OBJECTSPACE VOYAGER
CORE TECHNOLOGY

AGENT ORB
FOR JAVA

Voyager and RMI
Comparison

This paper compares Version 1.0 of the ObjectSpace
Voyager™ Core Technology (Voyager) with JavaSoft's
RMI product.

Voyager is a full-featured, intuitive object request broker
(ORB) that has support for mobile objects and
autonomous agents. Voyager also includes services for
persistence, scalable group communication, and basic
directory service. This core Voyager technology is free for
most commercial uses.

RMI—which stands for remote method invocation—is the
first commercially available system to attempt to more
closely mirror the Java language. RMI is part of the JDK
1.1 and is also free for most commercial use.

This text presents a high-level comparison of Voyager and
RMI. A table summarizing each product’s features is
presented first, followed by a more detailed explanation of
each feature.

-~

08 JEC TS5 PRCE
/

© 1997 ObjectSpace, Inc. - All rights reserved - Version 1.0 - September 1997

Contents

OVBIVIBW ..ottt ettt e oo oottt e e e e e e e e et e ettt e e e e e e e e eeeeabtna e e e eeeeeeensnnnns 3
Remote-ENabling @ ClassS........ooo i 5
Constructing a RemMOote ODJECTuuiiii e 6
Exporting a Named Remote ODJECT........ccooo i 7
Connecting to a Named ODJECTiiiiiii e 8
EXCeption HaNAINGoouuuiiiie e 9
Executing a Remote Static Method ... 10
(@ o] T=Tox 1Y, o] o] | 12T UUUPPPPUPTTRI 11
A BNTS ..t e et e e e eaaaaeas 12
DiIStribUtEd PeISISIENCEuuuiiiiie e 13
SCAIADIITY ... e aeeaaaana 14
MURICAST MESSAGINGceeeieuiiiiee e ettt e e e e et et e e e e e e e e eeaennan s 15
DIStHDULEA EVENLS ...t e e e e e e es 16
PUDBIISN/SUDSCIIDE ... 17
Federated DIr€CIOIY SEIVICE.......couiiiiiiiiiiiie et 18
MBS SAGE TY PSS .. ettt ettt e et e et e et e e e e e e e e e eaaaaee 19
Evolution of Remote RefEIrEeNCES...........uiiii i 20
Garbage COlIECHION ...t e e e e e e e e e e e eeeeneenes 21
APPIEL CONNECHIVILY ...t e e e e 22
NEtWOrK Class LOAAINGuuuiiiiieiiiiiiiiiiiie e e e e e aeen s 23
PIOQUCT SIZE ... e e e e e e e as 24
PeITOIMANCE. ... e 25
StUDS ANd SKEIBTONS ... e e e e e eeaeenes 26

Voyager and RMI Comparison

Overview

Because ORBs such as CORBA™ and DCOM are designed to work across languages,
they are unable to leverage the full power of Java™. CORBA users know first-hand that
mapping . i dl constructs into the Java language is clumsy and unnatural at best.

JavaSoft addresses this problem with the RMI product, included as part of JDK 1.1. By
making afree, basic ORB available, JavaSoft sets the baseline for subsequent competitive
efforts.

ObjectSpace responds with the ObjectSpace V oyager Core Technology, an advanced,
100% Java ORB designed as a Java-centric distributed computing platform. We believe
Voyager surpasses RMI's ORB capabilities in terms of ease of use and features without
sacrificing performance.

The following table summarizes Voyager and RMI features. Each feature is described in
detail after this summary.

