
Friday, July 4, 1997, 11:53 am 1

Mobile Ambients

Luca Cardelli

Digital Equipment Corporation, Systems Research Center
<http://www.research.digital.com/SRC/personal/Luca_Cardelli/home.html>

Andrew D. Gordon

University of Cambridge, Computer Laboratory
<http://www.cl.cam.ac.uk/users/adg>

Abstract
We introduce a calculus describing the movement of processes and devices,
including movement through administrative domains.

1 Introduction
There are two distinct areas of work in mobility: mobile computing, concerning compu-
tation that is carried out in mobile devices (laptops, personal digital assistants, etc.),
and mobile computation, concerning mobile code that moves between devices (applets,
agents, etc.). We aim to describe all these aspects of mobility within a single framework
that encompasses mobile agents, the ambients where agents interact and the mobility of
the ambients themselves.

The inspiration for this work comes from the potential for mobile computation
over the World-Wide Web. The geographic distribution of the Web naturally calls for
mobility of computation, as a way of flexibly managing latency and bandwidth. Be-
cause of recent advances in networking and language technology, the basic tenets of
mobile computation are now technologically realizable. The high-level software archi-
tecture potential, however, is still largely unexplored.

The main difficulty with mobile computation on the Web is not in mobility per se,
but in the handling of administrative domains. In the early days of the Internet one could
rely on a flat name space given by IP addresses; knowing the IP address of a computer
would very likely allow one to talk to that computer in some way. This is no longer the
case: firewalls partition the Internet into administrative domains that are isolated from
each other except for rigidly controlled pathways. System administrators enforce poli-
cies about what can move through firewalls and how.

Mobility requires more than the traditional notion of authorization to run or to ac-
cess information in certain domains: it involves the authorization to enter or exit certain
domains. In particular, as far as mobile computation is concerned, it is not realistic to
imagine that an agent can migrate from any point A to any point B on the Internet.
Rather an agent must first exit its administrative domain (obtaining permission to do
so), enter someone else’s administrative domain (again, obtaining permission to do so)
and then enter a protected area of some machine where it is allowed to run (after ob-

2 Friday, July 4, 1997, 11:53 am

taining permission to do so). Access to information is controlled at many levels, thus
multiple levels of authorization may be involved. Among these levels we have: local
computer, local area network, regional area network, wide-area intranet and internet.
Mobile programs must be equipped to navigate this hierarchy of administrative do-
mains, at every step obtaining authorization to move further. Similarly, laptops must
be equipped to access resources depending on their location in the administrative hier-
archy. Therefore, at the most fundamental level we need to capture notions of loca-
tions, of mobility and of authorization to move.

Today, it is very difficult to transport a working environment between two com-
puters, for example, between a laptop and a desktop, or between home and work com-
puters. The working environment might consist of data that has to be copied, and of
running programs in various stages of active or suspended communication with the
network that have to be shut down and restarted. Why can't we just say “move this
(part of the) environment to that computer” and carry on? When on a trip, why
couldn't we transfer a piece of the desktop environment (for example, a forgotten open
document along with its editor) to the laptop over a phone line? We would like to dis-
cover techniques to achieve all this easily and reliably.

With these motivations, we adopt a paradigm of mobility where computational
ambients are hierarchically structured, where agents are confined to ambients and
where ambient move under the control of agents. A novelty of this approach is in al-
lowing the movement of self-contained nested environments that include data and live
computation, as opposed to the more common techniques that move single agents or
individual objects. Our goal is to make mobile computation scale-up to widely distrib-
uted, intermittently connected and well administered computational environments.

This paper is organized as follows. In the rest of Section 1 we introduce our basic
concepts and we compare them to previous and current work. In Section 2 we describe
a calculus based exclusively on mobility primitives, and we use it to represent basic no-
tions such as numerals and Turing machines. In Section 3 we extend our calculus with
local communication, and we show how we can represent more general communica-
tion mechanisms as well as the π-calculus, some λ-calculi, and firewall-crossing. Both
Section 2 and Section 3 include an operational semantics; formal properties of the se-
mantics are studied in the Annex.

1.1 Ambients

An ambient, in the sense in which we are going to use this word, has the following main
characteristics:

• An ambient is a bounded placed where computation happens. The interesting
property here is the existence of a boundary around an ambient. If we want to
move computations easily we must be able to determine what should move; a
boundary determines what is inside and what is outside an ambient. Examples
of ambients, in this sense, are: a web page (bounded by a file), a virtual address
space (bounded by an addressing range), a Unix file system (bounded within a

Friday, July 4, 1997, 11:53 am 3

physical volume), a single data object (bounded by “self”) and a laptop (bound-
ed by its case and data ports). Non-examples are: threads (where the boundary
of what is “reachable” is difficult to determine) and logically related collections
of objects. We can already see that a boundary implies some flexible addressing
scheme that can denote entities across the boundary; examples are symbolic
links, Uniform Resource Locators and Remote Procedure Call proxies. Flexible
addressing is what enables, or at least facilitates, mobility. It is also, of course, a
cause of problems when the addressing links are “broken”.

• An ambient is something that can be nested within other ambients. As we dis-
cussed, administrative domains are (often) organized hierarchically. If we want
to move a running application from work to home, the application must be re-
moved from an enclosing (work) ambient and inserted in a different enclosing
(home) ambient. A laptop may need a removal pass to leave a workplace, and a
government pass to leave or enter a country.

• An ambient is something that can be moved as a whole. If we reconnect a laptop
to a different network, all the address spaces and file systems within it move ac-
cordingly and automatically. If we move an agent from one computer to anoth-
er, its local data should move accordingly and automatically.

More precisely, we investigate ambients that have the following structure:

• Each ambient has a name. The name of an ambient is used to control access (en-
try, exit, communication, etc.). In a realistic situation the true name of an ambi-
ent would be guarded very closely, and only specific capabilities would be
handed out about how to use the name. In our examples we are usually more
liberal in the handling of names, for sake of simplicity.

• Each ambient has a collection of local agents (a.k.a. threads, processes, etc.).
These are the computations that run directly within the ambient and, in a sense,
control the ambient. For example, they can instruct the ambient to move.

• Each ambient has a collection of subambients. Each subambient has its own
name, agents, subambients, etc.

In all of this, names are extremely important. A name is:

• something that can be created, passed around and used to name new ambients.

• something from which capabilities can be extracted.

1.2 Technical context: systems

Many software systems have explored and are exploring notions of mobility. Among
these are:

• Obliq [5]. The Obliq project attacked the problems of distribution and mobility
for intranet computing. It was carried out largely before the Web exploded.
Within its scope, Obliq works quite well, but is not really suitable for computa-

4 Friday, July 4, 1997, 11:53 am

tion and mobility over the Web, just like most other distributed paradigms de-
veloped in pre-Web days.

