
PLAN: A Packet Language for Active Networks

Michael Hicks, Pankaj Kakkar, Jonathan T. Moore,
Carl A. Gunter, and Scott Nettles *

Department of Computer and Information Science
University of Pennsylvania

Abstract

PLAN (Packet Language for Active Networks) is a new lan-
guage for programs that form the packets of a programmable
network. These programs replace the packet headers (which
can be viewed as very rudimentary programs) used in cur-
rent networks. As such, PLAN programs are lightweight
and of restricted functionality. These limitations are miti-
gated by allowing PLAN code to call node-resident service
routines written in other, more powerful languages. This
two-level architecture, in which PLAN serves as a scripting
or ‘glue’ language for more general services, is the primary
contribution of this paper. We have successfully applied the
PLAN programming environment to implement an IP-free
internetwork.

PLAN is based on the simply typed lambda calculus and
provides a restricted set of primitives and datatypes. PLAN
defines a special construct called a chunlc used to describe
the remote execution of PLAN programs on other nodes.
Primitive operations on chunks are used to provide basic
data transport in the network and to support layering of
protocols. Remote execution can make debugging difficult,
so PLAN provides strong static guarantees to the program-
mer, such as type safety. A more novel property aimed at
protecting network availability is a guarantee that PLAN
programs use a bounded amount of network resources.

1 Introduction

Active networking is all about getting
programmability into the network.
-Jonathan Smith

Modern packet-switched networks, like the Internet, trans-
port data in packets that consist of a header, containing
control information, and a payload, containing the data it-
self. The header may be viewed as a primitive program
in the programming language defined by the packet format
specification. This program is interpreted by the protocol
software in the routers, and the execution of the program
causes the packet to be sent to the next router along the
path to the destination. If new functionality needs to be
added to the protocol then the packet format and its seman-
tics must change. Or, using our analogy, the programming
language and its specification must change.

For a widely deployed protocol, such as IP [23], changes
to the packet format must be deliberated and agreed upon
by a standards body. As a consequence, the introduction of
new network services at this level is very slow. For example,
there was a span of five or more years from the time RSVP
was conceptualized [5] to the time it was deployed 1171, even
in a very limited manner.

Active networks are an approach to getting more flexi-
bility at the IP (or similarly standardized) level by making
the network infrastructure programmable. If the level of ab-
straction could be raised from that of the bits in IP packet
headers to that of a more general programming language,
the evolution of the network could proceed at the pace of
technology, since changes would occur at the level of the
program-not the programming language.

If this idea is to be realized, a key question is: what
programming interface is needed? This paper offers an ap-
proach based on a two-level distinction between an interop-
erability layer based on a new programming language PLAN
(Packet Language for Active Networks) and a level of node-
resident services, which may be written in general-purpose
languages. Each packet contains a PLAN program that re-
places the IP packet header and payload. These programs,
in turn, tie together service calls to create more complex net-
work functions (e.g., customized routing). Therefore, PLAN
can be viewed as a network-level ‘glue’ language.

More concretely, consider ping, one of the most basic
network diagnostics. In the current network, it must be
provided as a special packet type in the ICMP [22] protocol.
In an active network, it can just be a program provided by

86

a user. Here is how it is coded in PLAN (language details
will be explained later):

fun ping (src:host, dest:host) : unit =
if (not thisHostIs(dest)) then

OnFtemote(iping1 (src,dest), dest, getRB(),
defaultRoute)

else
OnFtemote(lacklO, src, getFlB0,

defaultRoute)

fun ack() : unit = print(“Success”)

Ping works as follows. This program is placed in an ‘active’
packet that executes ping at the source. The packet is not
at the destination and so the first OnRemote call causes a
packet to be sent that will invoke the ping function at the
destination. Once there, the second OnRemote sends a packet
that will invoke the ack function on the original source. Al-
though simple, this example shows that protocols can be
built with PLAN without requiring encapsulation or the def-
inition of new packet types. Later in the paper, we will also
discuss how the PLAN programming environment was used
to implement all of the protocols necessary to support an in-
ternetwork that does not depend on IP. This is a testament
to the high level of flexibility in our system, and flexibility is
precisely what is needed to allow faster network evolution.