Voyager and RMI Comparison

Feature

ObjectSpace Voyager

RMI

Cost

Free to most developers

Free to most developers

Constructing a remote object

Supported via regular Java syntax

Not supported

Remote-enabling a class

Requires one simple step

Requires five tedious steps

Exporting a named object

Seamlessly integrated

Requires external registry

Connecting to a named object

Seamlessly integrated

Requires external registry

Exception handling

Explicit or run-time exceptions allowed

Only explicit exceptions
alowed

Executing a remote static Supported via regular Java syntax Not supported

method

Object mohility Fully supported, even when objects are Not supported
active

Agents Can execute as they move and can move Not supported
themselves

Distributed persistence = Supported with a transparent, default Not supported

database

= Requires no modification of your
classes

= Autoload and autoflush supported

Scalability

Global-scale, fault-tolerant, persistent,
distributed computing supported with
innovative Space™ architecture

No similar features

Multicast messaging = Fully supported Not supported
= 100% nonintrusive

Distributed events = Compliant with JavaBeans™ Not supported
= 100% nonintrusive

Publish/subscribe = Messages and events supported Not supported
= 100% nonintrusive

Federated directory service = Fully supported Not supported

= |ntegrated with the persistence
subsystem

Message types Synchronous, one-way, one-way Only synchronous
multicast, and future messages supported messages supported
via smart, lightweight messenger agents

Evolution of classes Supported Not supported

Garbage collection

Lease- and time-based garbage collection
supported

Only lease-based garbage
collection supported

Applet connectivity Unrestricted Restricted

Network class loading Built-in Requires Web server
Product size About 270KB About 180KB
Performance See “Performance’ on page 25 of this document.

Stubs and skeletons 80% less support code generated than RMI | 400% more support code

generated than V oyager

Voyager and RMI Comparison

Remote-Enabling a Class

Using RMI

The following steps are required to enable an existing class for remote method invocation
in RMI.

1. Create an interface that extends Renot e and redeclare every public nonstatic
function.

Add Renpt eExcept i on to every method signature.

3. Modify the existing class to implement the interface and extend
Uni cast Renot ebj ect .

Addt hr ows Renpt eExcept i on to every method implementation.

Modify each method that takes or returns an implementation to use a remote interface
instead.

Note that constructors do not appear in the interface. The RMI documentation
recommends that you do not override hashCode() , equal s(),ortoString() in
your implementation because each is defined to work correctly in a superclass of

Uni cast Renot e(bj ect .

Another restriction is that instances of classes defined as Renot e cannot be passed by
value. Therefore, if you define a Renot eVect or classand passit as an argument, a
remote reference to the vector is aways passed rather than a copy of the vector. Thisis
not always the desired effect.

Using Voyager

To enable an existing class for remote method invocation in Voyager, smply runvcc on
the. cl ass or. j ava fileto produce a virtua version of the class. The name of the
virtual classisequal to the original class name preceded by the letter V. The virtual class
implements the same interfaces as the original class, aswell as a superset of its
constructors and methods. Y ou need not modify the original classin any way—you do
not even need access to its source code. This means that you can effortlessly enable any
third-party library class for remote method invocation. For example, use the following
command to remote enable a JDK Vect or and create VVect or :

vce java.util. Vector

Voyager and RMI Comparison

Constructing a Remote Object

Using RMI
RMI does not directly support remote object construction. However, you can emulate this
feature using the following steps.
1. Inadvance, construct a custom factory object on the server.
2. Passthe name of the class and the URL of the codebase to the factory object.

Then, to create a remote instance, program the factory object to perform the following
actions.

1. UseRM O assLoader toload the class across the network
2. Usereflection to construct a remote instance using the default constructor

This method of constructing a remote object works with the default constructor only. To
construct an object using parameters is considerably more work.

Using Voyager

Voyager is designed to make remote construction effortless. Use regular Java
construction syntax to construct a remote object and supply a destination address as an
additional argument. For example, use the following commands to create a remote JDK
Vect or inaprogranont okyo: 8000 and add two elements:

Wect or vector = new Wector("tokyo:8000");
vect or. addEl enent (new Integer(42));
vect or . addEl enent ("voyager");

Voyager and RMI Comparison

Exporting a Named Remote Object

Using RMI

RMI includes aregistry service for binding an object to an alias, then retrieving the object
viaitsalias. To create an object in a server and then export the object for use by remote
clients, the following steps are required.