• Telescript [16]. Our ambient model is partially inspired by Telescript, but is al-
most dual to it. In Telescript, agents move whereas places stay put. Ambients,
instead, move whereas agents are confined to ambients. A Telescript agent,
however, is itself a little ambient, since it contains a “suitcase” of data.

• Java [11]. Java provides a working paradigm for mobile computation, as well as
a huge amount of available and expected infrastructure on which to base more
ambitious mobility efforts.

• Linda [6]. Linda is a “coordination language” where multiple processes interact
in a common spaces (called a tuple space) by dropping and picking up tokens
asynchronously. Distributed versions of Linda exists that use multiple tuple
spaces and allow remote operations over those. A dialect of Linda [7] allows
nested tuple spaces, but not mobility of the tuple spaces.

1.3 Technical context: formalisms

Many existing calculi have provided inspiration for our work. In particular:

• The π-calculus [15] is a process calculus where channels can “move” along other
channels. The movement of processes is represented as the movement of chan-
nels that refer to processes. Therefore, there is no clear indication that processes
themselves move. For example, if a channel crosses a firewall (that is, if it is com-
municated to a process meant to represent a firewall), there is no clear sense in
which the process has also crossed the firewall. In fact, the channel may cross
several independent firewalls, but a process could not be in all those places at
once. Nonetheless, many fundamental π-calculus concepts and techniques are at
the basis of our work.

• The spi-calculus [1] extends the π-calculus with cryptographic primitives. The
need for such extensions does not seem to arise immediately within our ambient
calculus. Some of the motivations for the spi-calculus extension are already cov-
ered by the notion of encapsulation within an ambient. However, we do not
know yet how extensively we can use our ambient primitives for cryptographic
purposes.

• The Chemical Abstract Machine [3] is a semantic framework, rather than a spe-
cific formalism. Its basic notions of reaction in a solution and of membranes that
isolate subsolutions, closely resemble ambient notions. However, membranes
are not meant to provide strong protection, and there is no concern for mobility
of subsolutions. Still, we adopt a “chemical style” in presenting our calculus.

• The join-calculus [9] is a reformulation of the π-calculus with a more explicit no-
tion of places of interaction; this greatly helps in building distributed implemen-
tations of channel mechanisms. The distributed join-calculus [10] adds a notion

Friday, July 4, 1997, 11:53 am 5

of named locations, with essentially the same aims as ours, and a notion of dis-
tributed failure. Locations in the distributed join-calculus form a tree, and sub-
trees can migrate from one part of the tree to another. A main difference with
our ambients is that movement may happen directly from any active location to
any other known location.

• LLinda [8] is a formalization of Linda using process calculi techniques. As in dis-
tributed versions of Linda, LLinda has multiple distributed tuple spaces. Multi-
ple tuple spaces are very similar in spirit to multiple ambients, but Linda’s tuple
spaces do not nest, and there are no restrictions about accessing a tuple space
from any other tuple space.

• A growing body of literature is concentrating on the idea of adding discrete lo-
cations to a process calculus and considering failure of those locations [2, 10].
This approach aims to model traditional distributed environments, along with
algorithms that tolerate node failures. However, on the Internet, node failure is
almost irrelevant compared with inability to reach nodes. Web servers do not of-
ten fail forever, but they frequently disappear from sight because of network or
node overload, and then they come back. Sometimes they come back in a differ-
ent place, for example, when a Web site changes its Internet Service Provider.
Moreover, inability to reach a Web site only implies that a certain path is un-
available; it implies neither failure of that site nor global unreachability. In this
sense, an observed node failure cannot simply be associated with the node itself,
but instead is a property of the whole network, a property that changes over
time. Our notion of locality is induced by a non-trivial and dynamic topology of
locations. Failure is only represented, in a weak but realistic sense, as becoming
forever unreachable.

2 Mobility
We begin by describing a minimal calculus of ambients that includes only mobility
primitives. Still, we shall see that this calculus is quite expressive. In Section 3 we then
introduce communication primitives that allow us to write more natural examples.

2.1 Mobility Primitives

We first introduce a calculus in its entirety, and then we comment on the individual con-
structions. The syntax of the calculus is defined in the following table. The main syn-
tactic categories are processes (including both ambients and agents that execute
actions) and capabilities.

Mobility Primitives

n names

6 Friday, July 4, 1997, 11:53 am

Syntactic conventions

Abbreviations

The first four process primitives (restriction, inactivity, composition and replica-
tion) are commonly found in process calculi. To those we add ambients, n[P], and the
exercise of capabilities, M.P. Next we discuss these primitives in detail.

2.2 Explanations

We begin by introducing the semantics of ambients informally. A reduction relation
P����Q describes the evolution of a term P into a new term Q.

Restriction

The restriction operator:

creates a new (unique) name n within a scope P. The new name can be used to name
ambients and to operate on ambients by name.

As in the π-calculus [15], the (νn) binder can float outward as necessary to extend
the scope of a name, and can float inward when possible to restrict the scope. Unlike
the π-calculus, the names that are subject to scoping are not channel names, but ambi-
ent names.

The restriction construct is transparent with respect to reduction; this is expressed
by the following rule:

P,Q ::=
(νn)P
0
P|Q
!P
n[P]
M.P

processes
restriction
inactivity
composition
replication
ambient
action

M ::=
in n
out n
open n

capabilities
can enter n
can exit n
can open n

(νn)P|Q is read ((νn)P)|Q
!P|Q is read (!P)|Q
M.P|Q is read (M.P)|Q

(νn1...nm)P � (νn1)...(νnm)P
n[] � n[0]
M � M.0 (where appropriate)

(νn)P

Friday, July 4, 1997, 11:53 am 7

Inaction

The process:

is the process that does nothing. It does not reduce.

Parallel

Parallel execution is denoted by a binary operator that is commutative and associative:

It obeys the rule:

This rule directly covers reduction on the left branch; reduction on the right branch is
obtained by commutativity.

Replication

Replication is a technically convenient way of representing iteration and recursion. The
process:

denotes the unbounded replication of the process P. That is, !P can produce as many
parallel replicas of P as needed, and is equivalent to P|!P. There are no reduction rules
for !P; in particular, the term P under ! cannot begin to reduce until it is expanded out
as P|!P.

Ambients

An ambient is written:

where n is the name of the ambient, and P is the process running inside the ambient.
In n[P], it is understood that P is actively running, and that P can be the parallel

composition of several processes. We emphasize that P is running even when the sur-
rounding ambient is moving. Running while moving may or may not be realistic, de-
pending on the nature of the ambient and of the communication medium through
which the ambient moves, but it is consistent to think in those terms. We express the
fact that P is running by a rule that says that any reduction of P becomes a reduction of
n[P]:

In general, an ambient exhibits a tree structure induced by the nesting of ambient
brackets. Each node of this tree structure may contain a collection of (non-ambient) pro-

P ���� Q ⇒ (νn)P ���� (νn)Q

0

P|Q

P ���� Q ⇒ P | R ���� Q | R

!P

n[P]

P ���� Q ⇒ n[P] ���� n[Q]

8 Friday, July 4, 1997, 11:53 am

cesses running in parallel, in addition to subambients. We say that these processes are
running in the ambient, in contrast to the ones running in subambients. The general
shape of an ambient is, therefore:

To emphasize structure we may display ambient brackets as boxes. Then the gen-
eral shape of an ambient is:

Nothing prevents the existence of two or more ambients with the same name, ei-
ther nested or at the same level. Once a name is created, it can be used to name multiple
ambients. Moreover, !n[P] generates multiple ambients with the same name. This way,
for example, one can easily model the replication of services.

