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Mobile agents offer a new paradigm for distributed compu-
tation, but their potential benefits must be weighed
against the very real security threats they pose. These

threats originate not just in malicious agents but in malicious hosts
as well.1 For example, if there is no mechanism to prevent attacks, a
host can implant its own tasks into an agent or modify the agent’s
state. This can lead in turn to theft of the agent’s resources if it has to
pay for the execution of tasks, or to loss of the agent’s reputation if its
state changes from one host to another in ways that alter its behavior
in negative ways.

Moreover, if mobile agents ultimately allow a broad range of users
to access services offered by different and frequently competing orga-
nizations, then many applications will involve parties that may not
trust each other entirely.2 The operation of a mobile agent system will
therefore require security services that implement the agreements
made by the involved parties, whether declared or tacit. Thus, the
agreements cannot be violated, either accidentally or intentionally by
the involved parties or by malicious or curious parties not bound by
the agreements.

Aglets are Java-based

mobile agents

developed at IBM’s

Tokyo Research

Laboratory. 

This article describes a

security model for the

aglets development

environment that

supports flexible

architectural definition

of security policies.
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The security frameworks of Java and other
script languages for “remote programming”
such as Safe Tcl have allowed developers to
make some progress toward one issue of
mobile agent security—namely, the safe exe-
cution of untrusted code—through restrict-
ed environments based on sandboxing or a
separated execution environment. Some cur-
rent agent systems offer basic privacy mech-
anisms such as a secure channel between
machines via encryption of agents and mes-
sages on transmission. Some offer means of
authentication and integrity via the signing
of agents and messages sent between hosts,
again using a variety of cryptographic tools. Even fewer agent
systems (Agent Tcl,3 Telescript4) offer mechanisms to control
resource consumption. Finally, the Mobile Agent Facility*
under development at the Object Management Group will
include a security model based on the CORBA security spec-
ification. However, no system at present provides a general
security model.

In this article, we present our security model for the IBM
Aglets Workbench,* a Java-based environment for building
mobile agent applications. We detail both the security model
and corresponding security architecture that represents a
framework for the inclusion of security services in future
releases of the AWB. This work therefore represents an addi-
tional step toward the comprehensive security model required
for widespread commercial adoption of mobile agent systems
to occur.

AGLETS WORKBENCH
The IBM Aglets Workbench lets users create aglets, mobile
agents based on the Java programming language. The AWB
consists of a development kit for aglets and a platform for
their execution. It is based on the aglet object model, whose
major elements are aglets, contexts, and messages. The Aglet
Transfer Protocol (ATP) and the Aglet API 
(A-API) are further AWB components that define how to
transport aglets and how to interface to aglets and contexts. 

In this section we briefly describe these elements as far as
necessary to understand the security work presented next.
For more details on aglets, see Lange and Oshima,5 available
as a working draft “cookbook” on the aglets site* at the
Tokyo Research Laboratory. For tutorials on aglets and
AWB, see Sommers6 and Venners.7,8

Aglets Object Model
Aglets are serialized Java objects that visit aglet-enabled hosts
in a computer network. An aglet that executes on one host
can halt execution, dispatch to a remote host, and resume
execution there. When the aglet migrates, it takes along its
program code as well as its data. An aglet is autonomous

because it runs in its own thread of execution after arriving
at a host; it is reactive because it can respond to incoming
messages.

A context is an aglet’s workplace. It is a stationary object
that provides a means for maintaining and managing active
aglets in a uniform execution environment where the host
system is secured against malicious aglets. A proxy is a rep-
resentative of an aglet. It serves as a shield to protect the aglet
from direct access to its public methods. The proxy also gives
the aglet location transparency; that is, it can hide the aglet’s
real location. 

A message is an object exchanged between aglets. As
mobile and autonomous objects, aglets do not exist in stat-
ically configured object structures but must instead interact
with objects that might originate from unknown sources.
Aglets therefore communicate by message passing and not
by method invocation. Message passing allows flexible inter-
action and exchange of knowledge between systems. 