1. Startanrmiregi stry processon the server.
2. Create the object on the server.
3. Bindthe object to an alias.

Using Voyager

Voyager includes an integrated directory service that allows you to associate an object
with an alias without the need for a separate registry process. To create an object in a
program and then export the object for use by remote clients, smply construct the object
in the program and supply its alias during construction. For example, to create aremote
JDK Vect or with alias MyVect or inaprogram ont okyo: 9000, use the following
command:

Wect or vector = new Wector("tokyo: 9000/ MyVector");

Voyager’ s integrated directory service supports most simple use cases. Voyager aso
includes a federated directory service, described on page 18.

Voyager and RMI Comparison

Connecting to a Named Object

Using RMI

To connect to an object using its aliasin RMI, first perform alookup using the object’s
name, and then cast the returned remote reference to the correct type.

Using Voyager

To connect to an object using its aliasin Voyager, use the static method

VObj ect . f or bj ect At () ; then, cast the returned virtual reference to the correct
type. For example, use the following commands to connect to an existing remote JDK
Vect or with aias MyVect or inaprogramont okyo: 9000:

Wector vector = (Wector) VObject.forObjectAt("tokyo: 9000/ MyVector");

Voyager and RMI Comparison

Exception Handling

Using RMI

RMI approaches exception handling by forcing devel opers to program safely. Every
remote method invocationinatry. . cat ch block must be explicitly wrapped, even if
the communicating objects are on the same machine or on the same virtual machine.

Using Voyager
Voyager supports a superset of the RMI exception handling strategy.

By default, every function in avirtual classthrows aVoyager Except i on that must be
wrapped with an explicitt ry. . cat ch block. This exception does not have to be
declared in the original class.

To process a class that implements an interface whose methods do not explicitly throw a
Voyager Excepti on (suchasj ava. util . Event Li st ener orj ava. appl et),
you can use vcc with the- r option. This causes each Voyager Except i on to be
wrapped and rethrown as aVoyager Runt i meExcepti on.

Unlike RMI, all remote Voyager exceptions are automatically annotated with useful trace
information to assist in remote debugging.

Voyager and RMI Comparison

Executing a Remote Static Method

Using RMI

Because RMI deals exclusively with interfaces, RMI has no support for executing a
remote static method.

Using Voyager

To execute a remote static method in VVoyager, invoke the method and supply the
destination address as an additional argument. For example, use the following command
to execute the static function Account . get Nunber Of Account s() inaprogram on
t okyo: 9000:

i nt count = VAccount. get Nunber Of Accounts("t okyo: 9000");

10

Voyager and RMI Comparison

Object Mobility

Using RMI

RMI does not support object mohility. Once created, an object remains on the same
machine for its lifetime.

Using Voyager

Voyager allows any serializable object to move to a new program, even while the object
is receiving remote messages. By default, messages sent to the object’s old location are
automatically forwarded to the new location. The new location is attached to the return
value so that subsequent messages are delivered directly to the object at its new location.

Use the following commands to connect to the Vect or with aliasMyVect or ina
program on t okyo: 9000, and then move MyVect or to aprogramondal | as: 8000:

Wector vector = (Wector) VObject.forObjectAt("tokyo: 9000/ MyVector");
vect or. noveTo("dal | as: 8000");

11

Voyager and RMI Comparison

Agents

Using RMI

RMI does not support mobile agents.

Using Voyager

Voyager allows a developer to create¥s in minutes¥s an agent that continues to execute as
it moves between programs. An agent can independently move to a remote object and get
alocal reference to the object to communicate using high-speed, local messaging. An
agent can move to an object even if the abject is moving.

12

Voyager and RMI Comparison

Distributed Persistence

Using RMI

RMI does not include seamless integration for persistence of objects.

Using Voyager

Voyager includes seamless support for object persistence. In many cases, you can persist
an object without modifying its source in any way.

Every Voyager program can be associated with a database. The type of database can vary
from program to program and is transparent to a VVoyager programmer. V oyager includes
a high-performance object storage system called Voyager Db and will soon include
bindings that work with most popular relational and object databases as well.