Actions and Capabilities

Operations that change the hierarchical structure of ambients are sensitive. In particu-
lar such operations can be interpreted as the crossing of firewalls or the decoding of ci-
phertexts. Hence these operations are restricted by capabilities. Thanks to capabilities,
an ambient can allow other ambients to perform certain operations without having to
reveal its true name. With the communication primitives of Section 3, capabilities can
be transmitted as values.

The process:

executes an action regulated by the capability M, and then continues as the process P.
The process P does not start running until the action is executed. The reduction rules
for M. P depend on the capability M, and are described below case by case.

We consider three kinds of capabilities: one for entering an ambient, one for exiting
an ambient and one for opening up an ambient. Capabilities are obtained from names;
given a name n, the capability in n allows entry into n, the capability out n allows exit
out of n and the capability open n allows the opening of n. Implicitly, the possession of
one or all these capabilities is insufficient to reconstruct the original name n from which
they were extracted.

Entry Capability

An entry capability, in m, can be used in the action:

n[P1 | ... | Pp | m1[...] | ... | mq[...]] (Pi ≠ ni[...])

M. P

in m. P

...

m1

n

P1 | ... | Pp | ...

mq

 | ... |

Friday, July 4, 1997, 11:53 am 9

which instructs the ambient surrounding in m. P to enter a sibling ambient named n. If
no sibling n can be found, the operation blocks until a time when such a sibling exists.
If more than one n sibling exists, any one of them can be chosen. The reduction rule is:

Or, by representing ambient brackets as boxes:

If successful, this reduction transforms a sibling n of an ambient m into a child of
m. After the execution, the process in m. P continues with P, and both P and Q find
themselves at a lower level in the tree of ambients.

Exit Capability

An exit capability, out m, can be used in the action:

which instructs the ambient surrounding out m. P to exit its parent ambient named m.
If the parent is not named m, the operation blocks until a time when such a parent ex-
ists. The reduction rule is:

That is:

If successful, this reduction transforms a child n of an ambient m into a sibling of
m. After the execution, the process in m. P continues with P, and both P and Q find
themselves at a higher level in the tree of ambients.

Open Capability

An opening capability, open m, can be used in the action:

This action provides a way of dissolving the boundary of an ambient named n located
at the same level as open, according to the rule:

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]

out m. P

m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]

open n. P

open n. P | n[Q] ���� P | Q

in m.P | Q

n

R

m

|
���� P | Q

n

 | R

m

����out m. P | Q

n

 | R

m

P | Q

n

R

m

|

10 Friday, July 4, 1997, 11:53 am

That is:

If no ambient n can be found, the operation blocks until a time when such an am-
bient exists. If more than one ambient n exists, any one of them can be chosen.

An open operation may be upsetting to both P and Q above. From the point of view
of P, there is no telling in general what Q might do when unleashed. From the point of
view of Q, its environment is being ripped open. Still, this operation is relatively well-
behaved because: (1) the dissolution is initiated by the agent open n. P, so that the ap-
pearance of Q at the same level as P is not totally unexpected; (2) open n is a capability
that is given out by n, so n[Q] cannot be dissolved if it does not wish to be (this will be-
come clearer later in presence of communication primitives).

Movement from the Inside or the Outside: Subjective vs. Objective

There are two natural kinds of movement primitives for ambients. The distinction is be-
tween “I make you move” from the outside (objective move) or “I move” from the inside
(subjective move). Subjective moves, the ones we have already seen, obey the rules:

Objective moves (indicated by an mv prefix), instead obey the rules:

These two kinds of move operations are not trivially interdefinable. The objective
moves have simpler rules. However, they operate only on ambients that are not active;
they provide no way of moving an existing running ambient. The subjective moves, in
contrast, cause active ambients to move and, together with open, can approximate the
effect of objective moves (as we discuss later).

Another kind of objective moves one could consider is:

These are objective moves that work on active ambients. However they are not as sim-
ple as the previous objective moves and, again, they can be approximated by subjective
moves and open.

In examining these variations, one should consider who has the authority to move
whom. In the case of the subjective moves, the authority rests in the top-level agents of
an ambient, which naturally act as control agents for the ambient. In the case of objective
moves, one should be careful to require enough capabilities so that ambients cannot be
arbitrarily kidnapped.

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]

mv in m. P | m[R] ���� m[P | R]
m[mv out m. P | R] ���� P | m[R]

mv n in m. P| n[Q] | m[R] ���� P | m[n[Q] | R]
m[mv n out m. P| n[Q] | R] ���� P | m[P | R] | n[Q]

����Q

n

open n. P | P | Q

Friday, July 4, 1997, 11:53 am 11

Dissolution from the Inside or the Outside: Acid vs. Open

The open capability confers the right to dissolve an ambient and reveal its contents. As
we said, this should be used carefully. There is danger both for the opening ambient,
which is injected with new agents, and for the opened ambient, which loses its identity.

It is interesting to consider an operation that dissolves an ambient form the inside:

Acid is appealing because, for example, it gives a direct encoding of objective moves:

However, acid is quite dangerous. For example, if we have an entry capability for
an ambient m, then we can entrap m via acid:

Therefore, acid should at least be regulated by an appropriate capability. We shall
see that open can be used to define a capability-restricted version of acid.

2.3 Operational Semantics

We now give an operational semantics of the calculus of section 2.1, based on a struc-
tural congruence between processes, �, and a reduction relation ����. We have already
discussed all the reduction rules, except for one that connects reduction with equiva-
lence. This is a semantics in the style of Milner’s reaction relation [15] for the π-calculus,
which was itself inspired by the Chemical Abstract Machine of Berry and Boudol [3].
Later we present an equivalent structural operational semantics.

Terms of the calculus are grouped into equivalence classes by the following rela-
tion, �, which denotes structural congruence (that is, equivalence up to trivial syntactic
restructuring). This equivalence is not a congruence; it only helps rearrange the top-
level of a term where reductions can happen.

Structural Congruence

m[acid. P | Q] ���� P | Q

mv in n.P � (νq) q[in n. acid. P]
mv out n.P � (νq) q[out n. acid. P]

entrap m � (ν k n) k[] | n[in m. acid. in k. 0]
entrap m | m[P] ����* (νk) k[m[P]]

P � P
P � Q ⇒ Q � P
P � Q, Q � R ⇒ P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q ⇒ (νn)P � (νn)Q
P � Q ⇒ P | R � Q | R
P � Q ⇒ !P � !Q
P � Q ⇒ n[P] � n[Q]
P � Q ⇒ M.P � M.Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)

12 Friday, July 4, 1997, 11:53 am

In addition, we identify terms up to renaming of bound names:

By this we mean that these terms are understood to be identical (for example, by choos-
ing an appropriate representation of terms), as opposed to structurally equivalent.

