hashtabl e;
i mport COM obj ect space. voyager. *;

public class Malllnpl inplenments Mall
{
Vector stores = new Vector(); // list of all stores
Vector products = new Vector(); // list of all products
Hasht abl e appl ets = new Hashtable(); // all registered applets
Vector shoppers = new Vector(); // shoppers waiting for applets

public static void main(String args[])
{
try
{
int port = Integer.parselnt(args[0]); // port to serve
String root = args[1]; // root of server's visible directory tree
Voyager.startup(port, root); // serve applets

VMal | I npl mall = new VMal I I npl ("l ocal host/Mall");
mal | . liveForever(); // inhibit garbage collection
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

ObjectSpace Voyager Core Technology User Guide 220

10 Applets

}

public void register(Store store)
{
stores. addEl enent (store); // add to list of stores
Vector list = store.getProducts(); // get list of products

/1 add products to product Iist
for(int i =0; i < list.size(); i++)
{
String product = (String) list.elementAt(i);

i f(!products.contains(product))
product s. addEl ement (product);
}
}

public Vector getProducts()
{

return products;

}

public void enter(String nane, VShopperApplet applet)
{
/1 an applet has registered with the nall
appl ets. put(narme, applet);

synchroni zed(shoppers)

{
int i = 0;

/1 alert all shoppers that were waiting for this applet
while(i < shoppers.size())

{
Shopper shopper = (Shopper) shoppers.elementAt(i);

i f(shopper.get Omer (). equal s(nane))
{
try

{
shopper . set Shopper Appl et (appl et);

shopper.report(); // transmit report and then die
shoppers.renoveEl ement At (i); // update shopper |i st

}

cat ch(Voyager Exception exception)

shoppers. renoveEl ement (shopper); // renove unreachabl e el enent

ObjectSpace Voyager Core Technology User Guide 221

10 Applets

}

public void |l eave(String nane)

{

/1 an applet has left the nall
appl ets. renmove(nane);

}
publ i ¢ VShopper Appl et get Shopper Appl et (String nane)
Eet urn (VShopper Appl et) applets.get(nane);
}
public void wait(Shopper shopper)
{shoppers.addEI ement (shopper); // add to shopper |ist
}
public Vector getStores()
Eeturn stores;
}

}

ObjectSpace Voyager Core Technology User Guide 222

10 Applets

Application voyager1.0.0\examples\applets\shopper\Storel.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. appl ets. shopper;

i mport COM obj ect space. voyager. *;

public class Storel
{
public static void main(String args[])
{
try
{

int port = Integer.parselnt(args[0]); // port to serve

/] create and stock an imortal store

VStorel npl store = new VStorelnpl ("divax", "local host");
store.liveForever();

store. stock("pol oscope”, 50);

store.stock("powerblades", 60);

store.stock("stellargics", 65);

/1 contact nall and register store
VMal | I mpl mal | =
(Wwal Il I npl) VObject.forChjectAt("local host:" + port + "“/Mall");

mal | . register(store);
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 223

10 Applets

Application voyagerl1.0.0\examples\applets\shopper\Store2.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. appl ets. shopper;

i mport COM obj ect space. voyager. *;

public class Store2
{
public static void main(String args[])
{
try
{

int port = Integer.parselnt(args[0]); // port to serve

/] create and stock an imortal store

VStorel npl store = new VStorelnpl ("circunplex", "local host");
store.liveForever();

store. stock("powerblades", 50);

store.stock("trollkit", 60);

/1 contact nall and register store
VMal | I nmpl mal |l =
(Wwal I I npl) VObject.forCojectAt("local host:" + port + “/Mall");

mal | . register(store);
}

catch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 224

10 Applets

Class voyagerl.0.0\examples\applets\shopper\Shopper.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. appl ets. shopper;

import java.util.Vector;
i mport COM obj ect space. voyager. *;

public class Shopper extends Agent

{
VShopper Appl et applet; // renote reference to ny appl et
VMal [I mpl mall; // renote reference to mall

String owner; // name associated with appl et

String product; // product to search for

Vector itinerary; // list of stores to visit

int index; // index into itinerary of current store
VStorel npl bestStore = null; // store with cheapest price
int bestPrice = Integer. MAX VALUE; // current best price

publ i c Shopper(String owner, VShopperApplet applet, VMalllnpl mall)
{

thi s. owner = owner;
this.applet = applet;

this.mall = mall;
}
public void find(String product) throws Voyager Exception
{
this. product = product;
status("noving to mall");
moveTo(mall, "atMall");
}
public void atMall (Mall nmall) throws Voyager Exception
{
status("at mall");

itinerary = mall.getStores(); // get list of stores to visit
nmoveTo(getStore(), "atStore"); // nove to first store

}

public void atStore(Store store) throws Voyager Exception

{

int price = store.getPrice(product); // get price

if(price ==0)
{

status("at " + store + ", " + product + " not sold");

}

el se

{

status("at " + store + ", priceis " + price);

if(price < bestPrice)

{

ObjectSpace Voyager Core Technology User Guide 225

10 Applets

bestStore = getStore(); // this is the best store so far
bestPrice = price;
}

}

/1 sleep to simulate activity
try{ Thread.sleep(4000); } catch(InterruptedException exception) {}

/! if not finished, nove to next store, else nove back to nall
if(++index < itinerary.size())
moveTo(getStore(), "atStore");

el se
moveTo(mall, "finished");
}
VSt or el npl get Store()
{
return (VStorelnpl) itinerary.elenentAt(index);
}
public void finished(Mall mall) throws Voyager Exception
{
status("back at mall");

appl et = mall . get Shopper Appl et (owner);

/1 if applet is available, transmt best price and then die, else wait
if(applet !'= null)

report();
el se

mal | .wait(this);

}

public void set Shopper Appl et (VShopper Appl et appl et)

{
this.applet = applet;

}

public void report() throws Voyager Exception

{

status("best price is " + bestPrice + " from" + bestStore + ", die...");
di eNow() ;
}

public String getOaer()
{

return owner,;

}

void status(String string) throws Voyager Exception

{

String nmessage = product + " shopper: " + string;

try
{

Systemout.println(message); // print to standard out put

ObjectSpace Voyager Core Technology User Guide 226

10 Applets

if(applet !'= null)
appl et . addText (nessage); // transmt to applet

}
catch(Exception exception)
{
applet = null; // could not contact applet, don't bother next tine
}

}
}

Applet voyagerl.0.0\examples\applets\shopper\ShopperApplet.java
/1 Copyright(c) 1997 bject Space, Inc.

package exanpl es. appl et s. shopper;

i mport java. applet.*;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

i mport COM obj ect space. voyager. *;

public class Shopper Appl et extends Appl et

{

Label namelLabel = new Label ("Name");
TextField naneField = new TextField("", 15);
Label productsLabel = new Label ("Products");

Choi ce product sChoice = new Choi ce();

Button findButton = new Button("Find");
Label textLabel = new Label ("Transcript");
Text Area text Area = new Text Area(10, 50);
String user; // user name

VMal | I npl mal | ;

VShopper Appl et sel f;

public void init()
{
try

{
Voyager.startup(this); // startup in applet node

sel f = (VShopperApplet) VObject.forChject(this);
self.liveForever();
mal | =
(VWMal I I npl) VObj ect. forObj ect At (Voyager. get Server Address() + "/ Mall"

set Layout (new Fl owLayout ());

Panel panel 1 = new Panel ();

panel 1. add(naneLabel);

panel 1. add(naneField);

naneFi el d. addActi onLi st ener (new Acti onLi stener ()

{ public void actionPerformed(Acti onEvent event) { updateName(); } });
add(panell);

ObjectSpace Voyager Core Technology User Guide 227

10 Applets

Panel panel 2 = new Panel ();
panel 2. add(productsLabel);
Vector products = nmall.getProducts();

for(int i =0; i < products.size(); i++)
pr oduct sChoi ce. add((String) products.elementAt(i));

panel 2. add(product sChoice);
add(panel 2);

Panel panel 3 = new Panel ();

panel 3. add(findButton);

findButton. addActi onLi st ener(new Acti onLi stener()

{ public void actionPerforned(ActionEvent event) { find(); } });
add(panel 3);

Panel panel 4 = new Panel ();
panel 4. add(textLabel);

text Area. setEditabl e(false);
panel 4. add(textArea);

add(panel 4);

set Si ze(500, 250);
}

cat ch(Voyager Exception exception)

{
Systemout. println(exception);
}

}

voi d updat eName()
{
try
{

user = naneFi el d. get Text () ;
mal | . enter(user, self);
naneFi el d. set Enabl ed(false); // freeze

}

catch(Voyager Runti meExcepti on exception)
{
Systemerr.println(exception);
}

}

public void destroy()

{

try
mal | . | eave(user);
}

cat ch(Voyager Runti meExcepti on exception)
{
Systemerr.println(exception);
}

}

ObjectSpace Voyager Core Technology User Guide 228

10 Applets

public void addText(String text)

{
text Area. append(text + "\n");
}
voi d find()
{
try
{
i f(!'nameFiel d. get Text ().equal s(user))
updat eName(); // update current name
VShopper shopper = new VShopper(user, self, mall, "local host");
shopper. fi nd(product sChoi ce. get Sel ectedlten());
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}

}
HTML voyagerl.0.0\examples\applets\shopper\Shopper.html

<title>Shopper Applet</title>

<hr >

<appl et codebase="../../.."

code="exanpl es. appl et s. shopper. Shopper Appl et . cl ass"
archive="1lib/voyager.jar" w dt h=500 hei ght =250>
<par am nane=Ser ver val ue=8000>

</ appl et >

<hr >

ObjectSpace Voyager Core Technology User Guide 229

11

Security

ObjectSpace Voyager™ (Voyager) Core Technology includes support for the standard Java™
security manager system. Y ou have the option of installing a security manager in every
Voyager program. Once a security manager has been installed, it cannot be uninstalled or
replaced. Each time an object attempts to execute an operation that could compromise
security, the Java run-time machinery checks with the program’ s security manager to
determine whether the operation is permitted. If the program has no security manager or if the
security manager permits the operation, VVoyager proceeds as normal. If the operation is
disallowed, arun-time Securi t yExcept i on isthrown.

Java applets are automatically initialized with a very restrictive security manager called
Appl et Securi t yManager . Voyager applets must therefore abide by these settings.

Javaapplications have no security manager by default, which meansthat objects havefreerein
to perform any kind of operation.

Voyager includes a security manager called Voyager Secur i t yManager , which you can
install at the start of a program to restrict operations. The Voyager security manager considers
instances of a class loaded viathe program’s CLASSPATH as native objects and instances of a
class loaded across the network from another program as foreign objects. The Voyager
security manager allows native objects to perform any operation but restricts foreign objects
on a per-operation basis.

Users can modify or extend the VVoyager security manager behavior by extending the
Voyager Secur i t yManager class.