Other agent languages, for example Agent Tcl3 and
Telescript,4 focus on process migration, which lets an agent
“leave” one machine in the middle of a loop and resume exe-
cution in the middle of that loop on another machine.
Aglets, by comparison, use an event-based scheme, as in win-
dow system programming. They implement several event-
handling methods, which can be customized by program-
mers. These methods cover all important events in an aglet’s
life cycle (see Table 1). For example, if an aglet is moved, it
will be notified upon leaving its host and upon arriving at
the new host. 

An aglet is created within a context. The new aglet is
assigned an identifier, inserted into the context, and initial-
ized. The aglet starts to execute as soon as it has been ini-
tialized. The cloning of an aglet produces an almost identi-
cal copy of the original in the same context, except that the
clone has a different identifier and restarts execution. 

Dispatching an aglet from one context to another will
remove it from its current context and insert it into the des-
tination context, where it will restart execution. We say that
the aglet has been “pushed” into its new context. The retrac-

S E C U R I T Y  M O D E L

69

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

Table 1. Aglet life-cycle events and their methods. 
Event                 Methods                                               

As the event takes place After the event has taken place 
Creation onCreation()
Cloning onCloning() onClone()
Dispatching onDispatching() onArrival()
Retraction onReverting() onArrival()
Disposal onDisposing()
Deactivation onDeactivating()
Activation onActivation()
Messaging handleMessage()

.



tion of an aglet will “pull” (remove) it from its current con-
text and insert it into the context from which the retraction
was requested. 

Deactivation of an aglet removes it temporarily from its
current context and holds it in secondary storage. Activation
of an aglet restores it into a context. Disposal of an aglet halts
its current execution and removes it from its current context.
Figure 1 illustrates these events in the life cycle of an aglet. 

Aglets communicate via messages. Each aglet can be
equipped with a message-handling method that lets it react
to incoming message objects sent from another (possibly
remote) aglet. Message handling can be synchronous or
asynchronous. A future-reply object returned by the mes-
sage-sending method allows the aglet either to wait for a
reply or to continue processing and get the reply later. An
aglet can also multicast a message to all aglets within the
same context that have subscribed to that message. 

Aglet API
The Java Aglet API9 defines the methods necessary for aglet
creation and manipulation. A-API is public and therefore
allows the development of platform-independent mobile
agents written in the Java programming language. Aglets
written to the API will run on any machine that supports it.
A-API has two core classes and core interface. 

The Aglet class, a subclass of Object, is the abstract base
class. It defines final methods for controlling an aglet’s own
life cycle—namely, methods for cloning, dispatching, deac-
tivating, and disposing of itself. It also defines methods that
are supposed to be overridden in its subclasses by the aglet
programmer, and provides “hooks” to customize an aglet’s
behavior. These methods are invoked systematically by the
system when certain events take place in the life cycle of an
aglet (see Table 1). 

The AgletProxy class serves as a shield for aglets, protect-
ing them from direct access to their public methods.
Interaction with an aglet takes place only via its proxy. Aglets
do not interact with other aglets by invoking their methods.
For example, a proxy is returned on any of the following
aglet creation requests: 

■ AgletContext.createAglet(...); 
■ Aglet.clone(); 
■ AgletProxy.clone(); 

The context or other
aglets might use several of the
proxy’s methods—such as
clone(), dispatch(), dispose(),
and deactivate()—to control
the aglet. The method
sendMessage() is used to send
asynchronous messages to the
aglet via its proxy. 

An aglet uses the AgletContext interface to obtain infor-
mation about its environment and to send messages to the
environment, including to other aglets currently active in it.
The interface provides means for maintaining and manag-
ing active aglets in an environment where the host system is
secure against malicious aglets. If an aglet has access to a
given context, it can create new aglets or retract remotely
located aglets into the current context. It can also retrieve a
list (enumeration) of proxies of its fellow aglets present in
the same context. 

The aglet context is typically created by a system having
a network daemon that listens for aglets. The daemon inserts
incoming aglets into the context. Often, a user interface
component will provide a graphical or command line inter-
face to the context. In general, any user can set up a context.
Thus, an aglet network potentially includes contexts that
not all users trust. 

THREATS, ATTACKERS, AND
COUNTERMEASURES
There are four security issues specific to a mobile agent sys-
tem.3 They are

■ protection of the host against aglets, 
■ protection of other aglets, 
■ protection of the aglet from the host, and 
■ protection of the underlying network. 