Note that the following terms are distinct:

The behavior of processes is given by the following reduction relations. The first
three rules are the one-step reductions for in, out and open. The next three rules propa-
gate reductions across scopes, ambient nesting and parallel composition. The final rule
allows the use of equivalence during reduction. Finally, ����* is the chaining of multiple
reduction steps.

Reduction

2.4 Examples

2.4.1 Locks

We can use open to encode locks:

P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P
(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n � fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
(νn)0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

(νn)P = (νm)P{n←m} if m � fn(P)

!(νn)P � (νn)!P replication creates new names
n[P]|n[Q] � n[P|Q] multiple n ambients have separate identity

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]
open n. P | n[Q] ���� P | Q

(Red In)
(Red Out)
(Red Open)

P ���� Q ⇒ (νn)P ���� (νn)Q
P ���� Q ⇒ n[P] ���� n[Q]
P ���� Q ⇒ P | R ���� Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ � P, P ���� Q, Q � Q’ ⇒ P’ ���� Q’ (Red �)

����* reflexive and transitive closure of ����

acquire n. P � open n. P
release n. P � n[] | P

Friday, July 4, 1997, 11:53 am 13

This way, two agents can “shake hands” before proceeding with their execution:

It appears that if we did not have open in the language we could not program such a
handshake between two processes.

2.4.2 Firewall Access

In this example, an agent crosses a firewall by means of a previously arranged pass-
word k. We want to allow for the possibility of handling multiple passwords; therefore
the name of the firewall is distinct from the password.

The agent exhibits the password k by using a wrapper ambient that has k as its
name. The firewall, which has a secret name w, sets up a pilot ambient, k[in k. in w], to
guide agents inside. The pilot ambient enters an agent by performing in k (therefore
verifying that the agent knows the password), and is then given control by being
opened. The execution of in w then transports the agent inside the firewall, where the
password wrapper is discarded.

The final effect is that the agent physically crosses into the firewall; this can be seen
below by the fact that the contents Q of the agent is finally placed inside w. (For sim-
plicity, this example is written to allow a single agent to enter.)

There is no guarantee here that any particular agent will make it inside the firewall.
Rather, the intended guarantee is that if any agent crosses the firewall, it must be one
that knows the password k.

2.4.3 Dissolution

The acid primitive discussed previously is not encodable via open. However, we can
code a form of planned dissolution:

to be used with a helper process open acid (an abbreviation for open acid. 0) as follows:

This form of acid is sufficient for uses in many encodings where it is necessary to
dissolve ambients. Encodings are carefully planned, so it is easy to add the necessary
open instructions. The main difference with the liberal form of acid is that acid n must

acquire n. release m. P | release n. acquire m. Q

Firewall � (νw) (k[in k. in w] | w[open k. P])
Agent � k[open k. Q]

Agent | Firewall
� (νw) (k[open k. Q] | k[in k. in w] | w[open k. P])
����* (νw) (k[k[in w] | open k. Q] | w[open k. P])
����* (νw) (k[in w | Q] | w[open k. P])
����* (νw) (w[k[Q] | open k. P])
����* (νw) w[Q | P]

acid n. P � acid[out n. open n. P]

n[acid n. P | Q] | open acid ����* P | Q

14 Friday, July 4, 1997, 11:53 am

name the ambient it is dissolving. More precisely, the encoding of acid n requires both
an exit and an open capability for n.

2.4.4 Objective Moves

Objective moves are not directly encodable. However, specific ambients can explicitly
allow objective moves:

These definitions are to be used, for example, as follows:

Moreover, by picking particular names instead of in and out, ambients can restrict who
can do objective moves in and out of them. These names work as keys k, to be used to-
gether with allow k:

2.4.5 Synchronization on Named Channels

In CCS [13], all communication between processes is reduced to synchronization on
named channels. In CCS, channels have no explicit representation other than their
name. In the ambient calculus, we represent a CCS channel named n as follows:

A CCS channel n has two complementary ports, which we shall write as n? and n!.
(We use a slightly non-standard notation to avoid confusion with the notation of the
ambient calculus.) These ports are conventionally thought of as input and output ports,
respectively, but in fact during synchronization no value passes in either direction.
Synchronization occurs between two processes attempting to synchronize on comple-
mentary ports. Process n?.P attempts to synchronize on port n? and then continues as
P. Process n!.P attempts to synchronize on port n! and then continues as P. We can en-
code these CCS processes as follows:

2.4.6 Choice

Another major feature of CCS is the presence of a non-deterministic choice operator (+).
We do not take + as a primitive, in the spirit of the asynchronous π-calculus, but we can

allow n � !open n
mv in n.P � (νk) k[in n. in[out k. P]]
mv out n.P � (νk) k[out n. out[out k. P]
n�[P] � n[P | allow in] (n� allows mv in)
n�[P] � n[P] | allow out (n� allows mv out)
n��[P] � n[P | allow in] | allow out (n�� allows both mv in and mv out)

mv in n.P | n��[Q] ����* n��[P | Q]
n��[mv out n.P | Q] ����* P | n��[Q]

mv ink n.P � k[in n. P]
mv outk n.P � k[out n. P]

n��[]

n?.P � mv in n. acquire rd. release wr. mv out n. P
n!.P � mv in n. release rd. acquire wr. mv out n. P

Friday, July 4, 1997, 11:53 am 15

approximate some aspects of it by the following definitions. The intent is that n.P + m.Q
reduces to P in presence of an n ambient, and reduces to Q in presence of an m ambient.

We compute:

body amb self other R �

in amb. out amb. in other. in trap. o[out trap. open o’. R]
n.P + m.Q �

(ν p q trap o o')
(trap[] | o'[] | open o |
 p[body n p q P | open q] |
 q[body m q p Q | open p])

(n.P + m.Q) | n[R]
����* (ν p q trap o o')

(trap[] | o'[] | open o |
 n[R | p[out n. in q. in trap. o[out trap. open o'. P] | open q]] |
 q[body m q p Q | open p])

����* (ν p q trap o o')
(trap[] | o'[] | open o |
 n[R] | p[in q. in trap. o[out trap. open o'. P] | open q]|
 q[body m q p Q | open p])

����* (ν p q trap o o')
(trap[] | o'[] | open o | n[R] |
 q[body m q p Q | open p |
 p[in trap. o[out trap. open o'. P] | open q]])

����* (ν p q trap o o')
(trap[] | o'[] | open o | n[R] |
 q[body m q p Q | in trap. o[out trap. open o'. P] | open q])

����* (ν p q trap o o')
(o'[] | open o | n[R] |
 trap[q[body m q p Q | o[out trap. open o'. P] | open q]])

����* (ν p q trap o o')
(o'[] | n[R] | open o | o[open o'. P] |
 trap[q[body m q p Q | open q]])

����* (ν p q trap o o')
(n[R] | o'[] | open o'. P |
 trap[q[body m q p Q | open q]])

����* n[R] | P | (ν trap) trap[q[body m q p Q | open q]]
� n[R] | P | 0
� n[R] | P

16 Friday, July 4, 1997, 11:53 am

We use the symbol � for contextual equivalences we conjecture to hold. In the An-
nex, we begin to develop the necessary theory to prove these conjectured equations. In
particular, by an analysis of the possible behavior of (ν trap) trap[q[body m q p Q | open
q]] it follows that (ν trap) trap[q[body m q p Q | open q]] is strongly bisimilar to 0.