Our decision to define a new language was driven by a
variety of unique requirements that are described in the next
section. For instance, the need for programs that fit within
individual packets suggests the use of a scripting language.
Mobility suggests the need for a ‘safe language, while net-
work availability demands a way to limit the resource uti-
lization of programs. Since mobility is the main aim of the
language, it is important to make its computational model
fundamentally distributed, rather than provided by a spe-
cial library extension. In the end, the choice was to design
a new language realizing all of these goals well, but relying
on programs in other languages to provide other kinds of
functions.

The rest of the paper describes the PLAN language and
system, its architecture, and our implementation of it. We
base our discussion on PLAN 3.0, our current design and
implementation, and at the end we consider some of the
changes that might appear in future versions.

2 Requirements and Design

Any active networking approach must balance the tensions
among the following issues: flexibility, safety and security,

performance, and usability. To this end, our architecture
partitions the problem into two levels: the packet language
level and the service language level, whose roles are summa-
rized in Table 1. PLAN, our packet language, is intended
for high-level control, while most of the complex functional-
ity resides in services (which for maximum flexibility can be
dynamically loaded over the network). This approach allows
us to draw a clean boundary between lightweight and heavy-
weight programmability. We now explore in more detail how
our two-level architecture helps us to achieve specific design
goals.

2.1 Flexibility

Increased flexibility is the primary motivation for active net-
working. The key question is: how far should we go? He-

Table 1: Comparison of the Packet and Service levels

cause of our two-level approach, PLAN does not have to be
completely general, because general purpose expressibility is
provided by the service level language. On the other hand,
PLAN must be able to express ‘little’ programs for network
configuration and diagnostics, and to provide the distributed
communication/computing glue that connects router resi-
dent services into larger protocols. To do this, PLAN must:
embody a model of distributed computing; have some sim-
ple, transmissible datatypes; and perhaps most importantly,
be able to cope with and recover from errors in a general way.
PLAN moves us away from a world with a fixed set of op-
erations, and into one where node-resident services can be
easily combined on-the-fly.

2.2 Safety and Security

The shared nature of a network (and especially the Inter-
net) requires that security be taken very seriously. Clearly,
this means that increased programmability must be added
in a safe and secure manner. By safety we mean reducing
the risk of mistakes or unintended behavior, and by security
we mean the usual concept of protecting privacy, integrity,
and availability in the face of malicious attack. To address
some of these concerns, we have made PLAN a functional,
stateless, strongly-typed language. This means that PLAN
programs are pointer-safe, and concurrently executing pro-
grams cannot interfere with one another.

The other aspects of security are more problematic. For
one, network administrators would like to prevent arbitrary
users from altering their nodes in arbitrary ways. One pos-
sible approach would be to force the authentication of ev-
ery packet. However, many common operations, such as
data delivery, do not require authentication in the current
network; this suggests that authentication should be possi-
ble but not required. Therefore, we have chosen to restrict
PLAN’s expressibility so that it may be authentication-free.
Functionality requiring authentication can be made avail-
able by using services, and we expect to leverage active net-
working security research like the SANE project [l].

2.3 Performance

PLAN should offer new functionality without compromis-
ing the performance of functionality offered by the current
network, particularly payload delivery. This would be im-
possible if all PLAN packets had to be authenticated. A
major benefit of keeping PLAN simple is that its interpre-
tation can be lightweight, and thus common tasks can be
done quickly. We have avoided adding heavyweight features
to PLAN in the belief that if such features are needed, they
can be accessed at the service level.

87

2.4 Usability

PLAN programs execute remotely, which makes it difficult
to determine the causes of unexpected behavior. Therefore,
it is important to provide the PLAN programmer with a
priori assurances about a program’s behavior. We provide
some guarantees as part of our design: all PLAN programs
are statically typeable and are guaranteed to terminate, as
long as they only call service routines that terminate (more
details on this termination guarantee will be given shortly).

PLAN is based on the simply typed lambda calculus,
making it easier to specify a formal semantics. The a ptiori
guarantees mentioned above are made possible by the deep
understanding of the lambda calculus in the programming
languages community. As a supplement to these static guar-
antees, however, PLAN should also provide some basic error
handling facilities.

2.5 Why a New Language?

Now that the reader has a basic idea of the design goals for
PLAN, we can revisit the question of why we need a new
language. The need for PLAN to be very lightweight, which
serves all of its design goals (except greater flexibility), is
a compelling argument that no general purpose language is
really suitable. In fact, the requirement that programs need
not be authenticated would seem to make it insecure to use
most general-purpose languages. On the other hand, the
need to tailor the language to the active networking domain
eliminates existing special-purpose languages.