230

11 Security

The table below lists the operations that can be performed by an object in an applet, a native

object, and aforeign object.

Operation Object in Na’Five For_eign
Applet Object Object
Accept connections from any host server only yes yes
Connect to any host server only yes yes
Listen on any port no yes yes
Perform multicast operations no yes yes
Set socket factories no yes no
Manipul ate threads yes yes no
Manipulate thread groups yes yes no
Execute a process no yes no
Exit the virtual machine no yes no
Access AWT event queue yes yes yes
Access the system clipboard no yes no
Create windows yes yes yes
Create class |oader no yes no
Deletefiles no yes no
Read files, excluding socket file descriptors no yes no
Write files, excluding socket file descriptors no yes no
Access security APIs no yes no
Shut down V oyager yes yes no
Link to adynamic library no yes no
Access private/protected data and methods no yes no
Access packages no yes yes
Define classes in packages no yes yes
Print no yes no
Manipulate properties limited yes yes
Manipulate databases n/a yes no
Set multihome addresses yes yes no

ObjectSpace Voyager

Core Technology User Guide 231

11 Security

There aretwo waysto install aVoyager security manager. To start aVoyager server that hasa
Voyager security manager, executevoyager withthe- s (secure) option. Toinstall aVoyager
security manager into a'Voyager program, use the

Voyager . i nst al | Voyager Securi t yManager () method. To install a custom security
manager, use the Voyager . i nst al | Voyager Secur i t yManager () method with an
instance of Voyager Secur i t yManager or one of its subclasses.

The following example demonstrates how a V oyager security manager can be used to restrict
operations by foreign abjects.

Thevoyager 1. 0. 0\ exanpl es\ securi ty\ nati ve directory containsaVi si t or class
andaNat i ve. j ava program that installs a Voyager security manager. Because Vi si t or is
defined in the same package asNat i ve. j ava, the Voyager security manager of

Nat i ve. j ava considers Vi si t or anative class.

Thevoyager 1. 0. O\ exanpl es\ securi t y\ f or ei gn directory contains a

For ei gn. j ava program that also installs a VVoyager security manager. Because the
Vi si t or classisnot accessibleto For ei gn. j ava viathe CLASSPATH, the Voyager
security manager of For ei gn. j ava considers Vi si t or aforeign class.

When Securityl.javamovesaVi sitor intoForeign.javaandtelsVisitor to
create athread, an exception is thrown—the V oyager security manager does not allow foreign
objects to manipulate threads.

Fromthe\ voyager 1. 0. O\ exanpl es\ securi t y\ nati ve directory, use the following
commands to prepare and compilethe Vi si t or . j ava and Securi tyl. j ava example
programs:

vce Visitor
javac Visitor.java Wisitor.java Securityl.java

Then, from the\ voyager 1. 0. 0\ exanpl es\ securi t y\f or ei gn directory, use the
following command to compile For ei gn. j ava:

javac Foreign.java

Fromthe\ voyager 1. 0. 0\ exanpl es\ security\forei gn directory, run
For ei gn. cl ass in onewindow. Then, from the\ voyager 1. 0. 0\ exanpl es\ nati ve
directory, run Nat i ve. cl ass and Securi tyl. cl ass in second and third windows.

Window 1

>j ava Foreign

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

>

ObjectSpace Voyager Core Technology User Guide 232

11 Security

Window 2

ﬁava Nati ve \

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000
new thread is counting...

ﬂwl\)HO
.

Window 3

>j ava Securityl

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1226

jJava.lang.SecurityException: foriegn objects/messages may not manipulate a
thread group

thrown remotely from 208.6.239.200:7000
>

Application voyager1.0.0\examples\security\native\Securityl.java
/1 Copyright(c) 1997 hject Space, Inc.
i mport COM obj ect space. voyager. *;

public class Securityl

{
public static void main(String args[])
{
try
{
Wisitor visitor = new Wisitor("local host");
vi sitor.noveTo("I ocal host:8000");
vi sitor. |l oopUsi ngThread();
vi sitor.noveTo("I ocal host:7000");
vi sitor.loopUsi ngThread();
Voyager . shut down() ;
}
catch(Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 233

11 Security

Class voyagerl.0.0\examples\security\native\Visitor.java

/1 Copyright(c) 1997 hject Space, Inc.

i mport COM obj ect space. voyager. *;

public class Visitor inplements java.io.Serializable, Runnable
E)ubl i ¢ synchroni zed voi d | oopUsi ngThread()

Thread thread = new Thread(this);
thread.start();

try
{
wait(); // wait for thread to conplete
}

catch(InterruptedException exception)
{
}

}

public synchroni zed void run()

{

Systemout.println("new thread is counting...");

for(int i =0; i < 4; i++)

Systemout.println(i);
notify(); // notify that thread has conpl et ed
}
}
Application voyager1.0.0\examples\security\native\Native.java
/1 Copyright(c) 1997 hject Space, Inc.

i mport COM obj ect space. voyager. *;

public class Native

E)ublic static void main(String args[])
{
try
{
Voyager . startup(8000);

Voyager . i nst al | Voyager SecurityManager () ;
caich(Voyager Excepti on exception)
{System err.println(exception);

}
}
}

ObjectSpace Voyager Core Technology User Guide 234

11 Security

Application voyager1.0.0\examples\security\foreign\Foreign.java
/1 Copyright(c) 1997 hject Space, Inc.
i mport COM obj ect space. voyager. *;

public class Foreign

E)ubl ic static void main(String args[])
{
try
{
Voyager . startup(7000);

Voyager . i nst al | Voyager SecurityManager () ;
caich(Voyager Excepti on exception)
{System err.println(exception);

}
}
}

ObjectSpace Voyager Core Technology User Guide 235

12

Customizing Voyager Applications

This chapter describes several ways to customize applications devel oped with ObjectSpace
Voyager™ Core Technology (Voyager). Specifically, you can use custom sockets rather than
the default sockets, you can extend class loading behavior, and you can configure your
computer with more than one domain name.

236

12 Customizing Voyager Applications

Custom Sockets

By default, Voyager sockets are JDK system default sockets with system default socket
implementations. However, developers can instruct V oyager to use custom socketsinstead for
functionality like firewall tunneling, SSL encryption, and compression.

Socket Factories

Socket factories are objects that can create sockets. Voyager socket factories must implement
theVoyager Socket Fact ory interface, just as Voyager sockets must implement the
Voyager Socket interface. If aconnection needsto be opened to aVoyager program at an |P
address for which a custom socket factory has been specified, then Voyager uses a custom
socket factory to create the socket. (Typically, both communicating Voyager programs need to
use the same kind of socket.) If no custom socket factory has been specified for connectionsto
programs at the given address, Voyager uses the default socket factory to create the socket.
Voyager also uses the default socket factory to create the server socket for the Voyager
program in which it is running.

Customizing the Default Socket Factory

The default socket factory can be replaced if acustom server socket isneeded or if every client
connection must be made with a custom socket. The default socket factory can only be set at
startup because it is used to create theinitial server socket. Use one of the Voyager
startup() methodsthat accept aVoyager Socket Fact ory to set up the default socket
factory.

Adding Custom Socket Factories

Sometimes custom sockets are needed only by alimited set of hosts thus should not be used by
default or for server socket functionality. To instruct Voyager to use adifferent kind of socket
when connecting to programs at a specific host, invoke Voyager'saddSocket Fact or y()
method. This method takesa St r i ng containing the domain name or |P address of another
machine and an object that implements the Voyager Socket Fact or y interface, whichis
used to create sockets for connections opened to any Voyager program running on that remote
machine.

There are two requirements for creating a custom socket factory capable of producing custom
sockets. First, the socket factory must implement the Voyager Socket Fact or y interface.
This interface provides one method for getting a client socket and one method for getting a
server socket. Second, the custom socket implementations that the custom socket factory
creates must implement the Voyager Socket or Voyager Ser ver Socket interface, as
appropriate. Once these two requirements are met, devel opers are free to implement the
socketsin any way. In particular, custom sockets need not extend j ava. net . Socket .

ObjectSpace Voyager Core Technology User Guide 237

12 Customizing Voyager Applications

Custom Class Loading

Voyager includes a class |loader capable of loading classes from the CLASSPATH, from the
CODEBASE (for Applets), and across the network. Some programs might need a class loader
with additional capabilities. For instance, a program might need all Voyager serversto load
classes from a centralized database of classfiles. To support this, Voyager provides the
interface Voyager C assLoader . By implementing this simple interface and invoking
Voyager'sr egi st er d assLoader () method with an instance of this implementation,
developers can easily extend class loading behavior.

Class loaders are used in two scenarios. One scenario iswhen thel oadd ass() methodis
invoked on the class loader in an attempt to load a class with a given name into the local
virtual machine. Before trying any of the custom class loaders, V oyager tries the standard class
loading strategy, that is, loading from the CLASSPATH, the network, or the CODEBASE,
depending on the situation. If the standard class|oading strategy completes but the classfileis
still not found, V oyager tries each of the custom class loadersin the order in which they are
registered with the Voyager program.

The other scenario in which class loaders are used is when Voyager asks for the bytes that
define aclassfile. This can happen if Voyager has been asked for these bytes by aremote
Voyager program, such as when a Voyager program serves up classfiles for the remote
Voyager network class loader. The custom class loader should be able to return the bytes of a
classfilefor any classit can load.

ObjectSpace Voyager Core Technology User Guide 238

12 Customizing Voyager Applications

Voyager on Multihomed Computers

Multihomed computers are machines that are configured with more than one domain name.
For aVVoyager program to run on such amachine, V oyager must be aware of all possible names
for the machine. By default, Voyager is aware of the host name returned by

j ava. net. | net Addr ess. get Host Nane() and al |P addresses associated with the host
name. To make Voyager aware of another name by which the machine is known, invoke the
addMul t i Home() method with a string containing the other name. Voyager isthen able to
function with the name and all IP numbers associated with the name.

ObjectSpace Voyager Core Technology User Guide 239

Part 3

ObjectSpace Voyager
Services

13

Introduction

Part 3 is comprised of four chapters that describe the various services included with the
ObjectSpace VVoyager™ Core Technology (Voyager).

Read this chapter for a summary of the Part 3 chapters.

Read Chapter 14, “ Database-Independent Persistence,” for an explanation of how to
persist, flush, and load objects using Voyager’ sintegrated database support. Some of the
main Voyager classes introduced are Db, Dbl nf o, and Voyager Db.

Read Chapter 15, “ Space: Scalable Group Communication,” for adescription of Voyager’s
innovative Space™ architecture for large-scale distributed computing, including one-way
multicast, distributed events, JavaBeans™ integration, and state-of-the-art
publish/subscribe. Some of the main Voyager classes introduced are Subspace,
OneWayMul ti cast, and SubspaceEvent .