To save an object to its program’ s database, send saveNow() to the object. This method
causes a copy of the object to be written to the database, overwriting the previous copy if
one exists. If the program is shut down and then restarted, the persistent object remainsin
the database. An attempt to communicate with the persistent object causes the object to
be immediately reloaded from the database.

If a persistent object is moved from one program to another, the persistent copy of the
object is automatically removed from the source program’ s database and added to the

To conserve memory, you can use one of thef | ush() family of methods to flush a
persistent object from memory to a database. A subsequent attempt to communicate with
a flushed persistent object causes the object to be immediately reloaded from the
database.

By default, Voyager's database system persists Java classes that are loaded into a
program across a network so they need not be reloaded when the program is restarted.

13

Voyager and RMI Comparison

Scalability

Using RMI

RMI does not include a scalable architecture for multicast messaging, distributed events,
or publish/subscribe.

Using Voyager

Many distributed systems like those listed below require features for communicating with
groups of objects.

- Stock quote systems use a distributed event feature to send stock price events to
customers around the world.

- A voting system uses a distributed messaging feature (multicast messaging) to send
messages to voters around the world and ask them for their views on a particular
matter.

- News services use a distributed publish/subscribe feature to ensure each broadcast is
received only by readers interested in the topic of the broadcast.

Most traditional systems use a single repeater object to replicate a message or event to
each object in the target group. This approach works fine if few objects reside in the
target group, but does not scale well when large numbers of objects are involved.

Voyager uses an innovative architecture for message and event replication called Spacea
that can scale to global proportions. Clusters of objectsin the target group are stored in
local groups called subspaces. The subspaces are linked together across a network to
form alarger logical group, or Space. When a message or event is sent into one of the
subspaces in a Space, the message or event is cloned to each of the other subspacesin the
Space before being delivered to every object in every subspace. Thisresultsin avery
rapid, parallel fanout of the message or event to every object in the Space. A special
mechanism in each subspace ensures that no message or event is accidentally processed
more than once, regardless of how the subspaces are linked together.

Voyager's multicast messaging, distributed events, and publish/subscribe features all use
and benefit from the same underlying Space architecture.

14

Voyager and RMI Comparison

Multicast Messaging

Using RMI

RMI does not support multicast messaging, although the RMI user documentation
suggests a technique that might be used to implement it. The documentation also
mentions that a future version of RMI will include Mul ti cast Renot eChj ect , an
aternativeto Uni cast Renot e(bj ect . That is, if you want to create a class that you
can multicast messages to, you must extend Mul t i cast Renot eCbj ect instead of
Uni cast Renpt eObj ect . We believe this technique is an example of poor object-
oriented design—the implementation of an object is coupled with how the object is used.

Using Voyager

Voyager includes seamless support for large-scale multicast messaging that does not
require modifying your classesin any way. To perform multicast messaging, add objects
to a Space, establish a virtual reference to the Space, and send the Space a message as if
you were sending it to a single object. The message is propagated in a fault-tolerant and
parallel fashion to every object in the Space.

Use the commands below to create two sports fans, and then add them to the sports
Space:

VSportsFan fanl new VSportsFan("l ocal host");
VSport sFan fan2 new VSportsFan("l ocal host");
sports.add(fanl);
sports.add(fan2);

To send every sports fan in the sports Space aone-way scor e() message, use the
following commands:

VSport sFan fans = new VSportsFan(space); // attach to space
fans.score("bulls", 40, "lakers", 50); // multicast

15

Voyager and RMI Comparison

Distributed Events

Using RMI

RMI does not support distributed events.

Using Voyager

Voyager includes seamless support for large-scale, distributed JavaBeans™ events. To
send an event to a group of objects, first process the event listener classusing vcc. Then
add the group of objects to a Space and attach the appropriate virtual event listener to the
Space. Finally, add the virtual event listener to the event source. When an event is sent to
the virtual event listener, the event is sent to every object in the Space that implements
the appropriate event listener interface. The Voyager events system allows you to send
any JavaBeans event to a network of distributed listeners without modifying the bean in
any way.