Our design is based on remote evaluation, rather than
remote procedure call. Specifically, child active packets may
be spawned and asynchronously executed on remote nodes.
This is supplemented with the ordinary form of function
call in a language that resembles the simply typed lambda
calculus. Our goal was to use the simplest and most basic
set of assumptions that satisfied the requirements we have
just outlined.

3 PLAN Description

We describe the PLAN language primarily by example, with
a highlight of its key constructs’. Although PLAN is based
upon the simply typed lambda calculus, it is missing some
features available in common functional programming lan-
guages. We discuss these differences before moving on to
a discussion of how PLAN’s evaluation model addresses re-
source bounding.

3.1 PLAN by Example

Figure 1 shows a PLAN version of the utility traceroute,

a diagnostic program that reports the path taken from a
source node to a destination. This version of traceroute
visits each router between two hosts, collecting a list of nodes
visited thus far. At each node it sends this list back to its
source to be printed, and creates a new packet that is sent
to the next hop to continue the process.

PLAN Packets and Chunks. Traceroute creates a number
of PLAN packets that traverse the network. As shown in Ta-

‘A conlplete gran~nar is found in Appendix A. More details can
be found at http://uw.cis .upsnn.edu/-svitchuare/PLAN.

fun print-host(h:host, count:int) : int =
(print(h); print(” : “1;
print (count) ; print (” “) ; count+11

fun ack(l:host list) : unit =
(foldr(print-host,l,l); print(“--\n”))

fun traceroute (src:host, dst:host,
1: host list, count :int) : unit =

let val this:host = hd(thisHost0)
in

(OnRemote(lackl(this::l), src, count, defaultRoute);
if (not (thisHostIs(dst)) then

let val p:(host * dev) = defaultRoute(dst)
in

OnNeighbor(ItracerouteI(src, dst, this::l, count+l),
fst p, getRB 0. snd p)

end
else 0)

end

Figure 1: The PLAN traceroute program

Table 2: The PLAN packet

ble 22, the primary component of each packet is its chunk
(short for code hunk), which consists of code, a function
name to serve as an entry point, and values to serve as bind-
ings for the arguments of the entry function. The PLAN
syntax I f I (a, b, c) designates a chunk containing the code
required to execute the (top-level) entry function f, and
bindings having the values of the expressions a, b, and c.
The other fields in the packet will be explained shortly.

The traceroute program is depicted visually in Figure 2.
Each arrow in Figure 2 is labeled with its entry function
name, and the arrowheads indicate the nodes on which the
corresponding chunks will be evaluated. Thus all ack pack-
ets are evaluated only at node A, the source, while the
traceroute packets are evaluated at each node on the way
to the destination.

Injection. A host application constructs a PLAN packet
and injects it into the active network via a port connected to
the local PLAN interpreter. This injection port is used by
PLAN to provide output to the application, and allows the
application to submit new packets; it is shown as the pair of
dashed lines. Here, the application creates a PLAN packet
that is injected at host A with an evalDest of A, an initial

‘These are only those packet fields required by the PLAN Ian-
guage definition; for exanlple, our active internetwork implementa-
tion PLANet defines additional fields to assist with special routing
protocols.

88

n -

traceroute t

Figure 2: Evaluation of the traceroute program

chunk of I traceroute I (A, D, Cl, 11, an RB of n, and a
routlh of defaultRoute. Output from print is passed to
the application through the injection port.

Remote Execution. PLAN programs create new pack-
ets through calls to the network primitives OnRemote and
OnNeighbor. A prototype OnRemote call looks like:

OnRemote (C, eualDest, Rb, routFun

This call essentially means ‘create a new packet that will
evaluate the chunk C on node evalDest.’ The bindings in
the chunk are PLAN values and are evaluated locally, al-
though the function application will be delayed until the
new packet arrives on the remote host. m&Fun specifies
the routing scheme for the new packet, and Rb indicates how
much of the current packet’s resource bound is transferred to
the new packet. It is important to note that the implemen-
tation of this primitive enforces that Rb be positive but less
than the resource bound of the current packet, thus ensuring
that the overall resource bound cannot be increased.

OnNeighbor is similar to OnRemote, except that the
evalDest must be a neighbor of the current node, elimi-
nating the need for routing. In the example, traceroute
creates two new packets: the ‘backward’ packet, created by
OnRemote, and the ‘forward’ packet, created by OnNeighbor.
Consider evaluation of the traceroute function on Host A:
the backward packet has fields: chunk I ack I ([Al 1, evalDest
A, routFun defaultRoute, and an RB of 1, while the forward
packet has fields: chunk I traceroute I (A, D, [Al , 21,
evalDest B, and an RB of n - 1.