Read Chapter 16, “Federated Directory Service,” for an explanation of how to use the
Voyager directory service to locate objects and agents in a distributed system.

241

14

Database-Independent Persistence

Most programs require the ability to create an object that has along life span. Because a
program is volatile and will lose objects from its memory if the host crashes, databases are
usually employed for saving objects on a secondary, nonvolatile medium such as a hard disk.

Several kinds of databases can be used to store an object, including relational databases and
object-oriented databases. Each kind of database generally requires a different approach to
storing an object. For example, an object database vendor might require you to post-process
your Java™ classes to store a Java object; whereas, arelational database vendor might require
you to decompose your object into smaller pieces that can be stored into relational tables.
Ideally, thislevel of detail should be hidden from the programmer so that the act of saving an
object to the database is ssimple and independent of the storage device.

ObjectSpace Voyager™ Core Technology (Voyager) supports database-independent,
distributed-object persistence. Any database adapter that implements Db can be used by
Voyager for storing and retrieving objects. Voyager includes an object storage system,
Voyager Db, that implements Db and uses the Java serialization mechanism to persist any
serializable object without modification. Implementations of Db can be created to support
most of the popular database systems. All examplesin this chapter use Voyager Db for object
storage.

242

14 Database-Independent Persistence

Concepts

This section summarizes the concepts underlying Voyager’s support for persistence. An
example of each concept is presented later in this chapter.

Assigning a Database

When a Voyager program is started, it can be assigned to an optional database using

set Db() . A program that is assigned to a database is said to support persistence. In Voyager,
two programs should not share the same database. Once a Voyager server is assigned to a
database, the server should not be reassigned to a different database.

Saving an Object

To make an object persistent and immediately saveit in the database, send the object
saveNow() viaavirtua reference. The object is copied into its program’s database,
overwriting the previous version, if present. If the object residesin a program that does not
support persistence, a DbExcept i on isthrown. If the program is shut down and then
restarted, the persistent objects are initialy left in the database and do not consume any
memory.

Loading an Object

Any attempt to communicate with a persistent object not currently in memory causes the
object to be automatically loaded from the database. This feature is called autoloading.
Objects can also be autoloaded at program startup by using set Aut ol oad() . In either case,
an object can listen for the Cbj ect Event . LOADED event to perform an action upon reload.

Saving a Virtual Reference

Saving avirtual reference uses little storage space because saving a virtual reference does not
cause a save of the object it references. Similarly, autoloading a virtual reference does not
cause an autoload of the object it references.

Distributing Persistent Objects

A group of persistent objects can be distributed in a network, each with virtual referencesto
other objectsin the group. Each object is persisted in its own program’ s database, which might
be arelational database in one case and an object database in another. Object autoloading
enables an individual object to be flushed and its program to be shutdown and restarted
without impacting other objects in the network.

Moving a Persistent Object

If apersistent object is moved, it isremoved from the source program’ s database and saved in
the destination program’ s database. The object |eaves behind a persistent forwarder. Mobile
persistence works even if the source program has a different type of database than the
destination program.

ObjectSpace Voyager Core Technology User Guide 243

14 Database-Independent Persistence

Removing a Persistent Object

When a persistent object dies, the copy of the object is automatically removed from the
program database. To force an object to die, send it di eNow() .

Garbage-Collecting a Persistent Object

A persistent object’s program contains enough information to garbage-collect the object even
whenitisnot in memory. If apersistent object is garbage-collected, it isreloaded and then sent
di eNow() .

Flushing a Persistent Object

To conserve memory, you can use one of thef | ush() family of methodsto flush a persistent
object from memory to a database. If the object is an agent, it can listen for an

Obj ect Event . FLUSHI NG event to perform an action immediately prior to being flushed.
As before, any subsequent attempt to communicate with a flushed persistent object causes the
object to be reloaded from the database.

Persisting a Class

By default, a VVoyager program that supports persistence automatically persists Java classes
that are loaded into a program across a network. In this way, the Java classes need not be
reloaded when the program is restarted. This default setting ensuresthat if aforeign object is
saved in a program’ s database and the program is then restarted, the foreign object’s class
definition isimmediately available. Use Voyager . set Per si st ent Net wor kCl asses()
to change this setting.

Modifying the Persistence of an Object

To make an object persistent and immediately save the object in its database, call
set Persi st ent (true) ontheobject’svirtual reference. To remove an object fromits
database and make it nonpersistent, call set Per si st ent (f al se).

ObjectSpace Voyager Core Technology User Guide 244

14 Database-Independent Persistence

Starting a Persistent Voyager Server

To start a Voyager server and associate it with aVoyager Db database, use the - d option of
thevoyager command line utility. The - d option instructs Voyager either to use the named
database file for its persistent storage or to create afileif one does not exist. The - ¢ option
clearsthe database if it already exists.

Using the following command:
voyager 8000 -cd MyStorage. db
isequivalent to explicitly using set Db() as shown:

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager. db. *;

public class Exanple
{

public static void main(String args[])

{
try
{
/] attach to "MyStorage.db", replace if already present

Voyager . set Db(new Voyager Db("MStorage. db", true));
/'l program code goes here
Voyager . shut down() ;

}

cat ch(Voyager Exception exception)

{

Systemerr. println(exception);

}
}
}

Y ou can name a database file arbitrarily. The. db extension is suggested but not required.

A common use case isto start an empty, persistent Voyager server on a particular port using
the- cd MySt or age. db command, create and save objectsin the server, and then shut down
the server. Later, the persistent server isrestarted on the same port using-d My St or age. db,
and its objects are autoloaded when they receive messages. If you do not restart the server on
the same port, virtual references cannot find and autol oad the persistent objects.

Thereis currently no way to usethe voyager command line utility to start a persistent
Voyager server that is attached to any other kind of database.

ObjectSpace Voyager Core Technology User Guide 245

14 Database-Independent Persistence

Saving, Loading, and Deleting a Persistent Object

The following two-phase example shows how to save, load, and delete a persistent object.

In thefirst phase, a Voyager persistent server is started on port 8000 and assigned to the
database file 8000. db. Then, the Db1A. j ava example program creates a persistent vector
with alias Al phas in the server. Finally, the persistent server is shut down by pressing Ctrl+C.

In the second phase, the persistent server is restarted and assigned to the database created in
thefirst phase. Then, the Db1B. j ava example program connects to the persistent vector,
displaysits contents, and tells the vector to die, removing the vector from the database.

Because the default database Voyager Db uses Java serialization to save an object, any
serializable object can be saved without modifying its classin any way. Many JDK classes,
including Vect or , Hasht abl e, St ri ng, and | nt eger, are serializable. When making
your own classes serializable, be sureto usethet r ansi ent keyword when appropriate to
prevent unwanted objects from being part of an object’s serialized form.

Phase 1

From the\voyager 1. 0. 0\ exanpl es\ db directory, use the following commands to
prepare and compile Db1A. j ava and Db1B. j ava:

vce java.util. Vector
javac Wector.java DblA java DblB.java

Start apersistent server on port 8000 in one window, and thenrun Db 1A. cl ass inthe second
window.

Window 1

>voyager 8000 -cd 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 0 objects, O classes

Window 2

>j ava exanpl es. db. DblA

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1108

saved [2, hi, 3.14]

>

When Db1A. j ava finishes, terminate the server by pressing Ctrl+C in the first window.
Phase 1 is now complete.

ObjectSpace Voyager Core Technology User Guide 246

14 Database-Independent Persistence

Phase 2

To see the size of the database file, use the di r command on Windows platforms and the
I s -1 command on UNIX platforms. Restart the persistent server in Window 1 and run
Db1B. cl ass in Window 2.

Window 1

(> N

>di r 8000. db

8000 DB 2,056 09-03-97 10:33a 8000.db
>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 1 object, 0 classes

N /

Window 2

(i)

>j ava exanpl es. db. DblB

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1116

loaded [2, hi, 3.14]

>

N J

Application voyager1.0.0\examples\db\Db1A .java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class DblA
{
public static void main(String args[])
{
try
{

/'l create vector in server 8000

Wect or vector = new Wector("l ocal host: 8000/ Al phas");
vector. addEl ement (new Integer(2));

vector. addEl enent ("hi");

ObjectSpace Voyager Core Technology User Guide 247

14 Database-Independent Persistence

vect or. addEl ement (new Float(3.14));
vector.liveForever(); // do not garbage collect
vector.saveNow); // save copy to database of server 8000
Systemout.println("saved " + vector);
Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

Application voyager1.0.0\examples\db\Db1B.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;

i mport COM obj ect space. voyager. *;
i mport Wector;

public class DblB
{
public static void main(String args[])
{
try
{
/1 connect to persistent vector in server 8000
Wect or vector = (VWector)
VObj ect . f or Obj ect At ("1 ocal host : 8000/ Al phas") ;
Systemout.println("loaded " + vector); // display

vector.dieNow(); // kill vector, renmove from dat abase
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr. println(exception);
}

}

ObjectSpace Voyager Core Technology User Guide 248

14 Database-Independent Persistence

Distributed Persistence

An object can hold virtual references to persistent objects anywhere in a network. In atypical
distributed application, objects often move back and forth from storage. VVoyager’ s object
autol oading mechanism hides from a programmer the details of whether a persistent object is
currently in memory.

The following example demonstrates the power and simplicity of distributed persistence and
autoloading.

A Theat er classis created that represents a movie theater. The class is made serializable so
that it can be stored in Voyager Db, the default VVoyager database. The Db2A. j ava example
program creates two persistent theaters, one in a persistent server on port 7000, the other in a
persistent server on port 8000. Db2A. j ava also creates a persistent vector with alias

Theat er s in server 8000, fillsthe vector with virtual referencesto the persistent theaters, and
then saves the vector. The servers are then terminated.

When the servers are restarted, the persistent objects still reside in the database. When the
Db2B. j ava example program connects to the persistent vector with alias Theat er s, the
vector is autoloaded into server 8000. Because autoloading a virtual reference does not cause
its associated object to be autoloaded, autoloading the vector of virtual referencesto theaters
does not cause the persistent theaters to be autoloaded. However, when Db2B. j ava begins
printing each element of the array, thet oSt ri ng() message that isimplicitly sent to each
persistent theater viaits virtual reference causes autol oading.

Distributed autol oading, combined with flushing (described on page 254), provides a powerful
mechanism for building large-scal e distributed systems that use memory conservatively.

Fromthe\ voyager 1. 0. 0\ exanpl es\ db directory, use the following commands to
prepare and compile Db2A. j ava and Db2B. j ava:

vce Theater
javac VTheater.java Theater.java Db2A. java Db2B.java

Start a persistent server on each of ports 7000 and 8000 in two separate windows. Then run
Db2A. cl ass inathird window. When Db2A. cl ass finishes, terminate the servers by
pressing Ctrl+C in Windows 1 and 2.