Whereas the literature discusses all of these issues (for
example, see Chess et al.10 and Farmer et al.2), researchers
have found serious solutions only for the first two. Our secu-
rity model for the Aglets Workbench also focuses on these
two issues, although the model is flexible enough to accom-
modate eventual solutions to the latter two as well. 

While developing the model, we assumed that an aglet
system is subject to the fundamental threats of disclosure,
modification, denial of use, misuse, abuse, and repudiation.
These threats are possible not only when the aglets travel but
also when they are in aglet contexts. We assumed that attack-
ers can perform passive and active attacks utilizing aglets,
aglet contexts, or other mechanisms. 
Table 2 lists and briefly describes the attacks possible on aglets.
A secure aglet system must provide services to counter these
threats. However, there is no countermeasure if the attacker
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exploits system flaws or security weaknesses
such as bypassing controls, exploiting trap-
doors, or introducing Trojan horses.11

A security architecture must therefore
confine key security functionality to a trust-
ed core that enforces the essential parts of the
security policy. These parts include 

■ protecting aglet transfer and communi-
cation as required by the security policy, 

■ performing the required access control
and auditing of aglet execution, 

■ preventing (groups of ) aglets from inter-
fering with each other or gaining unau-
thorized access to each other’s state, and 

■ preventing aglets from interfering with
their hosting aglet system.

Additional requirements to be met in some
systems include 

■ allowing the use of different cryptographic algorithms, 
■ keeping the amount of information encrypted for con-

fidentiality to a minimum, and
■ being compatible with standard distributed security

frameworks such as those of IETF,* X/Open,* and
OMG.*

However, there are security requirements for agents and hosts
that cannot be fulfilled.2,10 It is impossible, for example,

■ to hide anything within an agent without the use of
cryptography, 

■ to communicate secretly with a large, anonymous group
of agent platforms, 

■ to prevent agent tampering unless trusted hardware is
available in agent platforms, and 

■ to distinguish an agent from a clone. 

These limitations imply that an agent cannot carry its own
key (or other secrets, such as a credit card number) in a form
that can be used on untrusted hosts. 

Moreover, it is impossible for an agent to verify whether 

■ an interpreter is untampered, 
■ an interpreter will run an agent correctly, 
■ a host will run an agent to completion, or 
■ a host will transmit an agent as requested. 

Because aglets are Java objects, they have potential access to
all Java class files on the host; they also rely on the security of
the Java interpreter for their proper execution. Thus, aglet secu-
rity and Java security go hand in hand. All the security con-

cerns raised about Java also affect the safe execution of aglets
(for example, see FAQs at JavaSoft* and the Princeton Secure
Internet Programming Team.* A small local bug in the imple-
mentation of the hosting Java interpreter will affect the secu-
rity of the Aglet Workbench. 

Together, these limitations outline the bounds of possi-
bility achievable by technological means only. Although legal
and social controls may offer other means of protecting
mobile agents, the scope of our security model is restricted to
solutions achievable with standard security technology. 

SECURITY MODEL
We have developed a security model that provides an overall
framework for aglet security. The model supports the flexi-
ble definition of various security policies and describes how
and where a secure system enforces these policies.

Security policies are defined in terms of a set of rules by
one administrative authority. The policies specify 

■ the conditions under which aglets may access objects; 
■ the authentication required of users and other principals,

which actions an authenticated entity is allowed to per-
form, and whether entities can delegate their rights;

■ the communications security required between aglets
and between contexts, including trust; and

■ the degree of accountability required for each security-
relevant activity. 

An aglet might be unaware of the security policy of the host-
ing context and how it is enforced. If so, the user can be
authenticated prior to creating the aglet; security is then
enforced automatically. Some aglets will need to control or
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Table 2. Possible attacks on aglets. 
Eavesdropping Information is revealed from monitored

communications. 
Intercept/alter A communicated data item, such as a Java

class file, is changed, deleted, or substituted
while in transit. In particular, any context
visited on the aglet’s itinerary could strip
data added by previous contexts. 

Replay A captured copy of a previously sent
legitimate aglet is retransmitted for
illegitimate purposes. 