Routing. Once a packet is created, it is sent to its
evalDest for evaluation. The evalDest may be many hops
away, so intermediate nodes need a way to determine the
‘next hop.’ This is done using the packet’s routFun field,
which names a service function that takes the destination
as an argument and returns the next hop towards that des-
tination. At each hop, the RB field is decremented by one;
if the resource bound is exhausted, the packet is terminated.
In the example, the routing function is defaultRoute, which

is also used explicitly to determine the evalDest of the ‘for-
ward’ packet. Since PLAN evaluation need not occur on
the intermediate nodes, this sort of routing can be imple-
mented quite efficiently using the same techniques used by
the current II’ network.

3.2 Language Characterization

Since PLAN’s semantic basis is the typed lambda calcu-
lus, our examples should have a familiar feel to functional
programmers. However, PLAN is missing several common
functional programming constructs. We followed a policy of
not adding a language feature unless: it was necessary for
important applications, did not compromise security, pre-
served all a priori guarantees, and enhanced the usability of
PLAN. In that light, let us look at specific components of
PLAN.

Flow of Control. In keeping with our goal of simplic-
ity, PLAN has simple flow of control constructs: statement
sequencing, conditional execution, iteration over lists with
fold, and exceptions, all in the usual style. Although func-
tion calls are supported, notably absent are recursive func-
tion calls. The lack of recursion and unbounded iteration (as
well as the monotonically decreasing resource bound in the
packet) imply that. all PLAN programs terminate. PLAN
does not currently support higher order functions, but we
have applications in mind that might be simplified by this
addition. While in general PLAN does not support pattern-
matching, we do provide a binding form of exception han-
dler, which we shall discuss shortly.

The Type System. PLAN is strongly typed, and al-
though it is mostly statically typeable, it is dynamically
checked. This arises from the demands of remote program-
ming: static typeability is a benefit to help debugging before
injecting a program into the network, yet dynamic check-
ing provides efficient safety (from the nodes’ point of view)
for mobile scripting code. Although PLAN is currently
monomorphic, we see no reason not to add polymorphism;
this may be the subject of future work.

In addition to a fairly standard set of base types, PLAN
provides a homogeneous list type and a heterogeneous tuple
type, but no support for general recursive types, since their
utility is questionable without general recursion. Instead,
we are considering providing a set of built-in recursive data
types, with accompanying tools.

Scoping. PLAN is lexically-scoped, with the available ser-
vices occupying the initial bindings in the namespace. Be-
cause service invocations are syntactically identical to nor-
mal function invocations, a PLAN program may shadow
a service routine by defining a local function of the same
name. By the same token, if a name fails to resolve at
invocation time, the interpreter assumes the program is at-
tempting to invoke an unavailable service routine, and raises
a ServiceNotPresent exception. The function named in a
chunk expression like If I (a) is invoked in a remote envi-
ronment where nil top-level bindings are available; as such it
does not obey the usual lexical scoping of functions. This al-
lows a form of yecursive function call to be done with chunks
and OnRemote, but such calls must decrement the resource
bound, so such recursion must terminate.

89

fun exnreport(h:host,e:exn):unit =
(print(“1 raised “1; print(e) ;
print (‘I on “1; print(h))

fun main(home:host,...) =
try

. . .
handle e =>

abort(lexnreportI (hd(thisHostO,e)))

Figure 3: A general error-reporting mechanism

Mutable state. PLAN does not provide user-defined mu-
table state, although some aspects of PLAN, such as the
resource bound, are stateful. Not providing state simplifies
PLAN in a number of important ways. Firstly, it simpli-
fies transmitting PLAN values to remote nodes, since values
can be copied without changing their meaning. Secondly,
concurrently running PLAN programs can only share state
through service routines, which implies that only the service
language must concern itself with concurrency.

3.3 Error handling

Although PLAN provides a basic exception handling mech-
anism, this is not sufficient for handling all errors in the
PLAN system. To make sure that the programmer is noti-
fied when something goes wrong, the PLAN system provides
two main error handling mechanisms. Firstly, an abort ser-
vice is provided which allows a program to execute a chunk
on its source node. This is accomplished by extracting the
source from the packet header, sending an error packet car-
rying the chunk back to the source, discarding any remaining
resource bound, and then evaling (see Section 3.4 below) the
chunk. The abort service coupled with exception handling
provides a reasonably flexible error-handling mechanism; an
example is shown in Figure 3.