Window 1

>voyager 7000 -cd 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 0 objects, O classes

construct Theater(monoplex)

>

ObjectSpace Voyager Core Technology User Guide 249

14 Database-Independent Persistence

Window 2

>voyager 8000 -cd 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 0 objects, O classes

construct Theater(metropolis)
>

Window 3

>j ava exanpl es. db. Db2A
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1120

theaters = [Theater(monoplex), Theater(metropolis)]
>

Now restart the persistent serversin the first two windows and run Db2B. cl ass in the third
window. When Db2B. cl ass finishes, terminate the servers again by pressing Ctrl+C in
Windows 1 and 2.

Window 1

(-)

>voyager 7000 -d 7000. db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 1 object, 0 classes
>

N J

Window 2

[~)

>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 2 objects, O classes

>

_ J

ObjectSpace Voyager Core Technology User Guide 250

14 Database-Independent Persistence

Window 3

(i)

>j ava exanpl es. db. Db2B

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1124

theater 0 = Theater(monoplex)

theater 1 = Theater(metropolis)

NG J

Class voyager1.0.0\examples\db\Theater.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;
import java.util.Vector;

public class Theater inplements java.io.Serializable

{
String nane;
Vector novies = new Vector();

public Theater(String nane)
{

thi s. nane = nane;
Systemout.println("construct " + this);

}
public String toString()
~Eeturn "Theater(" + nane + ")";
}
public void addMovie(String novie)
~Emvi es. addEl enent (novie);
}
public Vector getMvies()
Eeturn novi es;
}

}

ObjectSpace Voyager Core Technology User Guide 251

14 Database-Independent Persistence

Application voyagerl1.0.0\examples\db\Db2A .java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Db2A

{
public static void main(String args[])
{
try
{
/] create vector in server 8000
VTheater theaterl = new VTheater("nonopl ex", "l ocal host:7000");
theaterl. addMovie("the fifth elenment”);
theaterl. addMovie("men in black");
theaterl.liveForever();
theat er1. saveNow();
VTheater theater2 = new VTheater("metropolis", "local host:8000");
t heat er 2. addMovi e("i ndependence day");
t heat er 2. addMovi e("ransom');
theater2.liveForever();
t heat er 2. saveNow() ;
Wector theaters = new Wector("l ocal host: 8000/ Theaters");
theaters.liveForever();
t heat ers. addEl enent (theaterl);
t heat ers. addEl enent (theater2);
theat ers. saveNow() ;
Systemout.println("theaters = " + theaters);
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 252

14 Database-Independent Persistence

Application voyager1.0.0\examples\db\Db2B.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;

i mport COM obj ect space. voyager. *;
i mport Wect or;

public class Db2B
{
public static void main(String args[])
{
try
{
/1 connect to persistent vector
VWector theaters =
(Wector) VOoject.forObjectAt("local host: 8000/ Theaters");
int count = theaters.size();

for(int i =0; i < count; i++)
Systemout.println("theater "+i+" = "+theaters.elementAt(i));

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr. println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 253

14 Database-Independent Persistence

Flushing Objects

To flush an object from memory to database storage so that its memory can be reclaimed, use
one of the following methods.

e flushNow()

Savesthe object inits program’ s database and allowsit to be garbage-collected. Generates
an bj ect Event . FLUSHI NGevent immediately prior to the save. Subsequent messages
sent to the object via virtual references cause the object to be reloaded.

e flushWenl nacti veFor(| ong milliseconds)

Tells the persistence service to send the object f | ushNow() if it does not receive any
incoming messages or objects for the specified number of milliseconds.

e flushNever()

Prevents the persistence service from sending the object f | ushNow() . Once
fl ushNever () isexecuted, the object is not flushed unlessit is explicitly sent
flushNow() .

The rules governing when an object is actually flushed are similar to the rules of mohility.
When it istime to flush an object, f | ushNow() usesr el easeObj ect () tofinish current
encounters and waits for all outstanding remote messages to compl ete before actually flushing
the object. Messages that arrive after the flush process begins are queued and resent after the
object is flushed, causing the object to be autoloaded. In other words, Voyager carefully
ensures that the flushing process is transparent to messaging.

The next section contains an example of flushing.

Mobile Persistence

If apersistent object is moved, it isremoved from the source program’ s database and saved in
the destination program’ s database. Unless you specify otherwise, the forwarder that the
moved abjects leaves behind is persistent.

The following example demonstrates mobile persistence and a common use of flushing. The
Db3A. j ava example program creates and launches a persistent Movi eGoer agent with alias
PugWash. PugWash usesthe persistent vector of theaters created in “ Distributed Persistence”
on page 249 to locate the individual theaters. PugWash then visits each theater in turn to
watch arandom movie.

Theset Per si st ent () method isused toinitially instruct the agent to be persistent without
causing it to be saved immediately. When the servers are shut down and then restarted, the
theaters, the agent, and the forwarders are in storage. The Db3B. j ava example program
connects to the agent viaits persistent forwarders, prints the agent, and then tells the agent to
die. Thedi eNow() method causes the persistent agent and its persistent forwarders to be
garbage-collected and removed from storage.

ObjectSpace Voyager Core Technology User Guide 254

14 Database-Independent Persistence

From the\ voyager \ exanpl es\ db directory, use the following commands to prepare and
compile Db3A. j ava and Db3B. j ava:

vcec Movi eCoer
javac VMovi eCoer.java Myvi eCoer.java Db3A.java Db3B.java

Restart the persistent servers created in “ Distributed Persistence” on page 249 in two separate
windows. Then, run Db3A. cl ass inathird window. When Db3A. cl ass finishes, terminate
the servers by pressing Ctrl+C in Windows 1 and 2.

Window 1

>voyager 7000 -d 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 1 object, 0 classes

at Theater(monoplex), see men in black

move to Theater(metropolis)
>

Window 2

>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 2 objects, O classes

at Theater(metropolis), see independence day

finished, go to sleep
>

Window 3

>j ava exanpl es. db. Db3A

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1127

construct MovieGoer(Pugwash, seen: [])

move to Theater(monoplex)
>

Now restart the persistent serversin thefirst and second windows and run Db3B. cl ass inthe
third window.

ObjectSpace Voyager Core Technology User Guide 255

14 Database-Independent Persistence

Window 1

[~)

>voyager 7000 -d 7000. db
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 2 objects, O classes
>

_)

Window 2

(-)

>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 3 objects, O classes

>

N /

Window 3

i)

>j ava exanpl es. db. Db3B

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1142

moviegoer = MovieGoer(Pugwash, seen: [men in black, independence day])
>

- /

ObjectSpace Voyager Core Technology User Guide 256

14 Database-Independent Persistence

Class voyagerl.0.0\examples\db\Moviegoer.java
/1 Copyright(c) 1997 hjectSpace, Inc.

package exanpl es. db;
import java.util.*;

i mport COM obj ect space. voyager. *;
i mport Wector;

public class Myvi eGoer extends Agent inplenments bjectlListener

{

stati c Random random = new Random();
int index;

String nane;

Vector novies = new Vector();

Vector itinerary;

public MovieCGoer(String nane)
{

thi s. nane = nane;

Systemout.println("construct " + this);

//1istening for events needs to be permanent, not transient
//so add nmyself as an assistant not a listener

addAssi stant(this);

+ novies + ")";

}
public String toString()
{
return "MvieGer(" + nanme + ", seen:
}
public void seeMvies()
{
try
{
Wect or theaters =
(Wector) Vnject.forOhjectAt("local host: 8000/ Theaters");
itinerary = (Vector) theaters.clone();
travel ();
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}

public void atTheater(Theater theater)

{

int choice = Math. abs(random nextlnt())

% t heat er. get Movi es() . si ze();

String novie = (String) theater.getMvies().elenentAt(choice);

Systemout.println("at " + theater + ",

novi es. addEl enent (novie);
++i ndex;
travel ();

see " + novie);

ObjectSpace Voyager

Core Technology User Guide 257

14 Database-Independent Persistence

}
private void travel ()
{
try
{
if(index < itinerary.size())
{
VObj ect theater = (VTheater) itinerary.elementAt(index);
Systemout.println("nove to " + theater);
try{ Thread. sl eep(2000); } catch(InterruptedExcepti on exception) {}
nmoveTo(theater, "atTheater");
}
el se
{
Systemout.println("finished, go to sleep");
flushNow();
}
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}

public void objectEvent(ObjectEvent event)
{
i f(event.getCode() == (bject Event.LOADED)
Systemout.printin("loaded " + this);
}
}

Application voyager1.0.0\examples\db\Db3A.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. db;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager. db. *;

public class Db3A

{
public static void main(String args[])
{
try
{
Voyager . set Db(new Voyager Db("Db3A. db", true));
VMovi eGoer movi egoer = new VMWbvi eGoer (" Pugwash", "l ocal host/PugWash");

novi egoer . set Persistent(true);
novi egoer . seeMvi es();

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)

ObjectSpace Voyager Core Technology User Guide 258

14 Database-Independent Persistence

{

Systemerr. println(exception);
}
}
}
Application voyager1.0.0\examples\db\Db3B.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;

i mport COM obj ect space. voyager. *;

public class Db3B

{
public static void main(String args[])
{
try
{
VMovi eGoer novi egoer =
(VMovi eGoer) VObj ect. forCbject At("l ocal host: 7000/ Pug\Wash");
Systemout. println("noviegoer = " + novi egoer);
nmovi egoer . di eNow() ;
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 259

14 Database-Independent Persistence

Database Administration

The Voyager system accesses a database viathe Db interface, allowing you to access a
database directly. Although not necessary, direct access is useful when creating a database
administrative tool.

Use the Db database interface and the Dbl nf o classto access a database directly. Db provides
methods like put (), get (),andr enove() . Toload an object from a database, invoke
get () withthe object’s GUID or alias.

Dbl nf o contains information about an object in the database, such asits GUID, dias, class
name, and garbage collection data. Db has methods for obtaining Dbl nf o about all the objects
in a database or arestricted subset of objects, such as all objects that are instances of a
particular class. To save an object to a database, create a Dbl nf o that describes the object.
Then, invoke put () on the database with the Dbl nf o and the object to be stored.

The Db4. j ava example program opens one of the databases created by the previous
example, loadsits Dbl nf o, and then loads al of the Theat er objectsinto memory and prints
them.

Fromthe\ voyager 1. 0. O\ exanpl es\ db directory, use the following command to
compileDb4. j ava:

javac Db4.java

Note: The Db4. j ava example program uses the 8000. db database file created in the
“Mobile Persistence” section on page 254.

Run Db4. cl ass in awindow.