2.4.7 Renaming

We can use open to encode a subjective ambient-renaming operation called be:

For example:

However, this operation is not atomic: a movement initiated by Q may disrupt it.
If it is possible to plan ahead, then one can add a lock within the ambient named n to
synchronize renaming with any movement by Q.

2.4.8 Seeing

We can use open and be to encode a see operation that detects the presence of a given
ambient:

With this definition, P gets activated only if its r capsule can get back to the same place.
That is, P is not activated if it is caught in the movement of n and ends up somewhere
else.

The previous definition of see can detect any ambient. If an ambient wants to be
seen (that is, if it contains allow see), then there is a simpler definition:

2.4.9 Iteration

The following iteration construct has a number of branches (mi)Pi and a body Q. Each
branch can be triggered by exposing an ambient mi[] in the body, which is then replaced
by a copy of Pi.

2.4.10 Flags

We want to indicate boolean conditions by flags in such a way that flags can be tested
and execution can proceed conditionally. We assume that there are two possible flags,

n be m. P � m[out n. open n. P] | in m

n[n be m. P | Q] � n[m[out n. open n. P] | in m | Q]
���� m[open n. P] | n[in m | Q]
���� m[open n. P | n[Q]]
���� m[P | Q]

see n. P � (ν r s) r[in n. out n. r be s. P] | open s

see n. P � (ν seen) mv insee n. mv outseen n. P | open seen

rec (m1)P1 ... (mp)Pp in Q �

(ν m1 ... mp) !open m1. P1 | ... | !open mp. Pp | Q

rec (m1)P1 ... (mp)Pp in mi[] ����* rec (m1)P1 ... (mp)Pp in Pi

Friday, July 4, 1997, 11:53 am 17

flag tt for true and flag ff for false, and that at most one of them is present at any time.
Flags are represented as follows:

A conditional operator has two branches that run in parallel, one testing for flag tt and
then running P, and one testing for flag ff and then running Q. The trick is to get one
branch to kill the other one when a flag is detected, so it will not accidentally activate
on a future instance of the flag. To this end, when a branch detects a flag, it creates a
fake flag that first traps the other branch and then activates the continuation of the first
branch. We make the names tt and ff parameters of the operation:

The definition can be easily generalized to multiple branches. If uu is a third possibility,
then ff[t[]] above is replaced by ff[uu[t[]]] and tt[f[]] is replaced by tt[uu[f[]]], and a third
branch is added containing tt[ff[u[]]].

2.4.11 Numerals

We use the boolean flags of the previous section to represent numbers as ambients. For
any natural number i, let i be the ambient-oriented numeral for i:

These numerals are simply stacks of nested ambients, whose names alternate between
num and tt, except that the inside end of the stack is the ambient num��[ff[]]. The number
of ambients named tt in the stack is the number represented. For example:

flag n � n[]

if tt P, if ff Q �

(νk) (k[] |
open tt. open k. (νt) (ff[t[]]|open t. P) |
open ff. open k. (νf) (tt[f[]]|open f. Q))

flag tt | if tt P, if ff Q
� (νk) (tt[] | k[] | open tt. open k. (νt) (ff[t[]]|open t. P)

| open ff. open k. (νf) (tt[f[]]|open f. Q))
���� (νk) (k[] | open k. (νt) (ff[t[]]|open t. P)

| open ff. open k. (νf) (tt[f[]]|open f. Q))
���� (νk) (νt) (ff[t[]] | open t. P | open ff. open k. (νf) (tt[f[]]|open f. Q))
���� (νk) (νt) (t[] | open t. P | open k. (νf) (tt[f[]]|open f. Q))
���� P | (νk) open k. (νf) (tt[f[]]|open f. Q)
� P

flip � if tt ff[], if ff tt[]

0 � num��[ff[]]
i+1 � num��[tt[] | i]

1 = num��[tt[] | num��[ff[]]]
2 = num��[tt[] | num��[tt[] | num��[ff[]]]]

18 Friday, July 4, 1997, 11:53 am

To show that arithmetic may be programmed on these numerals, we begin with an
ifzero operation to tell whether a numeral represents 0 or not.

We can calculate:

To increment or decrement a numeral, we need an auxiliary operation that runs a pro-
cess as a sibling of the num��[ff[]] ambient at the inside end of the stack.

We need a second auxiliary operation to signal completion from the inside end of a nu-
meral by depositing an empty ambient named o at the outside end. In fact, it is easiest
to deposit o[] as a sibling of all the ambients named num on the way out of the numeral.

We can calculate:

Finally, we can program increment and decrement operations on numerals:

These satisfy:

Given that iterative computations can be programmed with replication, any arith-
metic operation can be programmed with inc, dec and iszero.

ifzero P Q �

mv in num.
if tt (tt[] | mv out num. P),
if ff (ff[] | mv out num. Q)

0 | ifzero P Q ����* 0 | P
i+1 | ifzero P Q ����* i+1 | Q

inside P �

(ν it) it��[it[] | !open it. mv out it. ifzero P (mv in it. in num. it[])]

outside o �

(ν it) it��[it[] | !open it. mv out it. (o[] | mv in it. out num. it[])]

i | inside P � num��[tt[] | ... num��[tt[] | P | num��[ff[]]] ...]
if i is the number of num’s on the right-hand side

(νo) (num��[tt[] | ... num��[tt[] | outside o | j]...] | open o. P) � i+j | P
if o � fn(P) and i is the number of num’s outside j

inc P �

(νo) (inside (mv in num. open ff. (tt[] | num��[ff[] | outside o])) | open o. P)
dec P �

(νo) (inside (open num. open tt. outside o) | open o. P)

i | inc P � i+1 | P
i+1 | dec P � i | P

Friday, July 4, 1997, 11:53 am 19

2.4.12 Turing Machines

We emulate Turing machines in a “mechanical” style. A tape consists of a nested se-
quence of squares, each initially containing the flag ff[]. The first square has a distin-
guished name to indicate the end of the tape to the left:

end��[ff[] | sq��[ff[] | sq��[ff[] | sq��[ff[] | ...]]]]
The head of the machine is an ambient that inhabits a square. The head moves right by
entering the next nested square and moves left by exiting the current square. The head
contains the program of the machine and it can read and write the flag in the current
square. The trickiest part of the definition concerns extending the tape. Two tape-
stretchers are placed at the beginning and end of the tape and continuously add
squares.