However, evaluation on remote nodes may raise excep-
tions not ant,icipated by the programmer, and some errors
are severe enough that they cannot be handled within PLAN
(for example, a transmission error may result in a type-
incorrect program). For these cases, we provide a mecha-
nism for error handling through a special field in the packet
header. The handler field names a service to be invoked
on the source in case an error or exception not handled in
the program is raised. This essentially corresponds to an
implicit call to the abort service where the chunk to be ex-
ecuted is simply a call to the named handler service.

3.4 Encapsulation

Chunks are first-class values in PLAN, and as such, they can
be included in the bindings lists of other chunks. In addition,
PLAN provides an eval primitive to invoke a chunk. To-
gether, these features allow chunks to be manipulated, ‘en-
capsulated,’ dispatched, extracted, and finally executed-
essentially providing for protocol layering within PLAN. For
an example of chunk encapsulation, let us consider how to do
UDP-like (211 delivery in the PLAN system. Our program
appears in Figure 4.

The heart of the communication is a chunk c that de-
livers the payload to the desired port on the remote host.

fun send-frags (x:int*host,c:chunk) : int * host =
(OnRemote(c,snd x,fst x,defaultRoute);x)

fun udp-deliver (source:host, dest:host,
app:port, payload:blob) : unit =

let val c:chunk = (deliver\ (app,payload)
val d:chunk = checksum(c)
val ds:chunk list = fragment(d,pathMTU(dest))
val 1:int = length(cs) in

(foldl(send-frags,(getRB()/l,dest),ds); 0)
end

Figure 4: UDP-like delivery in PLAN

This chunk is ‘encapsulated’ within another chunk d which
contains code (not shown) to compute a checksum for c. d
is then fragmented using a service fragment, which uses the
result of another service pathMTU to determine an appropri-
ate size for the fragments. The result is a list of chunks
containing code for reassembly as well as one fragment each
of the chunk d. These new chunks are then dispatched us-
ing O&emote. As described earlier, these packets are not
evaluated until they reach the final destination. Once there,
their reassembly code is invoked, producing a reconstituted
chunk d. Its checksum code will be invoked and confirm the
checksum of c. If the test succeeds then c will be evaluated
and deliver its payload to the appropriate port.

3.5 Resource Bounds

Time 6

Resources Used
by a Single
Packet on a
Single Router

Figure 5: Resource Cube

-W
pace

If active network programs were allowed to use un-
bounded resources, it would be trivial to use them to im-
plement denial of service attacks. Since unicast IP packets
have a time-to-live (TTL) field, a tied maximum size, and
have very simple header processing, they satisfy the follow-
ing safety property:

The amounts of bandwidth, memory, and CPU
cycles that a single packet can cause to be con-
sumed should be linearly related to the initial size
of the packet and to some resource bound(s) ini-
tially present in the packet.

If PLAN programs are to serve as header replacements, we
claim that they should also satisfy this property. Consider
the maximum amount of resources consumable by a single
packet at a single router as a ‘resource cube,’ depicted in
Figure 5. The RB field of a packet therefore bounds the

90

number of resource cubes that can be produced, since the
RB is decreased each time the packet hops to a different
node and each time it creates a new packet (by donating
some RB to the child).

Bounding the number of cubes, however, is not as diffi-
cult as bounding their size. At one extreme, this is possible
by imposing fixed CPU and memory counters at each node
to limit evaluation resource cost. While straightforward, this
method weakens a priori guarantees of correctness, since a
program could be terminated at any time (of course, this is
already somewhat the case, since OnRemote and OnNeighbor
are unreliable). We have implemented the fixed counter ap-
proach, and in our current implementation found that it
adds an additional overhead of about 8% to packet process-
ing times.

One might expect that the restrictions placed on PLAN
programs, in particular that they terminate, would allow
these conditions to be satisfied without timers and space
counters. Unfortunately, the following program runs in time
exponential in its size, even though it does no allocation and
does not even use iterators:

fun fl():unit = 0
fun f2O:unit = (fl(); fl())
fun f3O:unit = (f20; f20)
fun f4O:unit = (f30; f30)

fun exponential():unit = (f4(); f40)

We are currently exploring further restricting the PLAN lan-
guage to make programs such ;1s this one illegal. In par-
ticular, we could obtain linearly bound execution time by
imposing the following constraint:

Given function f which calls functions 91, ~2, . . . gn:

f E valid iff gl, g2, . . . gn E valid and

calls(f) = 0 or

calIs + calIs + . . . + calIs 5 1

where calls(g) is the number of PLAN functions called from
function g. This is still not enough for programs using fold,
so further restriction is needed (perhaps by consumption of
resource bound). Future work in formalizing the resource
control policies of PLAN may allow us to improve them
and perhaps permit some real-time guarantees for PLAN
programs.