/>j ava exanpl es. db. Db4 \

size = 2

info[0] -> DbInfo(java.util_Vector, Theaters, false, 0, 873926585,
163-83-24

-222-134-54-207-134-81-229-72-134-111-72-159-192)

info[1] -> DbInfo(examples.db.Theater, null, false, 0, 873926584,
64-28-171-

8-203-212-143-68-74-110-72-134-111-72-159-192)

voyager(tm) 1.0.0, copyright objectspace 1997

object[1] -> Theater(metropolis)

>

N)

ObjectSpace Voyager Core Technology User Guide 260

14 Database-Independent Persistence

Class voyagerl1.0.0\examples\db\Db4.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. db;

i mport COM obj ect space. voyager. *;

i mport COM obj ect space. voyager. db. *;

import java.util.Vector;

public class Db4

{
public static void main(String args[])
{
try
{
/1 open the database
Voyager Db db = new Voyager Db("8000. db", false);
Systemout.println("size =" + db.size());
Vector infos = db.getAl I Dbinfo(); // get info
/1 iterate through all info
for(int i =0; i <infos.size(); i++)
{
Dbinfo info = (Dblnfo) infos.elenentAt(i);
Systemout.printin("info[" +i +"] ->" +info);
/1 load all objects whose class is "exanple.db. Theater"
if(info.classname.toString().equals("exanples.db. Theater"))
{
Chj ect object = db.get(info.guid);
Systemout.println("object[" +i +"] ->" + object);
}
}
db.close(); // close the database
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 261

15

Space: Scalable Group Communication

Distributed systems require features for communicating with groups of objects. Following are
some examples:

e Stock quote systems use adistributed event feature to send stock price eventsto customers
around the world.

e Voting systems use a distributed messaging feature (multicast) to ask voters around the
world for their views on a particular matter.

e Newsservicesuseadistributed publish/subscribe feature to send broadcasts only to readers
who areinterested in the broadcast topic.

Most traditional systems use a single repeater object to replicate a message or event to each

object in the target group.
0.0 OO

‘\ Q

london:7000

dallas:8000

message

tokyo:9000 perth:10000

—————————— » Message being forwarded
and delivered

This approach works fine if the number of objectsin the target group is small, but does not
scale well when large numbers of objects are involved.

262

15 Space: Scalable Group Communication

ObjectSpace Voyager™ Core Technology (Voyager) uses an innovative architecture for
message/event replication called Space™ that can scale to global proportions. Clusters of
objects in the target group are stored in local groups called subspaces. The subspaces are
linked together to form alarger logical group, or Space. Each message sent into one of the
subspacesis cloned to each of the neighboring subspaces before being delivered to every
object in the local subspace, resulting in arapid, parallel fanout of the message to every object
in the Space. A mechanism in each subspace ensures that no message or event is processed
more than once, regardless of how the subspaces are linked together.

me (VL) . (OSO

S

london:7000 dallas:8000

toky0:9000 perth:10000

‘«’ Message being delivered
v to local objects

7777777777 » Cloned message being
duplicated

@ Subspace

Subspace Link

Voyager's multicast, distributed events, and publish/subscribe features all benefit from the
same underlying Space architecture.

ObjectSpace Voyager Core Technology User Guide 263

15 Space: Scalable Group Communication

Creating a Space

To create alogical Space, create subspaces anywhere in the network, add objects to each
subspace using add() , and connect the subspaces together using connect () . Connectionis
symmetric, soif you connect subspacel tosubspace2, you need not connect subspace2
tosubspacel.

A single subspace can hold different kinds of objects. Y ou can add avirtua referenceto a
subspace even if the referenced object is not in the same program as the subspace.

When you send a message into a subspace, the message propagates itself to every neighbor of
the subspace and then deliversitself to the references within the subspace. As the message
propagates, it leaves behind a marker unique to that message and remembered by the subspace
for adefault period of five minutes. If aclone of that message re-enters the subspace, the clone
detects the marker and automatically self-destructs. This marker allows you to connect
subspaces together to form arbitrary topologies without the possibility of multiple message
delivery. The parallel message fanout means that the more interconnected the subspaces, the
more fault-tolerant they become in the face of individual network failures.

The Spacel. j ava example program creates a distributed Space that holds instances of
Spor t sFan. The program creates a subspace in each of servers 7000, 8000, and 9000, adds
one or more virtual referencesto Spor t sFan objectsin each subspace, and then connects the
subspaces together to form alarger, logical Space.

Spacel. j ava isused by subsequent example programs to initialize a Space before
demonstrating features like multicast and distributed events. The NewsLi st ener interface of
the Spor t sFan andthescor e() and newsFl ash() methods are not used by this example.

Fromthe\ voyager 1. 0. 0\ exanpl es\ space directory, use the following commands to
prepare and compile the Spacel. j ava example program:

vcc SportsFan
javac VSportsFan.java SportsFan.java Spacel.java

Start a server on each of ports 7000, 8000, and 9000 in three different windows. Then run
Spacel. cl ass inafourth window. When Spacel. cl ass terminates, terminate the
servers by pressing Ctrl+C in Windows 1, 2, and 3.

Window 1

>voyager 7000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

construct SportsFan(sally)
>

ObjectSpace Voyager Core Technology User Guide 264

15 Space: Scalable Group Communication

Window 2

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

construct SportsFan(dave)

construct SportsFan(mary)

>

Window 3

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

construct SportsFan(graham)

>

Window 4

>j ava exanpl es. space. Spacel
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1343

subspacel = Subspace(objects: 1, neighbors: 2)
subspace2 = Subspace(objects: 2, neighbors: 2)
subspace3 = Subspace(objects: 1, neighbors: 2)

>

ObjectSpace Voyager Core Technology User Guide 265

15 Space: Scalable Group Communication

Class voyagerl.0.0\examples\space\SportsFan.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

public class SportsFan inplenents NewsListener, java.io.Serializable

{

String nane;

public SportsFan(String nane)
{

thi s. nane = nane;
Systemout.println("construct " + this);

}
public String toString()
{
return "SportsFan(" + nanme + ")";
}
public String getNane()
{
return nane,;
}
public void score(String teaml, int x, String tean, int y)
{
System out. println(
this + " gets score: " + teaml +" " + x + ", " + tean2 + " " +y);
}
public void newsFl ash(NewsEvent event)
{
Systemout.println(this + " gets " + event);
}

}

ObjectSpace Voyager Core Technology User Guide 266

15 Space: Scalable Group Communication

Application voyager1.0.0\examples\space\Spacel.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. space
i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class Spacel

{
public static void main(String args[])
{
try
{
/1 create and popul ate subspace on | ocal server 7000
VSubspace subspacel = new VSubspace("Il ocal host: 7000/ Subspacel")
subspacel. | iveForever();
VSportsFan fanl = new VSportsFan("sally", "local host:7000");
fanl.liveForever();
subspacel. add(fanl);

/1 create and popul ate subspace on | ocal server 8000

VSubspace subspace2 = new VSubspace("Il ocal host: 8000/ Subspace2");
subspace2. |iveForever();

VSportsFan fan2 = new VSportsFan("dave", "l ocal host:8000");
fan2.liveForever();

subspace2. add(fan2);

VSportsFan fan3 = new VSportsFan("mary", "l ocal host:8000");
fan3.liveForever();

subspace2. add(fan3);

/'l create and popul ate subspace on | ocal server 9000

VSubspace subspace3 = new VSubspace("Il ocal host: 9000/ Subspace3");
subspace3. | iveForever();

VSport sFan fan4 = new VSportsFan("graham', "l ocal host:9000");
fand.liveForever();

subspace3. add(fan4);

/1 link subspaces to create |arger |ogical space
subspacel. connect (subspace2);
subspacel. connect (subspace3);
subspace2. connect (subspace3);

/1 display contents of each subspace

Systemout. println("subspacel = + subspacel);

Systemout. println("subspace2 = + subspace2);

Systemout. println("subspace3 = + subspace3);

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 267

15 Space: Scalable Group Communication

Multicasting to a Space

With Voyager, you can multicast aregular Java™ message to a group of objectsin a Space.
Y ou can send a one-way message to all objects of a particular type in a Space or to all objects
that implement a particular interface in a Space. To do so, first create avirtual reference of the
desired type, supplying avirtual reference to a subspace as an argument. Then send a message
to the newly created virtual reference, which acts as a gateway into the Space. Messages sent
viathisvirtual reference are sent by aOneWayMul t i cast messenger instead of aSync
messenger and are delivered only to objects in that Space that are type-compatible with the
virtual reference. Y ou can create multiple gateways of multiple types in the same logical

Space.

Multicast messages can be selective about the objects they are delivered to. If you construct
OneWayMul ti cast with an object that implements the interface

COM obj ect space. voyager . uti |l . Sel ect or, the multicast messenger verifies that
each object passes the selector’ s criteria before delivering a message to each object. Voyager's
publish/subscribe mechanism isimplemented with selective multicasts. See “Publishing
Messages to a Space” on page 279 for details.

For performance reasons, a multicast message is delivered using a single thread per subspace.
If amulticast message arrives at a subspace containing 10 objects, asingle thread is allocated
to the OneWayMul t i cast messenger, which then delivers the message to each of the 10
objects.

Because multicast is one-way, multicast messages have no return values. Y ou can use the
default message syntax for a multicast method only if it returnsvoi d. For example, the
following code executesvoi d r enoveAl | El ement s() on every Wect or in a Space:

Wector vector = new Wector(subspace); // typesafe gateway into space
vector.removeAl | El ements(); // send to every Wector in the space

If you attempt to execute a method that returns anything other than voi d, a

Resul t Except i on isthrown. If you wish to multicast a method that returns a value, you
must explicitly specify aOneWayMul ti cast messenger when you execute the method call
and ignore the returned Resul t . For example, you could use the code below to execute
bool ean r enpbveEl enent () on every VWect or object in a Space:

Wect or vector = new Wector(subspace); // typesafe gateway into space
vector.renoveEl enent (new Integer(42), new OneWayMil ticast());

TheMul ti cast 1. j ava example program creates aVSpor t sFan gateway into a subspace
and then usesit to multicast scor e() to every VSpor t sFan in the Space. Use the following
command to compileMul ti cast 1. j ava:

javac Miulticastl.java

Start a server on each of ports 7000, 8000, and 9000 in three different windows. Then, in a
fourth window, run Spacel. cl ass to fill the Space with VSpor t sFan objects. When
Spacel. cl ass completes, run Mul ti cast 1. cl ass in the same window.