Masquerade An entity pretends to be a different entity,
for example, one aglet pretends to be
another. 

Resource exhaustion A resource is deliberately used so heavily that
service to other users is disrupted. 

Repudiation A party to a communication exchange later
denies that the exchange took place. 

.



influence which policy is enforced by the system on their
behalf, but will not enforce it themselves. Others will need to
enforce their own security, to control access to their own
data, or to audit their own security-relevant activities. 

Principals and Identities
A principal is any entity whose identity can be authenticat-
ed by a system that the principal may try to access. A prin-
cipal can be an individual, a corporation, a daemon thread,
or a smart card. An identity consists of a name and possibly
other attributes.

Our aglets security model identifies several principals,
each having certain responsibilities and interests, which are
summarized in Table 3. Aglets and contexts are processes
(threads) running on behalf of a user; manufacturers, own-
ers, masters, and authorities are users imposing “roles” on
aglets and contexts that reflect their organizational, func-
tional, or social position.

Aglets. Every aglet has an identifier that is unique over its
life time and independent of the context it is executing in.
Its value, however, is not known before the aglet has been
created and thus not easily accessible for authorization pur-
poses. Therefore, the aglet identity includes its class name—
a kind of “product” name—for authentication. The identi-
fier might be used in policies that refer to specific instances
of aglets; for example, it might indicate that a particular aglet
can dispose of any of its offsprings. An aglet’s product name
might be used when only a certain type of aglet is meant; for
example, aglets of class ibm.aglets.samples.watcher might have
access to specific HTML files. 

The aglet manufacturer produces a well-defined and reli-
able aglet. It is in the manufacturer’s interest that no dam-
age can be claimed to have been caused by a malfunction-
ing aglet. For its own protection, the manufacturer might
define terms of liability. 

The aglet owner is concerned mainly about the safety of
the launched aglet. Can the returned results be trusted? Did
every context execute the aglet properly? For that purpose,
the owner may define security preferences, a set of rules that
specify who may access/interact with the aglet on its itiner-
ary. However, as the aglet has to rely on the context to carry
out compliance, the preferences are no more than a state-
ment of intent. Security preferences also allow the owner to
limit the aglet’s capabilities, for example to specify some
global allowance on the maximum number of hops, CPU-
time consumption, and so on. 

Contexts. The context manifests the execution platform
of the aglet. Its identity is the URL of the host together with
a qualifier if there is more than one context. Unlike aglets,
contexts are long-lived objects and thus may keep their iden-
tity—that is, their address—even after updates or complete

replacements of the software and hardware that realize the
context. For security-critical applications that associate trust
with a specific version of the context, the identity of a con-
text must have an attribute like the serial number of a CPU.
Just as a software license can be granted to only one specific
computer, identified by the serial number of its CPU, a con-
text’s serial number refers to a specific release of its software
and hardware. 

The context manufacturer produces a reliable context
according to the A-API specification. Again, it is in a man-
ufacturer’s interest that no damage can be claimed to have
been caused by a malfunctioning context. The manufactur-
er’s specification of the context’s functionality sets the basis
for the context master. 

The context master is responsible for the safety and secu-
rity of the context and its underlying machine. A master
defines the security policy for the context under its control,
that is, for protecting local resources against aglets. The mas-
ter is also responsible for guaranteeing that no aglet can
interfere with any other aglet active in the same context if
not explicitly permitted by the aglet owner. 

Domains. Several things make it appealing to organize
contexts into groups. For example, a context provides a cer-
tain infrastructure—general services for aglet administration
(creation, activation, retraction), communication, support
of audio and images—as well as specific security services
such as authentication, authorization, and accounting. A
single context providing all these services might be very
expensive, so grouping contexts can be efficient and cost-
effective. It might also easily achieve secure communication
between contexts of the group if communication is local and
thus protected by means of the operating system. 

All domain members follow the same security policies as
set up by the domain authority. In some cases the
DomainAuthority and the ContextMasters of the domain
members are the same principal. In other cases the
DomainAuthority and the ContextMasters are different
principals, as in the case of a mall provider and a set of shop
owners. 