4 PLAN Applied

Recently, we have used the PLAN programming environ-
ment to build an active internetwork, PLANet. PLANet’s
basic protocols are based on ones used in IP, but with a key
difference: all packets are PLAN programs. PLANet cur-
rently provides a number of application services, such as re-
liable and unreliable datagram delivery mechanisms, as well
standard network services, such as HP-style routing [9] and
ARP-like address resolution [ZO]. The basic performance of
our user-space implementation using the OCaml bytecode
interpreter is quite respectable: a PLANet router running
on a dual 300 MHz Pentium II can switch packets at be ’ l1 ->q
over a 100 Mbps Ethernet. More details about PLANee <
its performance may be found in [II], but the use of the
PLAN programming environment to implement it deserves
mention.

In PL.4Net, distributed protocols used to maintain the
network, such as routing and address resolution protocols,
are implemented as a combination of PLAN programs and
services. In particular, protocol state, timing threads, etc.
are implemented on each node as services; these services
communicate with their counterparts on other nodes via
PLAN programs. This has the convenient property that
a protocol designer does not need to define new packet for-
mats: all exchanged packets are PLAN programs, and so
the packet formats are simply the standard wire representa-
tion of those programs. Generally, we found that even with
its language restrictions, PLAN was more than adequately
expressive for such networking tasks.

5 Implementation

When rhoosing an implementation language for PLAN, we
had several specific requirements. First, to make the claim
that the network is programmable, services must be dy-
namically loadable. This means that our implementation
language must allow some form of dynamic code load-
ing. Second, the heterogeneous nature of an internetwork
means that the implementation language should be easily
portable. Third, our implementation language needed to
provide strong typing for safety. We have completed im-
plementations of PLAN in two languages that meet these
requirements: OCaml [4] and the Pizza [19] extension to
Java [7]. Our most current implementation is in OCaml due
to the need for access to the source code to provide Ethernet
access for our internetwork PLANet.

We currently transmit abstract syntax trees in our pack-
ets, and use an RPC-style marshalling scheme for the ar-
guments to the invocation function. This same marshalling
scheme could be extended to allow nodes to offer services
from different languages. However, our services are cur-
rently implemented in the same language as the PLAN in-
terpreter, so service calls are simply function calls within
the interpreter.

New services may be dynamically installed over the net-
work by having PLAN programs pass bytecodes as argu-
ments to special service installation routines. In principle,
though, services could be transmitted in various forms (such
as source code) and installed via compilation, perhaps tak-
ing advantage of run-time code generation.

PLAN has been taught in both a graduate-level network
primer COIITSC and an Active Networking seminar at the
University of Pennsylvania, where students were asked to
use PLAN to implement useful network services on a small
testbetl network of five nodes. Feedback from the students
on the FLAN system was encouraging. One common com-
ment was on the ease of dynamically installing services writ-
ten in Java (Fizza was the main implementation language
at the time), thus validating our initial design decision of
following a two-level approach.

6 Related Work

Postscript [27] and Java [7] are the most well known ex-
amples of using programmability and mobile code to in-
crease the flexibility of a system. The first application of
programmable network routing may be the Softnet [30] sys-

tenr whic,h provided for the execution of packets of multi-
threadetl M-FORTH code. The potential of active networks

91

has been demonstrated by Advanced Intelligent Network-
ing (AIN) [3], which was successful in reducing the deploy-
ment time of some telecommunication services from years to
weeks. A motivating technology called Protocol Boosters [6]
provides customizable protocols, but these customizations
would be difficult to deploy without some of the capabilities
provided by active packets. Numerous other motivations for
the advent of active networks are described in 1281.