ObjectSpace Voyager Core Technology User Guide 268

15 Space: Scalable Group Communication

Window 1

>voyager 7000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

construct SportsFan(sally)

SportsFan(sally) gets score: bulls 50, lakers 40

Window 2

>voyager 8000 \
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000

construct SportsFan(dave)

construct SportsFan(mary)

SportsFan(dave) gets score: bulls 50, lakers 40

SportsFan(mary) gets score: bulls 50, lakers 40

Window 3

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

construct SportsFan(graham)

SportsFan(graham) gets score: bulls 50, lakers 40

Window 4

Kjava exanpl es. space. Spacel

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1048

subspacel = Subspace(objects: 1, neighbors: 2)
subspace2 = Subspace(objects: 2, neighbors: 2)
subspace3 = Subspace(objects: 1, neighbors: 2)
>j ava exanpl es. space. Mul ticast1l

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1055

>

N)

ObjectSpace Voyager Core Technology User Guide 269

15 Space: Scalable Group Communication

Application voyager1.0.0\examples\space\Multicastl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class Milticastl

{
public static void main(String args[])
{
try
{
/'l connect to existing subspace on |ocal server 7000
VSubspace subspacel =
(VSubspace) VObject.forojectAt("local host: 7000/ Subspacel");
/1 create a typesafe gateway into the subspace on | ocal server 7000
VSportsFan fans = new VSportsFan(subspacel);
/1 send a oneway nessage to every VSportsFan in the subspace
fans.score("bulls", 50, "lakers", 40);
/1 allowtime for oneway multicast to flush
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}
Voyager . shut down() ;
}
cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 270

15 Space: Scalable Group Communication

Distributing JavaBeans Events

Voyager allows you to send events to objects in a Space using the standard JavaBeans™
event/listener model, defined as follows:

e Every Javaevent extendsj ava. uti | . Event Qbj ect and contains data fields that
describe the particular event.

e Every event class has an associated listener interface that extends
java.util.EventLi st ener and defines one or more methods that accept event
arguments and return voi d.

e Every object that isto receive a given event implements the event’ s associated listener
interface.

e Every object that is a source of eventsimplementsthe addLi st ener () and
removeli st ener () methods, which alow listenersto register interest in receiving
particular types of events.

Y ou need not modify the event source or the listeners to take advantage of Voyager's
distributed event feature. To broadcast events to every object in a Space that implements a
particular listener interface, perform the following steps:

1. Usevcc to create avirtual classfor the particular listener interface. The resulting virtual
listener class implements the original listener interface.

2. Construct an instance of the virtual listener class with asingle argument—a virtual
reference to a subspace. This virtua listener becomes an event gateway into the Space.

3. Addthevirtual listener to the event source using the appropriate addLi st ener ()
method.

4. Sendeventstothevirtual listener. The eventsare multicast to every object in the Space that
implements the listener interface.

TheEvent s1. j ava example program takes advantage of distributed JavaBean events. The
program uses a News Sour ce object to send NewsEvent eventsvianewsFl ash() to every
object in a Space that implements the NewsLi st ener interface. Because Spor t sFan
implements NewsLi st ener, every Spor t sFan object receivesthe newsFl ash() method.

Use the following commands from the voyager 1. 0. 0\ exanpl es\ space directory to
prepare and compile Event s1. j ava:

vcc NewslLi stener
javac NewsLi stener.java VNewsLi stener.java NewsEvent.java
javac NewsSource.java Milticastl.java

Start a server on each of ports 7000, 8000, and 9000 in three different windows. Then run
Spacel. cl ass inafourth window to fill the Space with VSpor t sFan objects. When
Spacel. cl ass completes, run Event s1. cl ass in the same window.

ObjectSpace Voyager Core Technology User Guide 271

15 Space: Scalable Group Communication

Window 1

>voyager 7000

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:7000

construct SportsFan(sally)

SportsFan(sally) gets NewsEvent(surprise win by cowboys!)

Window 2

>voyager 8000
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

construct SportsFan(dave)
construct SportsFan(mary)
SportsFan(dave) gets NewsEvent(surprise win by cowboys!)
SportsFan(mary) gets NewsEvent(surprise win by cowboys!)

Window 3

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:9000

construct SportsFan(graham)

SportsFan(graham) gets NewsEvent(surprise win by cowboys!)

Window 4

/:;ava exanpl es. space. Spacel \\\
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1057

subspacel = Subspace(objects: 1, neighbors: 2)

subspace?2 Subspace(objects: 2, neighbors: 2)

subspace3 Subspace(objects: 1, neighbors: 2)

>j ava exanpl es. space. Event sl

voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:1064

send news flash: surprise win by cowboys!
>

N J

ObjectSpace Voyager Core Technology User Guide 272

15 Space: Scalable Group Communication

Class voyagerl1.0.0\examples\space\NewsEvent.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

public class NewsEvent extends java.util.Event Object

{

String news; // the news

publ i c NewsEvent(NewsSource source, String news)

{
super(source);
this. news = news;

}

public String toString()
{

return "NewsEvent(" + news + ")";

}

public String get News()
{

return news;

}
}

Interface voyager1.0.0\examples\space\NewsL istener.java

/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. space;

public interface NewsLi stener extends java.util.EventListener

{

voi d newsFl ash(NewsEvent event);

}

ObjectSpace Voyager Core Technology User Guide 273

15 Space: Scalable Group Communication

Class voyagerl1.0.0\examples\space\NewsSource.java
/1 Copyright(c) 1997 hject Space, Inc.

package exanpl es. space;

import java.util.Vector;

public class NewsSource

{

Vector |isteners = new Vector();

public void addNewsLi st ener(NewsLi stener |istener)

{

|listeners. addEl ement (|istener);

}

public void renoveNewsLi st ener(NewsListener |istener)

{

i steners.renoveEl ement(listener);

}

public void newsFlash(String news)

{

NewsEvent event = new NewsEvent (this, news);

for(int i =0; i < listeners.size(); i++)
((NewsListener) listeners.elenentAt(i)).newsFlash(event);
}
}

ObjectSpace Voyager Core Technology User Guide 274

15 Space: Scalable Group Communication

Application voyagerl1.0.0\examples\space\Eventsl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class Eventsl
{
public static void main(String args[])
{
try
{

/'l connect to existing subspace on |ocal server 7000
VSubspace subspacel =
(VSubspace) VObject.forojectAt("local host: 7000/ Subspacel");

/1 create news source and regi ster subspace as |istener
NewsSour ce source = new NewsSource();
sour ce. addNewsLi st ener (new VNewsLi st ener(subspacel));

/1l send news event to every NewsLi stener in the space
Systemout.println("send news flash: surprise win by cowboys!");
sour ce. newsFl ash("surprise win by cowboys!");

/] allowtinme for event to flush
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 275

15 Space: Scalable Group Communication

Nested Spaces

A Space that contains another Space is referred to as a superspace. In other words, one or
more objects in a superspace are gateways to a contained Space. Consider acompany that is
geographically distributed across the world and multicasts to a Space of Enpl oyee objects.
Using superspaces, the company could multicast to all employees at certain times and only to
employees at a given regional office at other times.

When you send a multicast message to a superspace, the message is cloned and sent to all
nested Spaces contained in the superspace. This concept isillustrated in the following diagram
with a superspace that contains a nested Space. In reality, both a superspace and a nested
Space can contain several subspaces,; however, for simplicity, each is comprised of one
subspace in this diagram.

Superspace Nested Space

AN AN

__message , QQ fffffffffffff > Q-Q
O

tokyo:9000 perth:1000

>

- 4 Messages being delivered
v to local objects

ffffffffff » Cloned message being
duplicated

fffff »----- Virtual reference to
space

@ Subspace

When you send a multicast message to a Space that is nested within a superspace, the message
isdelivered to all objects in the nested Space. The message is not cloned to the superspace.
Thefollowing diagram illustrates this concept. In reality, both a superspace and a nested Space

ObjectSpace Voyager Core Technology User Guide 276

15 Space: Scalable Group Communication

can contain several subspaces; however, for simplicity, each is comprised of one subspacein
this diagram.

Superspace Nested Space

N N

e

O ==0f
O O

| | | |

tokyo:9000 perth:10000

A\

¥ Messages being delivered
At .
v to local objects

————— »----- Virtual reference to
space

@ Subspace

TheNest 1. j ava example program demonstrates how to nest a subspace within another
subspace. Larger Space topologies could be formed for more complex applications.

Use the following command from the voyager 1. 0. 0\ exanpl es\ space directory to
compileNest 1. j ava:

javac Nestl.java

Start a server on port 8000 in one window, and then run Nest 1. cl ass in asecond window.

Window 1

>voyager 8000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

construct SportsFan(Mickey)

SportsFan(Mickey) gets score: USA O, BRD 8
SportsFan(Mickey) gets score: USA 0, Japan 11

Window 2

>j ava exanpl es. space. Nest 1

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1164

construct SportsFan(Minnie)

SportsFan(Minnie) gets score: USA 0, Japan 11
>

ObjectSpace Voyager Core Technology User Guide 277

15 Space: Scalable Group Communication

Application voyagerl1.0.0\examples\space\Nest1.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class Nestl
{
public static void main(String[] args)
{
try
{

/1l create a local subspace object. the |ogical space forned by
/1 this single subspace will be the superspace
VSubspace superspace = new VSubspace("Il ocal host");

/1 add a sports fan to the superspace
super space. add(new VSportsFan("M nnie", "local host"));

/1 create a renote subspace object. the |ogical space fornmed by
/1 this single subspace wil be the contained space
VSubspace cont ai nedSpace = new VSubspace("I ocal host: 8000");

/1 add a sports fan to the contained space

cont ai nedSpace. add(new VSportsFan("M ckey", "local host:8000"));

/1l now create the sports fan gateways

/1 to the contained space and the superspace

VSport sFan subGat eway = new VSportsFan(contai nedSpace);
VSport sFan super Gat eway = new VSportsFan(superspace);

/1 the final step is to add the sub-gateway to the superspace -
/1 this nests the spaces
super space. add(subGat eway);

/1 multicast to all itens in the contained space
subGat eway. score("USA", 0, "BRD', 8);

/1 multicast to all itens in the superspace
super Gat eway. score("USA', 0, "Japan", 11);

/1 let the threads delivering th nulticasts finish
try{ Thread. sl eep(2000); }catch(InterruptedException e){}

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemout. println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide

278

15 Space: Scalable Group Communication

Publishing Messages to a Space

Y ou can broadcast a message or event to every object in a Space that registersinterestin a
particular subject. Voyager supports this feature with subscription-based, one-way multicasts
and with the properties mechanism described on page 53 in Chapter 5, “Fundamental ORB
Features.” To publish amessage to all objectsin a Space interested in a particular subject,
create a subscription object and use addSubj ect () to register the subject with the
associated message. Specify subjectsin a hierarchical way with fields separated by periods,
likesports. bull sandsports. | akers. Next, create aOneWayMul ti cast message
with the subscription as the argument to the constructor. Finally, broadcast the message into
the Space with the one-way multicast as an explicit extra parameter to the message.

The Subscri pti on classimplements COM obj ect space. voyager. util. Sel ector.
Therefore, publish/subscribe is a specific kind of selective multicast that selects objects based
on whether or not they have declared interest in one or more of the subscription subjects.