For example, assume that the Spor t sFan classimplements aNewsEvent Li st ener
interface that accepts a News Event viathe newsFl ash() method. Use the following
commands to create two sports fans and then add them to the sports Space:

VSportsFan fanl new VSportsFan("l ocal host");
VSport sFan fan2 new VSportsFan("l ocal host");
sports.add(fanl);
sports.add(fan2);

Use the following commands to send every sports fan in the sports Space a NewsEvent :

VNewsEvent Li st ener fans = new VNewsEvent Li st ener (space);
NewsEvent event = new NewsEvent("the cowboys win!");
fans. newsFl ash(event); // send event to every fan in space

16

Voyager and RMI Comparison

Publish/Subscribe

Using RMI

RMI does not support publish/subscribe capabilities.

Using Voyager

Voyager includes seamless support for large-scale, distributed publish/subscribe of
messages and events. To send a message or event to all objectsin a Space that are
interested in a particular subject, useaOneVayMul t i cast message with a selector.
All objects in the Space that are registered subscribers of the selected subject receive the
message or event. To register an object with a particular subject, use Voyager’s built-in
property mechanism. The Voyager publish/subscribe feature is 100% nonintrusive,
supports wildcards, and does not require modifying the communicating objects in any
way.

For example, to create a sports fan and register its interest in the Bulls and Mavericks
scores being broadcast in the sports Space, use the following commands:

VSportsFan fan = new VSportsFan("l ocal host");

fan. addProperty(Subscription. SUBSCRI BE, "scores.bulls");
fan. addProperty(Subscription. SUBSCRI BE, "scores. mavericks");
sports.add(fan);

Use the commands below to publish Bulls and Lakers scores in the sports Space:

VSportsFan fans = new VSportsFan(space); // attach to space
Subscri ption subscription = new Subscription();

subscri ption. addSubj ect ("scores. bulls");

subscri ption. addSubj ect ("scores. | akers");

Messenger m = new OneVayMul ti cast(subscription);

fans.score("bulls", 40, "lakers", 50, m); // publish

17

Voyager and RMI Comparison

Federated Directory Service

Using RMI

RMI does not support federated directories.

Using Voyager

Voyager includes adirectory service that allows you to create and connect network
directoriesto form alarge, federated directory service. Y ou can associate an object with a
hierarchical name, such assport s/ basket bal | /| akers or

chemi st ry/ synbol s/ cal ci um The federated directory service is fully integrated
with VVoyager’ s persistence subsystem.

18

Voyager and RMI Comparison

Message Types

Using RMI
RMI supports synchronous messages only.

Using Voyager

Voyager supports four different message types. synchronous, one-way, one-way
multicast, and future messages.

By default, Voyager messages are synchronous (the sender blocks until the message
completes and the return value is received). Voyager also supports one-way messages
(the sender discards the result), future messages (the sender returns immediately with a
placeholder that alows the result to be retrieved later), and one-way multicast messages
(the message is sent to al objectsin a Space). Y ou can aso send a one-way multicast
message to only certain objects in a group by using a selector.

Voyager method invocations are performed by smart messengers, which are lightweight,
active objects rather than passive data structures. Smart messengers can route themselves,
resend themselves, take actions on failures, and so on. Source code licensees can create
customized messengers without modifying the core system.

Voyager also supports dynamic message creation. Y ou can set a messenger’ s signature
and arguments at run time before a message is sent. Thisis a powerful feature that can be
used for many purposes; for example, you can easily create a scheduler that sends a user-
supplied message to any kind of object at a particular point in time.

19

Voyager and RMI Comparison

Evolution of Remote References

Using RMI

When the RMI r mi ¢ compiler generates client and server stubs, it associates hardcoded
numbers with each function; that is, f oo() might be associated with 1, bar () might be
associated with 2, and so on. These numbers are used by the client stub to remotely
activate a function viathe server stub. Thus, if you deploy a class remotely and then
modify its class, you might be unable to use the new client stub to communicate with
older instances of the class. The only recourse at this point isto shut down and restart the
entire system. RMI, therefore, does not support evolution of remote referencesin a
network environment.