Several other active networking projects address parts
of the same design space as PLAN. The Active Bridge [2]
is part of the SwitchWare Project [26] at the University of
Pennsylvania. It uses OCaml [4] as a service language for
constructing an extensible bridge. The dynamic loading in-
frastructure provided by the Active Bridge forms a basis
for the PLANet internetwork. ANTS 1291 (Active Network
Transfer System), is a toolkit for deploying Java protocols
on active nodes. It provides implicit demand loading of pro-
tocols, essentially using Java for both its packet and ser-
vice languages. The key disadvantages of this approach are
that Java is not as secure, simple, or lightweight as PLAN.
Hence ANTS seems more attractive as a service-level sys-
tem than as a packet language; using ANTS to transport
service extensions within a PLAN system is something we
hope to investigate in the near future. Sprocket is a lan-
guage from the Smart Packets project at BBN [18]. It uses
a special-purpose byte-code language and like PLAN has as
a design goal of providing flexible network diagnostics, al-
though it makes no provision for extending its service level
dynamically. Sprocket, like PLAN, provides for resource
control, although it uses both hop and instruction counts.
The Quantum (141 language model provides resource control
for distributed computing, including the ability to grant and
revoke resources to processes. It is not clear, however, how
applicable this more complex model of resource usage would
be in the realm of ephemeral active packets.

There are a variety of projects related to networks, dis-
tributed computing, and operating systems that are related
to PLAN’s philosophy of active networks. For example,
the Tacoma Project [12] is a programming-language-based
system for communications between mobile agents. Inter-
packet communication, which is forbidden in PLAN, is the
core of their approach. As such, they have done more ex-
tensive security work than many other active networking
projects. The reader is referred to the SwitchWare white
paper [25] for more information about systems-related is-
sues in active networking.

7 Future Work

We are currently focusing much of our effort in the area of se-
curity. In particular we are looking at mechanisms for trust
management and resource bounding. Trust management is
important for authorizing the use of sensitive services, such
as the ability to modify a routing table. We are looking
into using QCM [24], which allows us to easily define a dis-
tributed key and authorization infrastructure which should
scale nicely in a large network. We are also exploring ways
to modify PLAN itself to obtain better security at the ex-
pense of expressiveness (one such approach was described in
Section 3.5). Preliminary results may be found in [lo].

Two topics related to security are that of namespaces and
formal semantics. We currently have a very basic method
for managing service namespaces; a much more sophisti-
cated mechanism will eventually be needed for scalability.

Another related topic is the formal specification of PLAN
and its guarantees. Although we have worked hard to keep
the language simple and close to areas in which program-
ming language theory is advanced, there are still major chal-
lenges in the formulation of service safety and security re-
quirements. It is possible that approaches like proof carrying
code [16, 15, S! might provide some guidance.

A topic of particular interest is how to improve the per-
formance of PLAN processing by active routers. The mobile
programming environment provides some unique opportuni-
ties for optimization. For example, we have already found
that transmitting a program as an AST has space and time
benefits over transmitting source, since its representation is
more compact and allows tasks like lexing and parsing to be
done once at an originating host rather than at each evaluat-
ing node. We might alternatively consider a byte-code rep-
resentation which could presumably further improve PLAN
execution times. Applying runtime code generation tech-
niques [13] to service extensions seems very likely to pro-
vide substantial service time improvements. Implementing
a code cache for commonly used PLAN programs (such as
the UDF-delivery example in Section 3.4) might also allow
such techniques to work on PLAN programs themselves.

8 Conclusions

We have developed a design philosophy based on a two-level
architecture and built a language to support that architec-
ture. Our work so far leads us to believe that this is a very
promising approach to active network design. The fact that
the PLAN system has been used to implement an internet-
work ‘from scratch’ lends strong credence to this claim. We
invite readers to browse the PLAN home page,

http://wuw.cis.upenn.edu/“switchware/PLAN,

which makes available detailed documentation and down-
loadable software.

Acknowledgments We would like to thank Alex Garth-
Waite, Suresh Jagannathan, and the anonymous referees for
their valuable feedback on previous drafts of this paper. We
would also like to thank Jonathan Smith for using PLAN in
his TCOM50C class at the University of Pennsylvania.

References

PI

PI

[3]

PI

[51

D. Scott Alexander, William A. Arbaugh, Angelos D.
Keromytis, and Jonathan M. Smith. A secure active
network architecture. IEEE Network Special Issue on
Active and Controllable Networks, 1998. To appear.

D. Scott Alexander, Marianne Shaw, Scott M. Nettles,
and Jonathan M. Smith. Active bridging. In Proceed-
ings, 1947 SIGCOMM Conference. ACM, 1997.