A domain might correspond with an Internet subdomain,
for example the set of all contexts with the address
*.trl.ibm.com. It might also be the set of all contexts owned
by the same master or defined by a directory or a certificate
stating the context’s membership in the domain.

Security Policies
All principals introduced here may define security policies,
in particular the aglet owner and the context master. Thus,
a secure aglet system should implement the overall effect of
all security policies involved. For example, although the aglet
owner might have specified that the aglet can consume up
to 10 seconds within each context visited, the context mas-
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ter can set a limit of 5 seconds, which will
override the owner’s limit. 

The hierarchy of security policies defined
by different principals is 

AgletManufacturer < AgletOwner <
ContextMaster < DomainAuthority 

indicating that the domain authority sets the
basic policies on the execution of aglets with-
in a given context, which can then be refined
but not overwritten by the context master,
aglet owner, and aglet manufacturer. 

A policy database represents the policy
defined by the context master; security pref-
erences represent the policy defined by the
aglet owner. 

Aglet Mobility
If the aglet manufacturer, aglet owner, context manufacturer,
and context master can be properly identified—for example,
by their public key and with the help of a suitable certifica-
tion infrastructure—the following example describes the steps
it takes to create an aglet and to let it travel securely. 

Before the owner can launch an aglet, the context authen-
ticates the owner as a registered user. Within the creation
request, the aglet owner defines security preferences to be
applied on the aglet. When the context instantiates the aglet
from the corresponding Java class, it might include infor-
mation about the manufacturer, owner, and the aglet’s orig-
inal context—that is, about itself. This information, togeth-
er with the aglet code and the owner’s security preferences,
forms the static part of the aglet, and will be signed by the
context. Thus, any receiving context can verify the integrity
of the static part of the aglet. 

Aglets move when they are either dispatched to or retract-
ed from a remote location. We use the following terminolo-
gy to describe an aglet’s travel: 

■ origin context—the context in which the aglet has been
created. 

■ destination context—the context that receives an aglet. 
■ current context—the context that delivers the aglet to

the receiving context.

Current and destination contexts establish a secure chan-
nel between themselves. The current context protects the
integrity of aglet data by computing a secure hash value that
allows the destination context to perform after-the-fact
detection of tampering during the aglet’s transit.
Unauthorized parties can be prevented from reading sensi-
tive information held by an aglet while it is in transit
between two aglet contexts if the peer contexts agree on the

use of cryptography for encryption. 
For each context, a security policy describes the proper

communication mechanism with any peer context. For exam-
ple, although an aglet might not require any security protec-
tion for its transfer to the destination context, the destination
context’s security policy may lay down the use of the Secure
Socket Layer (SSL) protocol with client authentication. 

Access to Local Resources
When an aglet enters a context, the context receives a refer-
ence to it, and the aglet resumes execution in the new con-
text. The aglet can also obtain a reference to the context inter-
face. An aglet uses the context to gain information about its
new environment, in particular about other aglets currently
active in the context in order to interact with some of them.

Contexts have to protect themselves against aglets and
aglets must be precluded from interfering with each other.
The aglet context establishes a reference monitor, which gives
an aglet access to a resource only if it complies with the access
control policy instated by the context master. Thus a context
establishes a domain of logically related services under a com-
mon security policy governing all aglets in that context. 

The master of the context configures authorization poli-
cies for incoming aglets. In general, there is the following
hierarchy of authorization policies: 

■ general level for an unauthenticated manufacturer, 
■ organization level for an unauthenticated owner, and 
■ per-aglet level otherwise. 

In addition, authorization may be given with respect to com-
puting power, occupancy level, organizational affiliation,
pricing, code certification, or the type of aglet (such as a
game or search aglet). 
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Table 3. Principals defined in the aglets security model.
Aglet Instantiation of the aglet program itself (thread)
AgletManufacturer Author of an aglet program (human, company,

content rating service, and so on) 
AgletOwner Individual that launched the aglet (human) or

principal that has legal responsibility for the aglet’s
behavior 

Context Interpreter that executes aglets (process, thread, and
so on) 

ContextManufacturer Author of a context program/product (human,
company, and so on) 

ContextMaster Owner/administrator/operator of the context
(human, company, and so on) 

Domain A group of contexts owned by the same authority 
DomainAuthority Owner/administrator/operator of the domain

(human, company, and so on)

.