3 Communication
Although the pure mobility calculus is powerful enough to be Turing-complete, it has
no communication or variable-binding operators. Such operators seem necessary, for
example, to comfortably encode other formalisms such as the λ-calculus and the π-cal-
culus.

Therefore, we now have to choose a communication mechanism to be used to ex-
change messages between ambients. The choice of a particular mechanism is to some
degree orthogonal to the mobility primitives: many such mechanisms can be added to
the mobility core. However, we should try not to defeat with communication the re-

head �

head[!open S1. state #1 (example)
mv out head. jump out to read flag

if tt (ff[] | mv in head. in sq. S2[]), head right, state #2
if ff (tt[] | mv in head. out sq. S3[]) | head left, state #3

 ... | more state transitions
 S1[]] initial state

stretchRht � stretch tape right
(νr) r[!open it. mv out r. (sq��[ff[]] | mv in r. in sq. it[]) | it[]]

stretchLft � stretch tape left
!open it. mv in end.

(mv out end. end��[sq��[] | ff[]] |
 in end. in sq. mv out end. open end. mv out sq. mv out end. it[])

| it[]

machine �

stretchLft | end��[ff[] | head | stretchRht]

20 Friday, July 4, 1997, 11:53 am

strictions imposed by capabilities. This suggests that a primitive form of communica-
tion should be purely local, and that the transmission of non-local messages should be
restricted by capabilities.

To focus our attention, we pose as a goal the ability to encode the asynchronous π-
calculus. For this it is sufficient to introduce a simple asynchronous communication
mechanism that works locally within a single ambient.

3.1 Communication Primitives

We again start by displaying the syntax of a whole calculus. The mobility primitives are
essentially those of section 2, but the addition of communication variables changes
some of the details. More interestingly, we add input ((x).P) and output (M
) primitives
and we enrich the capabilities to include paths.

Mobility and Communication Primitives

New syntactic conventions

3.2 Explanations

Communicable Values

The entities that can be communicated are either names or capabilities. In realistic sit-
uations, communication of names should be rather rare, since knowing the name of an
ambient gives a lot of control over it. Instead, it should be common to communicate re-
stricted capabilities to allow controlled interactions between ambients.

P,Q ::=
(νn)P
0
P|Q
!P
M[P]
M.P
(x).P
	M

processes
restriction
inactivity
composition
replication
ambient
capability action
input action
async output action

M ::=
x
n
in M
out M
open M
ε
M.M’

capabilities
variable
name
can enter into M
can exit out of M
can open M
null
path

(x).P|Q is read ((x).P)|Q

Friday, July 4, 1997, 11:53 am 21

It now becomes useful to combine multiple capabilities into paths, especially when
one or more of those capabilities are represented by input variables. To this end we in-
troduce a path-formation operation on capabilities (M. M’). For example, (in n. in m). P
is interpreted as in n. in m. P.

Note also that, for the purpose of communication, we have added names to the col-
lection of capabilities. A name is a capability to create an ambient of that name.

We distinguish between ν-bound names and input-bound variables. Variables can
be instantiated with names or capabilities. In practice, we do not need to distinguish
these two sorts lexically, but we often use n, m, p, q for names and w, x, y, z for variables.

Ambient I/O

The simplest communication mechanisms that we can imagine is local anonymous
communication within an ambient (ambient I/O, for short):

An output action releases a capability (possibly a name) into the local ether of the sur-
rounding ambient. An input action captures a capability from the local ether and binds
it to a variable within a scope. We have the reduction:

This local communication mechanism fits well with the ambient intuitions. In par-
ticular, long-range communication, like long-range movement, should not happen au-
tomatically because messages may have to cross firewalls.

Still, this simple mechanism is sufficient, as we shall see, to emulate communica-
tion over named channels, and more generally to provide an encoding of the asynchro-
nous π-calculus.

Remark

To allow both names and capabilities to be output and input, there is a single syntactic
sort that includes both. Then, a meaningless term of the form n. P can then arise, for
instance, from the process ((x). x. P) | 	n
. This anomaly is caused by the desire to denote
movement capabilities by variables, as in (x). x. P, and from the desire to denote names
by variables, as in (x). x[P]. We permit n. P to be formed, syntactically, in order to make
substitution always well defined. A simple type system distinguishing names from
movement capabilities would avoid this anomaly.

3.3 Operational Semantics

The structural congruence relation is defined only on closed terms (those not contain-
ing free variables); therefore, the definition of equivalence of section 2.3 still applies
verbatim, with the understanding that P and M range now over larger classes. In addi-
tion, we have the following equivalences:

(x).P input action
	M
 async output action

(x).P | 	M
 ���� P{x←M}

22 Friday, July 4, 1997, 11:53 am

Structural Congruence

We now also identify terms up to renaming of bound variables:

Finally, we have a new reduction rule:

Reduction

3.4 Examples

3.4.1 Cells

A cell cell c v stores a value v at a location c, where a value is a capability. The cell is set
to output its current contents destructively, and is set to be “refreshed” with either the
old contents (by get) or a new contents (by set).

Note that set is essentially an output operation, but it is a synchronous one: its se-
quel P runs only after the cell has been set.

Parallel get and set operations do not interfere. It is also possible to code an atomic
get-and-set primitive, which could be used to code test-and-set; in that case the value ex-
pression v below would contain a test depending on x.

3.4.2 Records

A record is a named collection of cells. Since each cell has its own name, those names
can be used as field labels:

A record can contain the name of another record in one of its fields. Therefore sharing
and cycles are possible.

P � Q ⇒ M[P] � M[Q] (Struct Amb)

P � Q ⇒ (x).P � (x).Q (Struct Input)

ε.P � P
(M.M’).P � M.M’.P

(Struct ε)
(Struct .)

(x).P = (y).P{x←y} if y � fv(P)

(x).P | 	M
 ���� P{x←M} (Red Comm)

cell c v � c��[v
 | !(x). 	x
]
get c (x). P � mv in c. (x). (x
 | mv out c. P)
set c 	v
. P � mv in c. (x). (v
 | mv out c. P)

get-and-set c (x) 	v
. P � mv in c. (x). (v
 | mv out c. P)

record r(l1=v1 ... ln=vn) � r��[cell l1 v1| ... | cell ln vn]
getr r l (x). P � mv in r. get l (x). mv out r. P
setr r l 	v
. P � mv in r. set l 	v
. mv out r. P

Friday, July 4, 1997, 11:53 am 23

3.4.3 Routable Packets

We define packet pkt as an empty packet of name pkt that can be routed repeatedly to
various destinations. We also define route pkt with P to M as the act of placing P inside
the packet pkt and sending the packet to M; this is to be used in parallel with packet pkt.
Note that M can be a compound capability, representing a path to follow. Finally, for-
ward pkt to M is an abbreviation that forwards any packet named pkt that passes by to
M.