Bell Communications Research Inc. AIN Release 1 Ser-
vice Logic Program fiameworlc Generic Requirements.
FA-NWT-001132.

Cam1 home page.
http://pauillac.inria.fr/caml/index-eng.html.

D. Clayk, Scott Shenker, and L. Zhang. Supporting
real-time applications in an integrated service packet

92

If-53

VI

PI

PI

PO1

WI

PI

[131

1141

WI

1161

1171

network: Architecture and mechanism. In Proceed-
ings, 1992 SIGCOMM Conference, pages 14-26, Au-
gust 1992.

David C. Feldmeier, A. McAuley, and Jonathan M.
Smith. Protocol boosters. IEEE Journal on Special
Aspects of Communicatl;on, 1998. To appear in the is-
sue on Protocol Architectures for the 21st Century.

James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison Wesley, 1996.

Carl A. Gunter, Scott Nettles, and Peter Homeier. In-
frastructure for proof-referencing code. In International
Conference on Theorem Proving in Higher Order Log-
its, 1997.

C. Hendrick. Routing Information Protocol. RFC 1058,
Rutgers University, June 1988.

Michael Hicks. PLAN system security. Technical Re-
port MS-CIS-98-25, Department of Computer and In-
formation Science, University of Pennsylvania, April
1998.

Michael Hicks, Jonathan T. Moore, D. Scott
Alexander, Carl A. Gunter, and Scott Net-
tles. PLANet: An active internetwork.
http://uwu.cis.upenn.edu/“switchuare/
papers/planet.ps.

Dag Johansen, Robbert van Renesse, and Fred B.
Schneider. Operating system support for mobile agents.
In Proceedings of the 5th Worlcshop on Hot Topics in
Operating Systems, May 1995.

Peter Lee and Mark Leone. Optimizing ML with run-
time code generation. In Proceedings of the ACM SIG-
PLAN ‘96 Conference on Programming Language De-
sign and Implementation, pages 137-148, May 1996.

Luc Moreau and Christian Queinnec. Design and se-
mantics of quantum: a language to control resource
consumption in distributed computing. In USENZX
Conference on Domain Specific Languages (DSL ‘SY),
pages 183-197, October 1997.

George C. Necula. Proof-carrying code. In Proceedings
of the 24th Annual ACM SZGPLAN-SZGACT Sympo-
sium on Principles of Programming Languages (POPL
‘97). ACM Press, 1997.

George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. In Second Symposium on
Operating System Design and Implementation (OSDI
‘96), 1996.

D. Pappalardo. BBN to test RSVP. Network World,
13(50):1,14, December 1996.

WI

PI

[23]

[241

[251

WI

PI

WI

PI

[301

J. Postel. User Datagram Protocol. RFC 768, ISI, Au-
gust 1980.

J. Pastel. Internet Control Message Protocol. RFC 792,
ISI, September 1981.

J. Postel. Internet Protocol. RFC 791, ISI, September
1981.

Query Certificate Manager project home page.
http://www.cis.upenn.edu/“qcm.

Jonathan M. Smith, Dave J. Farber, David C.
Feldmeier, Carl A. Gunter, Scott M. Net-
tles, William D. Sincoskie, and Scott Alexan-
der. Switchware: Accelerating network evolu-
tion. http://www.cis.upenn.edu/“switchware/
papers/sware.ps, 1996.

Switch Ware project home
http://www.cis.upenn.edu/-switchware.

page.

Adobe Svstems. PostScript Language Reference Man-
ual. Addison-Wesley, i985.

David L. Tennenhouse, Jonathan M. Smith, W. David
Sincoskie, David J. Wetherall, and Gary J. Minden. A
survey of active network research. IEEE Communica-
tions Magazine, 35(1):80-86, January 1997.

David J. \IVetherall, John Guttag, and David L. Ten-
nenhouse. ANTS: A toolkit for building and dynam-
ically deploying network protocols. In IEEE OPE-
NA RCH, April 1998.

J. %ander and R. Forchheimer. Softnet-An approach
to higher level packet radio. In Proceedings, AMRAD
Conference, San Francisco, 1983.

[18] C. Partridge and A. Jackson. Smart packets. Technical
report, BBN, 1996. http://www.net-tech.bbn.com/
smtpkts/smtpkts-index.html.

1191 Pizza home page. http: //uww . math. luc . edu/pizza.

[20] David C. Plummer. An Ethernet Address Resolution
Protocol. RFC 826, November 1982.

93