Using Voyager

When used to generate client stubs, the Voyager vcc utility embeds method signaturesin
the virtual classinstead of hardcoded numbers. These signatures are used by the
reflection mechanism on the server to find and execute a remote method. Therefore, if
you deploy a class remotely and then modify its class, you can continue to execute
methods on older instances of the class using the new virtual class. Voyager, therefore,
supports smooth evolution of remote references in a network environment.

20

Voyager and RMI Comparison

Garbage Collection

Using RMI

RMI has a lease-based garbage collection system. When a client obtains areference to a
remote object, the client is granted a lease that must be renewed periodically to prevent

the remote object from being garbage-collected. A remote object is garbage-collected
when al its leases expire.

Using Voyager

Voyager offers a superset of the RMI garbage collection system that supports both lease-
based and time-based garbage collection. An abject’s life span can be defined based on a
specific length of time or a particular point in time. The object is garbage-collected at the
end of its life span. Time-based garbage collection is often used to create roaming agents
that automatically self-destruct in afew days. Voyager’'s garbage collection system is

fully integrated with its support for persistence thus correctly garbage-collects persistent
objects.

21

Voyager and RMI Comparison

Applet Connectivity

Using RMI

Most browsers allow an applet to open a socket connection only to its server. This means
that in the absence of any higher-level routing mechanism, an applet can only
communicate with objects located on the same server. RMI has no additional routing
mechanism thus is subject to this limitation.

Using Voyager

Voyager includes a lightweight software router that allows both appl et-to-applet and

appl et-to-program connectivity. An object inside an applet can communicate with another
object no matter where each object resides. That is, an object can communicate with
objects in another applet, whether the applet is on the same server or on a different server,
firewalls permitting.

22

Voyager and RMI Comparison

Network Class Loading

Using RMI

For an RMI program to act as a source for classes that can be loaded across the network,
the program must be running an HTTP server. Although reasonable when the client isan
applet accessed from a Web site, this requirement is clumsy in other cases. For example,
to build an intranet system in which the server program is running an internal Windows
NT system, you would have to install an HTTP server on the Windows NT machine,
even though the machine does not actually service the Web. JavaSoft supplies developers
with a mini-Web server to overcome this difficulty.

Using Voyager

Voyager programs can transmit classes to other Voyager programs using regular socket
connections. Therefore, you need not install any additional software to write programs
that make full use of Java's code mobility, which results in much smpler deployment of
Voyager programs.

23

Voyager and RMI Comparison

Product Size

Using RMI

RMI’stotal classfile size is approximately 180KB. Thisincludes al primary RMI
. cl ass files, the registry, and the distributed garbage collection system, but excludes
the HTTP firewall support.

Using Voyager

Voyager’stotal classfile sizeis approximately 270KB. This includes the entire VVoyager
system—the integrated directory service, the distributed garbage collection system, smart
messengers, mobility, and agent support.

24

Voyager and RMI Comparison

Performance

The table below lists afew benchmarks that compare RMI and Voyager performance on
remote method calls between objects on the same virtual machine and between objects on
different virtual machines. Each function was defined to take a specific kind of argument
and to perform no operation. The benchmarks were performed on a 150Mhz Tecra |laptop
with 80MB of RAM. Times are in milliseconds per function call. The following interface

definition was used.

package benchnarks;

i mport java.util.Vector;

inmport java.rm.*;

public interface | Server extends Renote

public void noArgunents() throws RenoteException;

public int twolnts(int a,

int b) throws RenoteException;

public int vectorlntegers(Vector integers) throws RenoteException;
public int vectorStrings(Vector strings) throws RenoteException;

}
No Two Vector of Vector of
Arguments Integers 100 Integers | 100 Strings
Same Virtual Machine
RMI 2.1 2.3 437.83 193.48
V oyager 0.2 0.5 0.3 0.4
Different Virtual Machines
RMI 2.1 3.01 436.02 190.28
V oyager 3.0 3.21 117.87 193.98