Here we assume that P does not interfere with routing.

3.5 Communication Between Ambients

Our basic communication primitives operate only within a given ambient. We now dis-
cuss examples of communication across ambients. In addition, in section 3.6 we treat
the specific case of channel-based communication across ambients.

3.5.1 Parent I/O

We begin by considering communication between an anonymous parent and a named
child (parent I/O, for short). This kind of communication is useful when a client enters
a server and wants to talk to the server, as opposed to some other client who may be
trying to spoof the server. The assumption is that a client can trust the server it just en-
tered, but does not trust other clients.

Parent I/O

We could adopt the reduction rules:

However, it is possible to approximate parent I/O with normal ambient I/O. We as-
sume that the names u and d (for upward and downward communication) are not used
for other purposes, and we set:

packet pkt � pkt[!(x). x | !open route]
route pkt with P to M � route[in pkt. 	M
 | P]
forward pkt to M � route pkt with 0 to M

�(x).P
�	M

�n(x).P
�n	M

child input from parent
child output to parent
parent input from child n
parent output to child n

�n(x).P | n[�	M
 | Q] ���� P{x←M} | n[Q]
�n	M
 | n[�(x).P | Q] ���� n[P{x←M} | Q]

24 Friday, July 4, 1997, 11:53 am

In this encoding, a child who wants to communicate with the parent deposits requests
within itself, in the “mailboxes” u and d. The parent acts on those requests by first en-
tering the child.

It is also possible to set up the parent so that it relays messages between children;
if the children trust the parent, then they can also trust the origin and destination of
those messages. The trust in the parent is implicit in the fact that the parent must have
capabilities to enter and exit each child. These capabilities can be kept private so that
children cannot interact directly.

3.5.2 Ether I/O

We now consider communication between sibling over an unnamed “ether”, which is
assumed to span only their enclosing ambient.

Ether I/O

We could adopt the reduction rules:

Again, we can emulate this kind of communication, but we must set up the parent and
the children appropriately, and we must tag each I/O operation with the name of the
ambient that is performing it.

The local “ether” is emulated by a mailbox e in the parent. This way any child can
talk to any other (unspecified) child within the parent ambient.

3.5.3 Remote I/O

It is not realistic to assume direct long-range communication. Communication, like
movement, is subject to access restrictions due to the existence of administrative do-
mains. Therefore, it is convenient to model long-range communication as the move-
ment of “messenger” agents that must cross administrative boundaries. Assume, for

n�[P] � n��[u��[] | d��[] | P] a child n[P] enabled for Parent I/O
�(x).P � mv in d. (x). mv out d. P
�	M
 � mv in u. 	M

�n(x).P � mv in n. mv in u. (x). mv out u. mv out n. P
�n	M
 � mv in n. mv in d. 	M

��(x).P
��	M

child n inputs from its parent’s ether
child n outputs to its parent’s ether

n[��(x).P | Q] | m[��	M
 | R] ���� n[P{x←M} | Q] | m[R]

n[��P] � n[e��[] | P] a parent n[P] enabling Ether I/O
n��[P] � n��[P] a child n[P] enabled for Ether I/O
n��(x).P � mv out n. mv in e. (x). mv out e. mv in n. P
n��	M
 � mv out n. mv in e. 	M

Friday, July 4, 1997, 11:53 am 25

simplicity, that the location M allows I/O by providing !open io. By M–1 we indicate a
given return path from M.

To avoid transmitting P all the way there and back, we can write input as:

To emulate Remote Procedure Call we write:

This is essentially an implementation of a synchronous communication (RPC) by two
asynchronous communications (a
 and 	x
).

3.6 Encoding the π-calculus

One of our benchmarks of expressiveness is the ability to encode the asynchronous π-
calculus. This encoding is moderately easy, given the I/O primitives. We first discuss
how to represent named channels: this is the key idea for the full translation.

A channel is simply represented by an ambient: the name of the channel is the
name of the ambient. This is very similar in spirit to the join-calculus [9] where chan-
nels are rooted at a location. Communication on a channel is represented by local com-
munication inside an ambient. The basic technique is a variation on objective moves. A
conventional name, io, is used to transport input and output requests into the channel.
The channel opens all such requests and lets them interact.

These definitions satisfy the expected reduction n(x).P | n	M
 ����* P{x←M} in presence
of a channel ch n:

Therefore, we can write the following encoding of the asynchronous π-calculus:

@M	a
 � io[M. 	a
] remote output at M
@M(x)M–1. P � (νn) (io[M. (x). n[M–1. P]] | open n) remote input at M

@M(x)M–1. P � (νn) (io[M. (x). n[M–1. 	x
]] | open n) | (x). P

@M arg	a
 res(x) M–1. P � (νn) (io[M. (a
 | (x). n[M–1. 	x
])] | open n) | (x). P

ch n � n[!open io] a channel
(ch n)P � (νn) (ch n | P) a new channel
n(x).P � (νp) (io[in n. (x). p[out n. P]] | open p) channel input
n	M
 � io[in n. 	M
] async channel output

ch n | n(x).P | n	M

� (νp) (n[!open io] | io[in n. (x). p[out n. P]] | open p | io[in n. 	M
])
����* (νp) (n[!open io | io[(x). p[out n. P]] | io[M
]]| open p)
����* (νp) (n[!open io | (x). p[out n. P] | 	M
]| open p)
���� (νp) (n[!open io | p[out n. P{x←M}]]| open p)
���� (νp) (n[!open io] | p[P{x←M}]| open p)
���� (νp) (n[!open io] | P{x←M})
� ch n | P{x←M}

26 Friday, July 4, 1997, 11:53 am

Encoding of the Asynchronous π-calculus

This encoding includes the choice-free synchronous π-calculus, since it can itself be en-
coded within the asynchronous π-calculus [4, 12].

We can fairly conveniently use these definitions to embed communication on
named channels within the ambient calculus (provided the name io is not used for oth-
er purposes). Communication on these named channels, though, only works within a
single ambient. In other words, from our point of view, a π-calculus process always in-
habits a single ambient. Therefore, the notion of mobility in the π-calculus (communi-
cation of names over named channels) is different from our notion of mobility.

3.7 Encoding the λ-calculus

Since the λ-calculus can be encoded in the asynchronous π-calculus [4], and the asyn-
chronous π-calculus can be encoded in the ambient calculus, we can in a way already
encode the λ-calculus. However, we are looking here for a more direct solution.

The λ-calculus is relatively difficult to encode in the ambient calculus because pro-
cesses are not values; any representation of λ-abstractions as ambients, or processes,
must confront this difficulty.