To receive al messages that are published to a particular subject, use addPr opert y() with
the key set to Subscri pti on. SUBSCRI BE and the value set to the subject of interest. The
asterisk (*) wildcard matches the next field and the | eft angle bracket (<) wildcard matches all
remaining fields. For example, the first line of code below is used to receive all messages
associated with a subject that has exactly two fields and begins with sports. The second line of
codeis used to receive all messages associated with a subject that has two or more fields and
begins with sports.

obj ect . addProperty(Subscription. SUBSCRI BE, "sports.*");
obj ect . addProperty(Subscri ption. SUBSCRI BE, "sports.<");

ThePubl i shl. j ava example program implements VVoyager’ s publish/subscribe feature
with messages. The program sets up delivery of scor e() messagesto all VSpor t sFan
objectsin a Space. For simplicity, all of the objects are placed into a single subspace, but the
program would run identically if the objects were distributed across a network of connected
subspaces.

Use the following command from the voyager 1. 0. 0\ exanpl es\ space directory to
compilethe Publ i shl. j ava example program:

javac Publishl.java

Thenrun Publ i shl. cl ass.

ObjectSpace Voyager Core Technology User Guide 279

15 Space: Scalable Group Communication

/:;ava exanpl es. space. Publ i shl
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1166
construct SportsFan(sally)
sally subscribes to sports.bulls
construct SportsFan(jane)
jJane subscribes to sports.celtics
construct SportsFan(alf)
alf subscribes to sports.*
construct SportsFan(smiffy)
smiffy subscribes to sports.bulls, sports.lakers
construct SportsFan(dave)
dave subscribes to nothing
publish 40, 50 to sports.bulls, sports.mavericks
publish 20, 15 to sports.bulls, sports.lakers
SportsFan(sally) gets score: bulls 40, mavericks 50
SportsFan(sally) gets score: bulls 20, lakers 15
SportsFan(alf) gets score: bulls 40, mavericks 50
SportsFan(alf) gets score: bulls 20, lakers 15
SportsFan(smiffy) gets score: bulls 20, lakers 15
SportsFan(smiffy) gets score: bulls 40, mavericks 50

_

~

Class voyagerl1.0.0\examples\space\Publishl.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space

i mport COM obj ect space. voyager. *;

i mport COM obj ect space. voyager. mul ticast.*;
i mport COM obj ect space. voyager . space. *;

i mport COM obj ect space. voyager. util.*;

public class Publishl
{
public static void main(String args[])
{
try
{

VSubspace subspace = new VSubspace("l ocal host");
VSportsFan fans = new VSportsFan(subspace);

VSportsFan fanl = new VSportsFan("sally", "local host");
fanl. addProperty(Subscription. SUBSCRI BE, "sports.bulls");
Systemout.println("sally subscribes to sports.bulls");
subspace. add(fanl);

VSportsFan fan2 = new VSportsFan("jane", "local host");
fan2. addProperty(Subscription. SUBSCRI BE, "sports.celtics");
Systemout.println("jane subscribes to sports.celtics");

ObjectSpace Voyager Core Technology User Guide

280

15 Space: Scalable Group Communication

subspace. add(fan2);

VSportsFan fan3 = new VSportsFan("alf", "local host");
fan3. addProperty(Subscription. SUBSCRI BE, "sports.*");
Systemout.println("alf subscribes to sports.*");
subspace. add(fan3);

VSportsFan fan4 = new VSportsFan("smffy", "local host");

fan4. addProperty(Subscription. SUBSCRI BE, "sports.bulls");

fan4d. addProperty(Subscription. SUBSCRI BE, "sports.|akers");
Systemout.println("smffy subscribes to sports.bulls, sports.|akers");
subspace. add(fan4);

VSportsFan fan5 = new VSportsFan("dave", "local host");
Systemout.println("dave subscribes to nothing");
subspace. add(fan5);

Subscription subscriptionl = new Subscription();
subscri ptionl. addSubj ect ("sports.bulls");
subscri ptionl. addSubj ect ("sports. mavericks");
Systemout. println("publish 40, 50 to sports.bulls, sports. mavericks");
fans. score("bulls", 40, "maveri cks", 50, new
OneVayMul ti cast (subscriptionl));

Subscription subscription2 = new Subscription();

subscri ption2. addSubj ect ("sports.bulls");

subscri ption2. addSubj ect ("sports.|akers");

Systemout.println("publish 20, 15 to sports.bulls, sports.|akers");
fans.score("bulls", 20, "I akers", 15, new OneWayMul ti cast (subscri ption2));

/1 allowtime for publish nessages to flush
try{ Thread. sl eep(2000); } catch(InterruptedException exception) {}

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}
}

ObjectSpace Voyager Core Technology User Guide 281

15 Space: Scalable Group Communication

Creating a Persistent Space

Voyager Subspace objects are serializable and fully compatible with Voyager’s persistence
subsystem. When a subspace is saved, virtual references in the subspace are saved but the
associated objects are not.

Y ou can create a persistent subspace that contains virtual referencesto persistent objects. Then
you can shut down and restart the persistent servers, and the subspace and references are
autol oaded as usual.

Use the following command from the voyager 1. 0. 0\ exanpl es\ space directory to
compilethe Per si st ent Spacel. j ava example program:

j avac Persi stent Spacel.java

Start apersistent server on each of ports 7000, 8000, and 9000 in three different windows. Run
Per si st ent Spacel. cl ass inafourth window, and then terminate the servers by pressing
Ctrl+C in Windows 1, 2, and 3.

Window 1

>voyager 7000 -cd 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 0 objects, O classes

construct SportsFan(sally)

>

Window 2

>voyager 8000 -cd 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 0 objects, O classes

construct SportsFan(dave)

construct SportsFan(mary)

>

Window 3

>voyager 9000 -cd 9000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.238:9000, root = \
database = 0 objects, 0 classes

construct SportsFan(graham)

>

ObjectSpace Voyager Core Technology User Guide 282

15 Space: Scalable Group Communication

Window 4

>j ava exanpl es. space. Per si st ent Spacel
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1168

subspacel = Subspace(objects: 1, neighbors: 2)
subspace2 = Subspace(objects: 2, neighbors: 2)
subspace3 = Subspace(objects: 1, neighbors: 2)

>

Now restart the persistent serversin the first three windows and run Mul ti cast 1. cl ass
(used in “Multicasting to a Space” on page 268) in the fourth window. The persistent
subspaces and the persistent objects that the serversrefer to are autoloaded as

Mul ti cast 1. cl ass executes.

Window 1

(-)

>voyager 7000 -d 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 2 objects, O classes

SportsFan(sally) gets score: bulls 50, lakers 40

N

Window 2

P

>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 3 objects, 0 classes

SportsFan(dave) gets score: bulls 50, lakers 40
SportsFan(mary) gets score: bulls 50, lakers 40

N /

ObjectSpace Voyager Core Technology User Guide 283

15 Space: Scalable Group Communication

Window 3

(-)

>voyager 9000 -d 9000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

database = 2 objects, 0 classes

SportsFan(graham) gets score: bulls 50, lakers 40

_ J

Window 4

(7 N

>j ava exanpl es. space. Mul ticast1l

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1175

>

N /

Application voyager1.0.0\examples\space\PersistentSpacel.java

/1 Copyright(c) 1997 hjectSpace, Inc.
package exanpl es. space;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class Persistent Spacel
{
public static void main(String args[])
{
try
{

/'l create and popul ate subspace on | ocal server 7000

VSubspace subspacel = new VSubspace("Il ocal host: 7000/ Subspacel");
subspacel. | iveForever();

VSportsFan fanl = new VSportsFan("sally", "local host:7000");
fanl.liveForever();

fanl. saveNow() ;

subspacel. add(fanl);

/1 create and popul ate subspace on | ocal server 8000

ObjectSpace Voyager Core Technology User Guide 284

15 Space: Scalable Group Communication

VSubspace subspace2 = new VSubspace("Il ocal host: 8000/ Subspace2");
subspace2. |iveForever();

VSportsFan fan2 = new VSportsFan("dave", "l ocal host:8000");
fan2.liveForever();

fan2. saveNow() ;

subspace2. add(fan2);

VSportsFan fan3 = new VSportsFan("mary", "l ocal host:8000");
fan3.liveForever();

fan3. saveNow() ;

subspace2. add(fan3);

/1 create and popul ate subspace on | ocal server 9000

VSubspace subspace3 = new VSubspace("Il ocal host: 9000/ Subspace3");
subspace3. | i veForever();

VSportsFan fan4 = new VSportsFan("grahanm, "l ocal host:9000");
fand.liveForever();

fan4. saveNow() ;

subspace3. add(fan4);

/1 link subspaces to create |larger |ogical space
subspacel. connect (subspace2);
subspacel. connect (subspace3);
subspace?2. connect (subspace3);

/'l persist the subspaces
subspacel. saveNow() ;
subspace2. saveNow() ;
subspace3. saveNow() ;

/1 display contents of each subspace

Systemout.println("subspacel = " + subspacel);
Systemout. println("subspace2 " + subspace2);
Systemout. println("subspace3 " + subspace3);

Voyager . shut down() ;

}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}
}

ObjectSpace Voyager Core Technology User Guide 285

15 Space: Scalable Group Communication

Maintaining a Subspace

The objects and neighbors of a subspace can be disconnected or killed. By default, a subspace
ignores such events. Y ou can instruct a subspace to automatically purge itself of disconnected
or dead objects and neighbors by using set Pur gePol i cy() with one of the following flags:

e Subspace. DI ED
Remove references to objects and neighbors that are dead.
e Subspace. DI SCONNECTED
Remove references to objects and neighbors that are disconnected.
e Subspace. ALL
Remove references to objects and neighbors that are dead or disconnected.
e Subspace. NONE
Never remove references (default policy).
Every 60 seconds, a subspace performs an internal purge in which the following actions occur:

e If the subspace policy is not NONE, each subspace neighbor is sent a lightweight message
asking if it has been disconnected or killed. The subspace then reacts according toits policy.

o If the subspace policy is not NONE, each virtual reference in the subspaceis sent a
lightweight message asking if its objects have been disconnected or killed. The subspace
then reacts according to its policy.

e All message markersthat have exceeded their life spans are removed. The default life span
of amarker isfive minutes.

Y ou can force a subspace to perform a purge at any time by sending the subspace apur ge()
message.