According to a security policy defined using this hierar-
chy, the reference monitor of an aglet context might give
permission to obtain file information; to read, write, or
delete local files; to connect to a network port on the origin
context or to any other context; to load a library; or to cre-
ate a pop-up window. These resources are taken from the
Java model. In an aglet system, there are additional resources
for such things as creating new aglets, cloning a specified
aglet, and dispatching or disposing of an aglet.

Because an aglet carries the security preferences of its
owner, it usually includes rules that govern its consent for
cooperation. However, the aglet has to rely on the context
for compliance. The aglet’s security preferences describe who
and under which circumstances the context or another aglet
may dispose of, deactivate, clone, dispatch, or retract the
aglet. The preferences may further define which other aglets
may call which of its methods. 

SECURITY ARCHITECTURE
The security architecture implements the security model by
providing a set of components and their interfaces. In this
section, we introduce two components of the aglets securi-
ty architecture: the policy database of the context master and
the preferences of the aglet owner. Because both context
master and aglet owner have their own specific interests con-
cerning what an aglet should be able to do, both may want
to restrict its capabilities. Such restrictions might apply to
either accessing the local resources of a context or offering
services to other aglets. The policy database and security
preferences therefore constitute powerful elements in intro-
ducing security into the Aglets Workbench. 

Any useful mobile agent system must implement gener-
al and flexible security policies. Our model simplifies the
administration of these policies by introducing the notion
of roles, namely, the manufacturer, owner, master, and
authority principals. In the following, we describe a language
for defining policies using the concepts presented in our
security model, and show how a context master and an aglet
owner can use it to define their policies. The language pro-
vides named groups, composite principals (a set of princi-
pals), and hierarchical resources with associated permissions
that allow the definition of high-level authorization policies.
To allow fine-grained control, a security policy consists of a
set of named privileges and a mapping from principals to
privileges. Furthermore, the language allows the definition of
black lists that disallow aglets and contexts known not to
behave well.

Authorization Language
For illustration, we define the following principals: 

■ manufacturer—Hermes, Athena, Cronos 
■ owner—Semele, Leda 

■ master—Apollo, Hades
■ authority—Zeus 
■ context—Olympus, Underworld
■ aglet—Castor, Pollux

We use these names to simplify our discussion, but the real
value of Olympus might be something like atp://www.trl.
ibm.co.jp and its product name might be ibm.aglets.tahiti.
Tahiti. The product name of aglet Castor might actually be
ibm.aglets.samples.Writer. 

Basic principals address single aglets or groups of aglets.
The following are examples of basic principals: 

■ aglet=Pollux—denotes the aglet Pollux. 
■ owner=Semele—denotes all aglets launched by Semele. 
■ manufacturer=Hermes—denotes all aglets written by

Hermes. 
■ context=Underworld—denotes all aglets arriving directly

from Underworld. 
■ master=Apollo—denotes all aglets arriving directly from

contexts mastered by Apollo. 
■ authority=Zeus—denotes all aglets arriving directly from

contexts controlled by Zeus. 

A manufacturer might become authenticated by a signed
Java class file. A master might become authenticated by peer
authentication. The use of wild cards enables the specifica-
tion of groups of contexts, for example, www.*.ibm.com or
*.edu. 

In particular, principals that denote contexts or masters
indirectly identify the context from which an aglet has
arrived. By convention, when an aglet is launched, the con-
text and master refer to the corresponding principal of the
local host. 

Composite principals offer a convenient way to combine
privileges that must be granted to multiple principals into a
single access right. Such a grouping feature considerably sim-
plifies the security administration. Membership in a group
supports the combination of various principals that should
have the same access rights. For example, the following spec-
ifications combine principals of the same type into named
groups and use these group names later in rule definitions: 

GROUP AssociationOfManufacturers=Hermes,Athena

This rule indicates that group “Association Of Manufacturers”
consists of Hermes and Athena. 

Cronos IS_MEMBER_OF Titans

This rule adds Cronos to group Titans. 
Three other constructors denote set difference

(EXCEPT), set differences (OR), and set intersection
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(AND). Set union is useful for handling exceptions, such as
a privilege that should be given to a group except for a cer-
tain user.