In the π-calculus this issue is solved by referring to λ-abstractions via names that
can be passed around as values. An operation on such a name becomes an operation
on the corresponding λ-abstraction. This works because the π-calculus is “flat”: all in-
teractions occur in what we would call a single ambient. Therefore, it is always possible
to find the λ-abstraction corresponding to a given name.

Instead, in our framework it is natural to introduce ambient nesting of the form
app[P | Q] to isolate the interaction of an abstraction P with its argument Q. This nest-
ing then gets in the way of passing names around that refer to λ-abstractions. The
names can be passed around, but the λ-abstractions may happen to be at the wrong lev-
el, with respect to the names, when they need to be found.

Therefore, we use the following technique. Each occurrence of a λ-variable x is rep-
resented by an ambient x[]. A substitution is represented, to a first approximation, by
!open x. P. This has the effect of replacing every occurrence of x[] at the current level
with a copy of P. In addition, the substitution must be pushed across all the app nesting
levels. Therefore, we need a substitution operator that satisfies the following recursive
equation; such an operator is defined at the end of this section.

�(νn)P � (νn) (n[!open io]|�P)
�n(x).P � (νp) (io[in n. (x). p[out n. �P]]|open p)
�n	m
 � io[in n. 	m
]
�P|Q � �P|�Q

�!P � !�P

subst x P � (! open x. P) | (mv in app. subst x P)

Friday, July 4, 1997, 11:53 am 27

The subst operator “floods” a term. More efficient substitutions could be obtained by
preprocessing the λ-term to add information able to steer the substitutions in the right
directions.

For weak reduction, we set the coding of a λ-abstraction to input a fresh name and
then dissolve a surrounding app ambient. Application outputs a corresponding name
that is replaced by a substitution operator with copies of an appropriate argument. For
this encoding the variables of the λ-calculus are encoded as ambient calculus variables.

Encoding of the λ-calculus (with weak call-by-name reductions)

Here is a derivation of beta reduction in a context containing allow in | allow out. It
assumes a suitable substitution lemma:

For strong reduction, we let the coding of a λ-abstraction generate a fresh name
and output the name into the environment. The name is picked up by a substitution op-
erator that proceeds to replace occurrences of the name with copies of an appropriate
argument. For this encoding the variables of the λ-calculus are encoded as ambient cal-
culus names.

Encoding of the λ-calculus (with strong reductions)

Here is a derivation of beta reduction in a context containing allow in | allow out. It
assumes a suitable substitution lemma:

Note that substitution propagates inside λ-abstractions and that it is lazily executed in
parallel with computation steps.

�x � x[]
�λ(x) b � (x). (�b | acid app)
�a b � (νn) app��[�a | 	n
 | subst n �b] n not free in a b

�(λ(x) b)(a) | allow in | allow out
� (νn) app��[(x). (�b | acid app) | 	n
 | subst n �a] | allow in | allow out
���� (νn) app��[�b{x←n} | acid app | subst n �a] | allow in | allow out
����* (νn) (�b{x←n} | subst n �a | allow in) | allow in| allow out
� �b{x←a} | allow in | allow out

�x � x[]
�λ(x) b � (νx) (x
 | �b)
�a b � app��[�a | (y). (subst y �b | acid app)] y not free in b

�(λ(x) b)(a) | allow in | allow out
� app��[((νx) 	x
 | �b) | (x). (subst x �a | acid app)] | allow in | allow out
����* app��[((νx) �b | subst x �a) | acid app] | allow in | allow out
����* ((νx) �b | subst x �a) | allow in | allow out | allow out
� �b{x←a} | allow in | allow out

28 Friday, July 4, 1997, 11:53 am

We now describe a coding of subst x P. First we define flood P, which recursively
adds P to each node of a stack of ambients, where each ambient in the stack is named
app. We assume that the name it does not occur in P:

We ought to be able to show:

We define:

and then the desired recursive equation for subst is satisfied.

4 Conclusions
We have introduced the informal notion of mobile ambients, and we have discussed
how this notion captures the structure of complex networks and the behavior of mobile
computation.

We have then investigated an ambient calculus that formalizes this notion simply
and powerfully. Our calculus is no more complex than common process calculi, but
supports reasoning about mobility and, at least to some degree, security.

On this foundation, we can now envision new programming methodologies, pro-
gramming libraries and programming languages for global computation.

Acknowledgments
Thanks to Cedric Fournet and Paul McJones for comments on early drafts.

flood P � (ν it) it��[it[] | !open it. mv out it. (P | mv in it. in app. it[])]

flood P � P | mv in app. flood P

subst x P � flood (!open x. P)

Friday, July 4, 1997, 11:53 am 29

References
[1] Abadi, M. and A.D. Gordon, A calculus for cryptographic protocols: the spi cal-

culus. Proc. of the Fourth ACM Conference on Computer and Communications Security,
36-47, 1997.

[2] Amadio, R.M., An asynchronous model of locality, failure, and process mobili-
ty. Rapport Interne LIM and INRIA Research Report 3109, February 1997. (To ap-
pear in COORDINATION 97, Berlin, 1997.)

[3] Berry, G. and G. Boudol, The chemical abstract machine. Theoretical Computer Science
96(1), 217-248, 1992.

[4] Boudol, G., Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia-An-
tipolis, 1992.

[5] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT
Press. 1995.

[6] Carriero, N. and D. Gelernter, Linda in context. Communications of the ACM, 32(4),
444-458, 1989.

[7] Carriero, N., D. Gelernter, and L. Zuck, Bauhaus Linda, in Object-Based Models and
Languages for Concurrent Systems, P. Ciancarini, O. Nierstrasz and A. Yonezawa
(Ed.), Lecture Notes in Computer Science 924, Springer-Verlag, 66-76. 1995.

[8] De Nicola, R., G.-L. Ferrari and R. Pugliese, Locality based Linda: programming
with explicit localities. Proc. TAPSOFT’97. (To appear). 1997.

[9] Fournet, C. and G. Gonthier, The reflexive CHAM and the join-calculus. Proc. 23rd
Annual ACM Symposium on Principles of Programming Languages, 372-385. 1996.

[10] Fournet, C., G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy, A calculus of mobile
agents. Proc. 7th International Conference on Concurrency Theory (CONCUR'96), 406-421.
1996.

[11] Gosling, J., B. Joy and G. Steele, The Java language specification. Addison-Wes-
ley. 1996.

[12] Honda., K. and M. Tokoro, An object calculus for asynchronous communication.
Proc. ECOOP’91, Lecture Notes in Computer Science 521, 133-147, Springer Verlag,
1991.

[13] Milner, R., A calculus of communicating systems. Lecture Notes in Computer
Science 92. Springer-Verlag. 1980.

[14] Milner, R., Functions as processes. Mathematical Structures in Computer Science 2,
119-141. 1992.

[15] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, Parts 1-2. In-
formation and Computation, 100(1), 1-77. 1992

[16] White, J.E., Telescript technology: the foundation for the electronic marketplace.
White Paper. General Magic, Inc. 1994.