25

Voyager and RMI Comparison

Stubs and Skeletons

RMI and Voyager each use a utility to generate custom code for remote method
invocation. RMI generates both client code and server code, whereas Voyager generates
client code only. This section shows the code that each product generates for the

t wol nt s() method of the following interface.

public interface | Server extends Renote

public void noArgunents() throws RenoteException;

public int twolnts(int a, int b) throws RenoteException;

public int vectorlntegers(Vector integers) throws RenoteException;
public int vectorStrings(Vector strings) throws RenoteException;

}

As the following code examples demonstrate, V oyager typically emits 80 percent less
support code than RMI.

26

Voyager and RMI Comparison

Using RMI

Stub code generated by t wol nt s() :

/1 1nplenentation of twolnts
public int twolnts(int $_int_1, int $.int_2) throws java.rm .RenoteException {
int opnum = 1;
java.rm .server. Renot eRef sub = ref;
java.rm .server.RenoteCall call =
sub. newCal | ((j ava.rm . server. RenoteQbj ect)this, operations, opnum interfaceHash);
try {
java.io. ObjectQutput out = call.getQutputStrean();
out.witelnt($_int_1);
out.witelnt($_int_2);
} catch (java.io.lOException ex) {
throw new java.rm . Marshal Exception("Error marshaling argunents", ex);
b

try {
sub. i nvoke(cal l);

} catch (java.rm .RenoteException ex) {
t hr ow ex;
} catch (java.lang. Exception ex) {
throw new j ava. rm . Unexpect edExcepti on(" Unexpect ed exception", ex);

S

int $result;

try {
java.io. jectlnput in = call.getlnputStream);
$result = in.readlnt();

} catch (java.io.lOException ex) {

throw new java. rm . Unmar shal Excepti on("Error unmarshaling return", ex);
} catch (Exception ex) {

throw new j ava. rm . Unexpect edExcepti on(" Unexpect ed exception", ex);

} finally {
sub. done(cal I);

return $result;

Skeleton code generated by t wol nt s() :

case 1. { // twolnts

int $ int_1;
int $int_2;
try {

java.io. jectlnput in = call.getlnputStream);
$int_1 =in.readlnt();
$int_2 =in.readlnt();
} catch (java.io.lOException ex) {
throw new java.rm . Unmar shal Excepti on("Error unmarshal i ng argunents", ex);

} finally {
cal |l . rel easel nput Stream() ;
b

int $result = server.twolnts($_int_1, $_ int_2);
try {
java.io.ObjectQutput out = call.getResultStrean(true);
out.witelnt($result);
} catch (java.io.lOException ex) {
throw new java. rm . Marshal Exception("Error nmarshaling return", ex);
b

br eak;

}
27

Voyager and RMI Comparison

Using Voyager

Stub code generated by t wol nt s() , default version:

public Result twolnts(int argl, int arg2, Messenger __nessenger)

{

__messenger.witelnt(argl);
__messenger.witelnt(arg2);
return __instanceMet hod(__nessenger, instancel);

}

Stub code generated by t wol nt s(') , smart messenger version:

public int twolnts(int argl, int arg2)
{

return twolnts(argl, arg2, new Sync()).readlntRuntine();

}

There is no skeleton code for t wol nt s() because VVoyager does not require skeleton
code on the server side.

28

For additional technical information on ObjectSpace
products and programs or for information on how to order and evaluate
ObjectSpace technology, contact us today!

o~
08 L ECT)S PR

14850 Quorum Drive, Suite 500
Dalas TX 75240

972.726.4100
1.800.0BJECT.1
Fax: 972.715.9099

E-mail: sales@objectspace.com
Web: www.objectspace.com

Javais atrademark of Sun Microsystems.]]
ObjectSpace Voyager and Space are trademarks of ObjectSpace, Inc. Dallas s Austin » Chicago ¢
All other trademarks are the property of their respective companies. San Francisco « Washington DC

29