The following are examples of these constructions:

■ owner=Leda OR context=Underworld—any aglet owned by
Leda or arriving from context Underworld. 

■ owner=Semele AND context=Underworld—any aglet
owned by Semele and arriving from Underworld. 

■ manufacturer=AssociationOfManufacturers EXCEPT manu-
facturer=Titans—any aglet written by any member of
“Association Of Manufacturers” except those written by
members of group Titans. 

■ owner=Semele EXCEPT manufacturer=Cronos—any aglet
launched by Semele but not written by Cronos.

Privileges
Privileges define the capabilities of executing code by setting
access restrictions and limits on resource consumption. A
privilege is a resource, such as a local file, together with
appropriate permissions such as read, write, or execute in
the case of the local file. Our security architecture currently
considers the following resource types:

■ File—files in the local file system 
■ Net—network access 
■ Awt—the local window system 
■ System—any kind of system resources, such as memory

and CPUs 
■ QoP—quality of protection 
■ Context—resources of the context 
■ Aglet—resources of the aglet 

Resources are structured hierarchically. Thus, permissions
can be given to a set of resources or even to a complete
resource type, like universal file access. An example with a
simple hierarchy is the resource type File: 

■ File—all files 
■ File/tmp/sample.txt—the file /tmp/sample.txt

Net access is a more elaborate resource. Our authoriza-
tion language lets you distinguish among different protocols
(for example, TCP and HTTP) and select ports or port
ranges to build resources: 

■ Net—any kind of networking 
■ Net TCP—any kind of TCP connections 
■ Net TCP host—TCP connections to host
■ Net TCP host port—TCP connections to host but only on

port

Each resource also has a corresponding set of permissions.

The permissions for networks are send, receive, any, con-
nect, and accept. 

The services provided by the aglet context are also sub-
ject to control. The context provides methods to create,
retract, and activate aglets; to send or receive messages
to/from other aglets; to obtain aglet proxies, the hosting
URL, audio clips, and images; and to get or set the proper-
ties of the context. The following are example privileges: 

■ Context AGLET retract—the aglet can retract any aglet in
the context. 

■ Context AGLET owner=Leda retract—the requester of
method retractAglet can retract the specified aglet if the
owner of the retracted aglet is Leda. 

■ Context PROPERTY origin get—the aglet can retrieve prop-
erty origin of the context. 

■ Context MESSAGE subscribe—the aglet can subscribe to
messages. 

Combining resources with permissions, privileges are
defined as follows: 

■ File/tmp read,write—the aglet is allowed to read and write
from tmp. 

■ Net TCP Underworld 930-933 NOT connect—the aglet
cannot connect to context Underworld using TCP on
ports 930-933. (Note that this privilege expresses nega-
tive permission.) 

■ System LIBRARY ibm.db2.info—the aglet can load library
ibm.db2.info. 

■ System MAX_MEMORY 12—the aglet may not allocate
more than 12 Mbytes of memory. 

■ System MAX_DISK_SPACE 200—the aglet may not con-
sume more than 200 Kbytes of disk space. 

■ AWT Top_level_windows 1—the aglet can create one top-
level window. 

Our authorization language also introduces a special per-
mission called enter, which allows an aglet to enter the con-
text if granted. Used as a negative permission, it can exclude
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certain aglets from executing in that context (again, the idea
of a black list). 

Context Master Policy Database
The context master defines the security policy for aglet con-
texts under its control. This policy defines the actions an
aglet can take. In the policy database, the context master
combines principals that denote aglet groups and privileges
into rules. The syntactic form of a rule is 

<label>:<principal> -> <privileges> 

When an aglet matches multiple principals, we say that a
“consensus voting rule” combines the policies for those prin-
cipals. In other words, a negative rule rejects the request. The
contents of a policy database might then look like this:

TRUSTED:
manufacturer=Athena OR master=Hades ->
File /tmp read,write
Net TCP Underworld accept
Top_level_windows 3
Aglet owner=Leda retract
GUEST:
manufacturer=Hermes ->
Net message Olympus receive
Top_level_windows 1
Aglet Property get,set
REJECT:
manufacturer=Hermes,Titans ->
Context NOT enter

Note that none of the aglets mapping into the Reject group
will be allowed to enter the context because they do not have
the necessary enter privilege. 