The next example demonstrates the effects of purging. First, the Spacel. j ava example
program is used to create and populate a network of subspaces. Next, Mai nt ai n1A. j avais
used to add a remote object to subspacel. At this point, subspacel containsavirtual
reference to alocal sports fan named sal | y and avirtua reference to the remote sports fan
named gal i | eo inthe Mai nt ai n1A. j ava program. Finaly, Mai nt ai n1B. j ava kills
subspace2 and then requests that you terminate Mai nt ai n1A. j ava. Once you do so,
subspacel contains references to one dead neighbor and one disconnected object. The
contentsof subspace2 are printed after every manual purge to demonstrate the effect of each

purge flag.
Use the following command from the voyager 1. 0. 0\ exanpl es\ space directory to
compilethe Mai nt ai n1A. j ava and Mai nt ai n1B. j ava example programs:

javac Maintai nlA java MintainlB.java

Start a server on each of ports 7000, 8000, and 9000 in three different windows. In afourth
window, first run Spacel. cl ass, and then run Mai nt ai n1A. cl ass without terminating
it. Finally, in afifth window, run Mai nt ai n1B. cl ass. When instructed by Mai nt ai n1B,
terminate Mai nt ai n1A by pressing Ctrl+C in Window 4.

ObjectSpace Voyager Core Technology User Guide 286

15 Space: Scalable Group Communication

Window 1

>voyager 7000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

construct SportsFan(sally)

Window 2

>voyager 8000
voyager(tm) 1.0.0, copyright objectspace 1997

address = 208.6.239.200:8000
construct SportsFan(dave)
construct SportsFan(mary)

Window 3

>voyager 9000

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:9000

construct SportsFan(graham)

Window 4

ﬁava exanpl es. space. Spacel \
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1184

subspacel = Subspace(objects: 1, neighbors: 2)
subspace2 = Subspace(objects: 2, neighbors: 2)
subspace3 = Subspace(objects: 1, neighbors: 2)

>j ava exanpl es. space. Mai nt ai n1A

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1191

construct SportsFan(galileo)

subspacel = Subspace(objects: 2, neighbors: 2)
terminate me when MaintainlB tells you to...

>

- J

ObjectSpace Voyager Core Technology User Guide 287

15 Space: Scalable Group Communication

Window 5

/éqava exanpl es. space. Mai nt ai n1B <\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1193
subspacel = Subspace(objects: 2, neighbors: 2)
tell neighbor subspace2 to die...
sleeping for 10 seconds...
please terminate MaintainlA at this point
subspacel = Subspace(objects: 2, neighbors: 2)
purging disconnected objects/neighbors. ..
subspacel = Subspace(objects: 1, neighbors: 2)
purging dead objects/neighbors...

subspacel = Subspace(objects: 1, neighbors: 1)
>

o J

Application voyagerl1.0.0\examples\space\MaintainlA.java

/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class MintainlA

{
public static void main(String args[])
{
try
{
/1 connect to subspace on |ocal server 7000
VSubspace subspacel =
(VSubspace) VObject.forojectAt("local host: 7000/ Subspacel");
/1 add reference to | ocal object into renote subspace
VSportsFan fan5 = new VSportsFan("galil eo", "local host");
fan5.1iveForever();
subspacel. add(fan5);
/1 display subspacel
Systemout.println("subspacel = " + subspacel);
Systemout.println("termnate me when MaintainlB tells you to...");
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 288

15 Space: Scalable Group Communication

Application voyagerl1.0.0\examples\space\MaintainlB.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. space;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager . space. *;

public class Mintai nlB

{
public static void main(String args[])
{
try
{
VSubspace subspacel =
(VSubspace) VQObject.forojectAt("l ocal host: 7000/ Subspacel")
Systemout. println("subspacel = " + subspacel);
Systemout.println("tell neighbor subspace2 to die...");
VSubspace subspace2 =
(VSubspace) VObject.forojectAt("l ocal host: 8000/ Subspace2");
subspace?2. di eNow() ;
Systemout.println("sleeping for 10 seconds...");
Systemout.println("please term nate MaintainlA at this point");
try{ Thread. sl eep(10000); } catch(InterruptedException exception) {}
Systemout. println("subspacel = " + subspacel);
System out. println("purging di sconnected objects/neighbors...");
subspacel. purge(Subspace. DI SCONNECTED) ;
Systemout.println("subspacel = " + subspacel);
System out. println("purging dead objects/neighbors...");
subspacel. purge(Subspace. Dl ED);
Systemout. println("subspacel = " + subspacel);
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr. println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 289

16

Federated Directory Service

The built-in lookup mechanism of ObjectSpace VVoyager™ Core Technology is easy to use
and, combined with forwarders, is a powerful way to get virtual references to remote and
mobile objects. However, it requires up-front knowledge of the object’s current or past
location. Traditionally, the way to circumvent this requirement is to place a central directory
service at awell-known location. An extension of this approach isto allow seamless chaining
of distributed directory services, which minimizesthe single-server bottleneck/point-of-failure
associated with monolithic directory services. Distributed directory services that support
trangparent chaining are called federated directory services.

Voyager allows you to register an object in a distributed hierarchical directory structure. Y ou
can associ ate objects with path names comprised of simple strings separated by slashes, such
asfruit/citrus/|enonorani mal / manmal / cat . To create adirectory structure,
construct aDi r ect or y object. TheDi r ect ory classis serializable and fully compatible
with VVoyager’ s persistence subsystem. To saveaDi r ect or y object to itslocal database, use
saveNow() .

To associate a simple string with an object, use the put () method with avirtual reference to
another Di r ect or y anywherein anetwork. If invoked with apath name, put () looksup the
VDi r ect or y associated with the head of the path name, and then forwards the put ()
message with the tail of the path name. If the head of the path name is not present or is not
associated withaVDi r ect ory, abi r ect or yExcept i on isthrown. The samelogic applies
totheget () andrenove() methods.

TheDi rectorylA. javaandDirect or ylB. j ava example programs demonstrate the
construction and access of a persistent federated directory service. Di r ect or y1A. j ava
creates a directory service that spans the persistent servers on ports 7000 and 8000, and

Di rect or y1B. j ava accesses the federated directory service.

Fromthe\ voyager 1. 0. 0\ exanpl es\ di r ect or y directory, use the following command
to compile the directory service example programs:

javac DirectorylA java DirectorylB.java

Start a persistent server on each of ports 7000 and 8000 in two different windows. Run
Di rect or y1A. cl ass inathird window, and then terminate the servers by pressing Ctrl+C in
Windows 1 and 2.

290

16 Federated Directory Service

Window 1

>voyager 7000 -cd 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 0 objects, 0 classes

>

Window 2

>voyager 8000 -cd 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 0 objects, 0 classes

>

Window 3

//:java exanpl es. directory. DirectorylA ‘\\
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1334
created and saved {calcium->Ca, gold->Au}
created and saved {calcium->20, gold->79}
created and saved {number->Directory(
208.6.239.200:8000/235-87-26-169-220-147-1
55-34-99-143-72-134-111-72-159-192), symbol->Directory(
208.6.239.200:7000/180-
226-92-116-207-35-52-77-227-43-72-134-111-72-155-216)}
>

N)

Now restart the persistent serversin thefirst twowindowsandrun Di r ect or y1B. cl ass in
the third window.

Window 1

S N

>voyager 7000 -d 7000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:7000

database = 1 object, 0 classes

N J

ObjectSpace Voyager Core Technology User Guide 291

16 Federated Directory Service

Window 2

-

>voyager 8000 -d 8000. db

voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:8000

database = 2 objects, O classes

N

~

Window 3

-~

>j ava exanples.directory.DirectorylB
voyager(tm) 1.0.0, copyright objectspace 1997
address = 208.6.239.200:1200

symbols = {gold->Au, calcium->Ca}

numbers = {gold->79, calcium->20}
symbol/calcium = Ca

number/calcium = 20

add symbol/silver -> Ag

symbols = {gold->Au, silver->Ag, calcium->Ca}
symbol/silver = Ag

remove symbol/silver

symbol/silver = null

symbols = {gold->Au, calcium->Ca}

>

N

ObjectSpace Voyager

Core Technology User Guide

292

16 Federated Directory Service

Application voyagerl1.0.0\examples\directory\DirectorylA. java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. directory;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager.directory.*;

public class DirectorylA
{
public static void main(String args[])
{
try
{
/'l create persistent directory in local server 7000
VDi rectory synbols = new VDirectory("local host: 7000/ Synbol s");
synmbol s. | iveForever(); // prevent garbage collection
synbol s. put ("cal ciunt, "Ca");
synbol s. put("gold", "Au");
synbol s. saveNow(); // save copy to database
Systemout.println("created and saved " + synbols);

/'l create persistent directory in local server 8000

VDi rectory numbers = new VDirectory("l ocal host: 8000/ Nunbers");
nunbers. liveForever(); // prevent garbage collection

nunbers. put ("cal ciunm', new Integer(20));

nunbers. put ("gold", new Integer(79));

nunbers. saveNow(); // save copy to database

Systemout.println("created and saved " + nunbers);

/1 create peristent higher-level directory in |local server 8000
VDirectory chem stry = new VDirectory("l ocal host: 8000/ Chem stry");
chem stry.liveForever(); // prevent garbage collection

chem stry. put("nunber", nunbers);

chem stry. put("synbol", synbols);

/] persist highest |evel directory
chem stry. saveNow(); // save copy to database
Systemout.println("created and saved " + chem stry);

Voyager . shut down() ;
}

cat ch(Voyager Exception exception)
{
Systemerr.println(exception);
}

}

}

ObjectSpace Voyager Core Technology User Guide 293

16 Federated Directory Service

Application voyagerl1.0.0\examples\directory\DirectorylB.java
/1 Copyright(c) 1997 hject Space, Inc.
package exanpl es. directory;

i mport COM obj ect space. voyager. *;
i mport COM obj ect space. voyager.directory.*;

public class DirectorylB

{
public static void main(String args[])
{
try
{
/1 connect to highest |level directory
VDirectory chemistry =
(VDirectory) VObject.forCbjectAt("local host: 8000/ Chemi stry");
/| access various directories
Systemout.println("synmbols = + chemistry.get("synbol"));
Systemout.println("nunbers = " + chem stry.get("nunber"));
/| access various el enments
System out. println("synbol/cal cium= "+chem stry. get ("synbol / cal ci uni)
)
System out. printl n("nunber/cal cium = "+chem stry. get ("nunber/cal ci uni')
)
/1 add an el ement and renove an el enent
Systemout.println("add synbol/silver -> Ag");
chem stry. put("synbol /silver", "Ag");
Systemout.println("synbols = " + chem stry.get("synbol"));
Systemout.println("synbol/silver =" + chem stry.get("synbol/silver"
))
Systemout.println("remove synbol/silver");
chem stry.renove("symnbol/silver");
Systemout.println("synbol/silver =" + chem stry.get("synbol/silver"
))
/1 display and then persist new synbols sub-directory
Systemout.println("synbols =" + chem stry.get("synbol"));
((VDirectory) chemistry.get("symbol")).saveNow(); // persist newentry
Voyager . shut down() ;
}
catch(Voyager Exception exception)
{
Systemerr.println(exception);
}
}
}

ObjectSpace Voyager Core Technology User Guide 294