Aglet Owner Preferences
The aglet owner has the opportunity to establish a set of
security preferences that will be honored by the contexts the
aglet might visit. Preference combines context groups and
privileges into rules. The syntactic form of a rule is 

<label>:<context_group_definition> -> <privileges>

The following list defines the set of methods on aglets
that an owner can restrict: 

■ clone/deactivate/dispatch/retract/dispose 
■ get AgletClassName/AgletContext/CodeBase/Identifier/

Itinerary/MessageManager/Property/PropertyKeys/Text 
■ send Message 
■ set Itinerary/Property/Text 
■ subscribe/unsubscribe (all) messages 

These actions can be requested by the aglet itself or by other
actions via the AgletProxy. The following are examples of
security preferences: 

■ context=Olympus EXCEPT master=Apollo -> ITINERARY
set—the aglet’s itinerary might be changed at context
Olympus but only if this context is not mastered by
Apollo. 

■ master=Hades -> MESSAGE welcome subscribe—at all con-
texts mastered by Hades, the aglet might subscribe to
messages of kind welcome. 

■ -> aglet=Pollux OR owner=Leda AGLET dispose—at any
context the aglet might only be disposed of by aglet
Pollux or any other aglet owned by Leda.

Allowances are preferences dealing with the consumption
of resources such as CPU time or memory. They can be
local, concerning only the current context, or global and
thus apply to the set of all hosts visited. A global allowance
at the time of creation puts overall limits on the aglet’s action
over its lifetime, effectively limiting its owner’s liability.
Aglets can also form groups sharing a common allowance.
The allowance defines a maximum age or size, and indicates
whether new aglets can be created. In the case of aglet cre-
ation or cloning, the allowance must be shared. 

CONCLUSIONS
Like any other downloadable and executable code, mobile
agents are a potential threat to a system. But they are also
exposed to threats by their hosting system, a situation not
currently dealt with in traditional security systems. It is our
belief that applications based on aglets will be widely accept-
ed only if users are convinced that security services can cope
with both kinds of threats.

Our security model for aglets is a first step toward alleviat-
ing these threats. The model clearly defines the principals with-
in an aglet system with respect to their responsibilities (liabil-
ities) and interests. The model explains how aglets migrate, and
depicts their access to local resources. Thus it serves as a refer-
ence for a corresponding security architecture. We introduced
two elements of the security architecture—the policy database
and owner-specified preferences—and demonstrated how
these elements control security-unaware aglets.

Our current work addresses the aglet security API that
will enable aglet application developers to enforce their own
security—so that an aglet can, for example, control access
to its own data or audit its own security-relevant activities.
Such security-aware aglets could implement, say, the secure
KQML, as proposed by Thirunavukkarasu et al.,12 using the
offered API primitives. The API design takes into account
the security features added to the Java Developer’s Kit
Version 1.1 and subsequent versions. In particular, protec-
tion domains and a uniform way to access user identities that

I N T E R N E T - B A S E D  A G E N T S

76

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.



were established in different ways have been proposed.8 This
may simplify the implementation of the aglet security API.13

However, to prevent denial-of-service attacks and thus to
implement the observance of allowances, the context must
monitor resource consumption. This may not be possible
without also changing the Java virtual machine.

Although our authorization language is already quite
expressive, we will extend it to support contextual informa-
tion, such as aglet history and time, in access decisions. For
example, a policy that allows network access only if the aglet
has not previously accessed the file system certainly allows
network permission to be given to a larger group of aglets.

We have not resolved how to protect an aglet’s internal
state against snooping and tampering, and a generic solution
to this problem is still a very challenging research topic.
However, there are security mechanisms today for limited
mobile agent applications, and more will be developed soon.
Proposals for such mechanisms were discussed recently at a
DARPA Workshop on Foundations for Secure Mobile
Code.* Our strategy is to provide a well-defined and rich set
of security services within the Aglets Workbench that will
enable the implementation of these mechanisms to better
protect an aglet from a malicious host. ■
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